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Recurrent stroke risk secondary to intracranial atherosclerotic disease remains

high despite aggressive medical treatment. This risk is further amplified

in subgroups possessing biomarkers of hemodynamic insu�ciency and

potential for embolization, which have been shown to be independently

and synergistically predictive of recurrent stroke. Luminal stenosis was

predominantly used as entry criteria in major treatment trials, discounting the

potential role of hemodynamics from primary analyses, limiting the strength

of evidence and conclusions of these biomarkers to post-hoc analyses and

other natural history studies. Future treatment trials should consider stratifying

patients using a combination of these high-risk biomarkers. In the absence of

trials, risk stratifying patients based on the presence of these markers may lend

to more individualized clinical decisions. We aimed to summarize the studies

that have investigated the relationship between biomarkers and their role in

predicting recurrent stroke risk in intracranial atherosclerotic disease.

KEYWORDS
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Introduction

Intracranial atherosclerotic disease (ICAD) is the most common cause of ischemic

stroke globally with the highest prevalence in Asians, Africans, and Hispanics (1, 2).

The disease carries a poor natural history with high recurrent stroke rates in both

medical and endovascular treated patients (3–5). The Comparison of Warfarin and

Aspirin for Symptomatic Intracranial Arterial Stenosis (WASID) trial showed that

warfarin was associated with significantly higher rates of intracranial hemorrhage

and provided no benefit over aspirin in preventing ischemic strokes, with two-

year cerebrovascular event rates over 20% in both arms (4). The results of this

trial encouraged the exploration of endovascular treatments in this population at

a time of rapid advancement in endovascular technologies. In a multicenter study

of prospectively enrolled patients into the US Wingspan Registry, investigators

reported periprocedural stroke rates as low as 5%, suggesting an acceptable rate

of periprocedural morbidity in this population (6). These findings were challenged

with the results of the SAMMPRIS and VISSIT trials which showed significantly

higher rates of stroke with angioplasty and stenting compared to dual antiplatelet
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therapy, shaping national guidelines which endorse aggressive

medical therapy and advise against endovascular treatment in

this population (5, 7, 8). Furthermore, the more recent CASSISS

trial showed no benefit of angioplasty and stenting compared

to aggressive medical management, further validating current

recommendations (9). None of these trials, however, risk-

stratified patients based on hemodynamics or thromboembolic

potential, relying exclusively on luminal stenosis as major

entry criteria.

Although these studies targeted higher risk patients by

including patients with at least moderate-to-high-grade stenosis,

there is likely a high degree of heterogeneity within this

group. For example, patients with a dominant hemodynamic

mechanismmay be at a greater risk of recurrent stroke compared

to patients with thromboembolic mechanisms (10–12). Several

prospective and retrospective studies have attempted to risk

stratify these patients using various clinical and radiographic

biomarkers, such as infarction patterns, hemodynamics, embolic

signaling, plaque morphology, and vessel wall analysis (11, 13).

Our aim was to review the current literature of the various

biomarkers that have been used to stratify recurrent stroke

risk. Future randomized studies of endovascular versus medical

treatment of patients with ICAD may benefit by stratifying

patients using these proven biomarkers.

Methods

We searched the terms: “Intracranial atherosclerotic

disease”; “ICAS”; ICAD”; “hemodynamics in intracranial

atherosclerotic disease”; “risk stratification of intracranial

atherosclerotic disease”; WASID; SAMMPRIS; MyRIAD;

TOSS-2; “embolic signaling in intracranial atherosclerotic

disease”; “hypoperfusion in intracranial atherosclerotic disease”

in Pubmed.

Defining symptomatic intracranial
atherosclerotic disease

Ischemic events that localize to a downstream

atherosclerotic intracranial large artery narrowed to at

least 50% of its vessel diameter can be classified under the

stroke mechanism of ICAD (4). Although the degree of

stenosis may correlate loosely with hemodynamics and (14)

has been used in landmark randomized controlled trials (4),

defining a heterogenous disease based exclusively on luminal

narrowing discounts other potentially risk-defining features,

such as regional hemodynamics and plaque instability. Since

the presence of collaterals and variability of vascular anatomy

strongly influence upstream blood flow, the degree of focal

stenosis may not correlate with regional hemodynamics (11).

Several imaging modalities and methods have been used to

measure hemodynamics, plaque stability, and potential for distal

embolism, such as quantitative magnetic resonance angiography

(QMRA) (11), CT and MR perfusion (15–18), standardized

digital subtraction angiography (DSA) collateral scores (19),

vasomotor reactivity and embolic detection using transcranial

dopplers (TCDs), and high-resolution MRI. Prospective studies

have used these methods to delineate the specific mechanisms of

stroke and to identify high-risk patients (11, 13), but have largely

been left out of treatment trials which relied exclusively on

luminal size for inclusion (4, 5). The index events and primary

outcomes used in treatment trials have also limited inclusion to

transient ischemic attacks or clinical strokes, while other known

sequelae of ICAD are disregarded such as subclinical infarction

and cognitive function (20, 21). Indeed, this is a complex disease

with a heterogenous patient population and should not be

simplified to a strict definition based exclusively on lumen size.

Degree of stenosis, infarction patterns,
and hemodynamics

Ischemic strokes attributable to ICAD can occur due

to various mechanisms, including hemodynamic ischemia,

artery-to-artery embolism, branch atheromatous disease,

and a combination of these mechanisms. There is likely a

complementary relationship between these mechanisms, since

hypoperfusion likely increases thrombosis and decrease the

distal washout of thromboemboli (22–24). Infarction patterns

are often used to infer stroke mechanism such that a borderzone

pattern implies hemodynamic insufficiency, territorial pattern

implies thromboembolism, and a perforator pattern implies

branch atheromatous disease. The relationships between

luminal stenosis, infarction patterns, hemodynamics, and

recurrent stroke risk in intracranial atherosclerotic disease have

been investigated in prospective studies and post-hoc analyses of

the major trials below:

WASID post-hoc analyses

The first comprehensive study that systematically

evaluated angiographic collaterals in patients with intracranial

atherosclerotic disease was conducted by Liebeskind et.

al in a WASID post-hoc analysis which found a strong

relationship between the degree of stenosis and angiographic

collaterals, and an inverse relationship between angiographic

collaterals and anterograde flow across a stenosis (TIMI score)

and into the downstream territory (TICI score) (25). This

conceptualized angiographic collaterals as novel biomarkers in

subclassifying patients with intracranial atherosclerotic disease.

In a subsequent post-hoc analysis, the extent of collaterals

was found to be independent predictors of recurrent stroke

in a symptomatic arterial territory in the total population,

however, two divergent patterns emerged depending on the
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degree of stenosis: collaterals were protective in preventing

recurrent stroke in patients with severe stenosis but predicted

an increased risk of recurrent stroke in patients with moderate

stenosis (10). Although mechanisms that explain these apparent

paradoxical findings remain uncertain and speculative, this

study suggested that collaterals may identify more unstable

milder stenoses. A subsequent study performed to evaluate the

relationship between infarction pattern and collateral status

did not find a statistically significant relationship between

angiographic collaterals and baseline infarction patterns,

including a relationship between borderzone infarctions and

poor collaterals (26). Artery-to-artery embolism was thought to

be the predominant stroke mechanism in this population, since

51% of the baseline infarctions and 62% of recurrent infarctions

were in the territory of a single artery. In summary, these studies

showed that angiographic collaterals correlate strongly with the

degree of stenosis and are predictive of recurrent infarction but

were unable to draw a relationship between infarction pattern

and collateral status.

SAMMPRIS post-hoc analyses

In a SAMMPRIS post-hoc analysis of anterior circulation

infarctions, patients with qualifying events attributable to

internal and cortical borderzones were at significantly higher

rates of recurrent infarction compared to non-borderzone

infarctions at a median follow-up of 31 months (26.4 vs. 10.4%,

p = 0.054) (12). Impaired DSA collaterals were significantly

associated with recurrent infarction compared to complete

collaterals (27 vs. 6%, p = 0.014) and were found in 70%

of patients with borderzone infarctions. The presence of a

borderzone pattern coupled with impaired collaterals had the

highest rate of recurrent infarction at 37%. In addition, the

rate of recurrent infarction continued to increase beyond 1

year in patients with either borderzone patterns or impaired

collaterals while rates remained steady in patients with non-

borderzone patterns or complete collaterals. Among patients

with borderzone infarctions as the qualifying event, the primary

endpoint was lower in the stenting (18%) vs. medically

managed group (26%), and a Kaplan-Maier curve of primary

endpoints using this subgroup favored endovascular treatment,

although this was not statistically significant (p-value 0.30). This

study confirmed the strong relationship between angiographic

collaterals and recurrent stroke as previously seen in the

WASID post-hoc analyses above (10), challenged the results of

previous WASID post-hoc analysis by establishing a relationship

between infarction pattern and angiographic collaterals (26),

and most importantly, found that the coexistence of borderzone

infarction with impaired collateral flow substantially increased

the risk of recurrent stroke. These differences in findings of

the relationship between collaterals and infarction patterns that

were not found in WASID were thought to be due to the

inclusion of moderate grade stenosis in WASID and differences

in the grouping of collaterals despite use of the same grading

system (12).

VERiTAS (prospective) and VERiTAS post-hoc

analyses

The Vertebrobasilar Flow Evaluation and Risk of Transient

Ischemic Attack and Stroke (VERiTAS) study was the first

prospective study to evaluate the relationship between

hemodynamics and recurrent stroke risk in patients with ICAD

(11). Vertebrobasilar hemodynamics were measured using

QMRA to dichotomize patients into low-flow and normal-flow

groups based on prespecified algorithms that intrinsically

accounted for collaterals by incorporating basilar and non-fetal

posterior cerebral artery flow. Low distal flow status was

associated with a three times higher rate of recurrent stroke

compared to normal distal flow status (28% vs. 9%, p = 0.04)

with a hazard ratio of 11.55 (95% CI, 1.88–71.00; p = 0.008) in

a risk factor-adjusted multivariate analysis which was resistant

to the effects of disease severity and location. A related study

was performed by the study group that found a correlation

between vessel-specific flow and the severity of stenosis,

however, distal flow status, incorporating collateral capacity,

was not predicted by the severity or location of disease (27). The

VERiTAS studies supported hypoperfusion as a key mechanism

of stroke in patients with posterior circulation ICAD, validated

QMRA-defined distal-flow status as a possible biomarker of

recurrent posterior circulation stroke and emphasized the

importance of regional hemodynamics and collaterals in

preventing stroke.

MyRIAD (prospective) and MyRIAD post-hoc

analysis

MyRIAD was a prospective study that used various

hemodynamic and plaque instability biomarkers to determine

the mechanisms of recurrent ischemia in patients with ICAD

(13). Anterograde flow was measured using QMRA, distal

perfusion using perfusion MR (PWI), and vasomotor reactivity

(VMR) and microemboli signals (MES) using transcranial

dopplers. The primary outcome of ischemic stroke at 1 year

was reached in 8.8% while secondary outcomes of TIA in 5.9%.

Interestingly, 24.7% of patients were found to have subclinical

infarctions in the territory of the symptomatic artery at 6–8

weeks follow-up. There was no significant association between

abnormal imaging biomarkers and recurrent stroke, TIA, or

new infarctions. Combining abnormal imaging biomarkers—

such as QMRA low-flow and PWI delays—did not show

clear synergistic effects in predicting recurrent infarction,

although a trend toward significance was appreciated when

comparing the presence of two biomarkers with one or

fewer (33 vs. 17%, p = 0.07). A post-hoc analysis showed

that the baseline number of diffusion-weighted imaging
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lesions (>1: 40.0%, 1: 26.9% vs. 0: 4.4%, p < 0.01) and

borderzone infarction patterns were significantly associated

with new or recurrent infarction (63.6 vs. 25.0%, p = 0.01),

implying that hypoperfusion and artery-to-artery embolism

likely contribute to early subclinical infarction (28). In

summary, MyRIAD investigators were unable to prospectively

identify a subgroup of ICAD at high-risk of recurrent

ischemic stroke using various imaging biomarkers, however,

baseline borderzone or multifocal infarction patterns were

retrospectively found to be strong predictors of recurrent

subclinical infarction.

TOSS-2 trial

The Trial of Cilostazol in Symptomatic Intracranial

Arterial Stenosis (TOSS-2) failed to show a difference

in recurrent stroke between patients treated with dual-

antiplatelet therapy vs. monotherapy (29). A subanalysis

evaluating patients that underwent baseline imaging and

imaging at 7 months found a 12.5% rate of subclinical

infarction and 3.7% rate of clinical recurrent stroke

in the territory of the initial symptomatic intracranial

artery (21). After classifying initial infarction patterns by

location (subcortical vs. cortical vs. subcortico-cortical)

and multiplicity (single vs. multiple), subcortico-cortical

patterns and multiple lesions were found to be independent

predictors of new ischemic lesions (OR, 3.01; 95% CI, 1.33–

7.01; p = 0.03; OR, 2.81; 95% CI, 1.34–5.9; p = 0.006) and

clinical recurrent stroke. Severe stenosis was associated

with subcorti-cocortical pattern and multiple lesions on

baseline imaging (p < 0.001) but was not predictive of

recurrent infarction.

Tissue perfusion studies

Several retrospective studies have associated perfusion

parameters and recurrent stroke risk in patients with intracranial

atherosclerotic disease; Tmax >6s delays with mismatch

volumes of at least 15mL in the territory of a symptomatic

intracranial artery were shown to be associated with recurrent

cerebrovascular events (15, 17, 18) and increased lengths of

hospital stay (30), while Tmax >4s delays were not (15, 30).

Patients with anterior circulation internal borderzone infarction

patterns were more likely to have recurrent cerebrovascular

events and a target mismatch profile using Tmax >6s

delays compared to non-internal borderzone infarctions (16),

greater volumes of Tmax >4s and Tmax>6s delay compared

to perforator patterns (31), and greater volume difference

between Tmax >4s and Tmax>6s delay when compared to

thromboembolic patterns (31). Although the MyRIAD study

was unable to prospectively find an association between

Tmax >6s delays and recurrent stroke risk, a trend toward

significance was appreciated when Tmax >6s delays were

coupled with QMRA low-flow states (13). The utility of

perfusion imaging in predicting recurrent cerebrovascular

events is less well established in the posterior circulation.

In a prespecified sub-analysis of VERiTAS patients, rCBV

and MTT ratios did not differ between posterior circulation

QMRA low flow vs. normal flow states, inferring that

MR perfusion may not be a reliable metric in evaluating

regional hypoperfusion in the posterior circulation (32).

Probable biomarkers of stroke recurrence are displayed in

Figure 1 and a proposed workflow diagram is shown in

Figure 2.

Vessel wall integrity, plaque morphology,
and plaque instability

High resolution vessel wall imaging by MRI is a novel

non-invasive imaging tool that has been used to distinguish

ICAD from alternate stroke etiologies and to stratify stroke

risk (33, 34). Our pathophysiological understanding of the

radiographic findings is based largely on extracranial carotid

studies that collectively suggested that plaque enhancement

likely occurs due to neovascularization, inflammation, and

endothelial dysfunction resulting in gadolinium leakage, while

T1 hyperintensity and surface irregularity presumably reflect

intraplaque hemorrhage and rupture of the fibrous cap

(35–39). Several meta-analyses have shown that intracranial

plaque enhancement, positive remodeling, T1 hyperintensity,

and surface irregularity are strong imaging biomarkers of

symptomatic plaques in patients with ischemic events (40,

41) may be even more important than luminal changes in

predicting stroke occurrence (42). In fact, intracranial plaque

enhancement was associated with a four-times higher rate

of recurrent stroke at 1 year compared to non-enhancing

plaques in a prospective longitudinal study (43). Plaque

enhancement has also been shown to correlate with multifocal

infarction patterns perhaps implicating fragile plaques (44)

and has been inversely correlated with time from stroke

onset (45).

Microembolic signals (MES) detected by transcranial

doppler were first used as markers of plaque instability

in extracranial symptomatic and asymptomatic carotid

stenosis as MES correlated with several biomarkers of

plaque morphology, including plaque ulceration (46) and

neovascularization (47) and were independently associated

with an increased risk of stroke (48–50). In symptomatic

intracranial atherosclerotic stenosis, MES occurs in over a

quarter of patients (13, 51, 52), with increased frequency

with degree of stenosis (51) and multifocal infarction patterns

(53). In a prospective study of acute stroke patients with

middle cerebral artery stenosis, MES were predictive of future

cerebral ischemia (51), while the more recent MYRIAD
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FIGURE 1

Probable biomarkers of increased stroke recurrence in intracranial atherosclerotic disease.

FIGURE 2

Workflow diagram.

study failed to show this association in a population of

anterior and posterior circulation atherosclerotic stenosis

(13). Combination therapy with clopidogrel and aspirin

was more effective than aspirin alone in reducing MES in a

randomized study of predominantly symptomatic intracranial

atherosclerotic stenosis in the anterior circulation (52), in
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line with previous randomized studies of MES in extracranial

carotid stenosis (54).

Subclinical infarction and cognitive
decline

Subclinical infarctions can occur due various stroke

mechanisms (20) and have been associated with future stroke

risk and cognitive decline (55–57). The primary endpoint of

the major ICAD treatment trials predominantly focused on

clinical strokes or TIAs, while subclinical infarction was often

disregarded from primary analyses (4, 5). Recent evidence

has shown that subclinical infarction occurs frequently in

the early stages of an ischemic stroke and is predictive of

future stroke (20, 21, 28, 58). In a SAMMPRIS sub-analysis,

previous infarction more than doubled the risk of recurrent

ischemic stroke (58). Subclinical infarction was found in a

quarter of patients with ICAD at 6–8 weeks following an index

stroke (28), and in more than half of patients in an Asian

population (20), rates 3–5 times higher than that of recurrent

clinical ischemic strokes (4, 5). Comparable to previous

studies that have reported associations between infarction

patterns and recurrent clinical stroke (12, 26), multiple DWI

lesions (20, 21, 28, 59) and subcorticocortical infarction (21)

patterns were shown to be independent predictors of subclinical

infarction, implying similar hemodynamic and thromboembolic

mechanisms. Interestingly, while antiplatelets have been

shown to significantly reduce the rate of recurrent clinical

stroke, neither antiplatelets nor anticoagulants influenced

the occurrence of subclinical infarction in a retrospective

study (20). Although subclinical infarction and white matter

hyperintensities have been strongly associated with cognitive

decline and future risk of neurocognitive disorders, most of

these studies have focused on small vessel etiologies (60).

Recent studies have shown this relationship in patients with

asymptomatic extracranial large artery atherosclerosis (55–57),

encouraging future studies in the intracranial vasculature.

The inclusion of these radiographic and clinical biomarkers

as entry or endpoint markers in future treatment trails may

help capture a wider scope of pathology related to intracranial

atherosclerotic disease.

Time from index event

Ischemic strokes due to ICAD recur more frequently in

the early period after the index stroke (61, 62), with drastically

higher rates within 1 week of the event (63). Similarly, the risk of

periprocedural stroke after intracranial stenting increases within

this early time window, likely due to unstable plaques (hot

plaques) and potential for embolization (5). ICAD treatment

trials must be viewed in this context, since early enrollment may

overestimate the risk of periprocedural complications and late

enrollment may underestimate the risk in both endovascular

andmedically managed groups. For example, recurrent ischemic

stroke risk was significantly higher in WASID patients that

were randomized within the median enrollment time of 17

days compared to patients randomized after 17 days (62).

Likewise, the periprocedural stroke risk in SAMMPRIS was

more than five times that of WEAVE, with median enrollment

times of 7 and 22 days from index event, respectively (5, 64).

A SAMMPRIS analysis of periprocedural strokes, however,

found no relationship between time from qualifying event and

periprocedural ischemic stroke risk, and the benefit of medical

therapy over endovascular treatment was similar in patients

enrolled within 7 days of their qualifying event compared to

patients enrolled beyond 7 days (65). The variability in other

factors, such as operator experience (66), likely partially account

for the large differences in periprocedural stroke risk among

treatment trials, making it difficult to assert firm conclusions

based exclusively on enrollment time alone. The recently

published CASSISS trial limited enrollment of patients to

beyond 3 weeks after their index event and found no difference

in stroke recurrence between endovascular and medically

treated patients. Both groups, however, had significantly lower

rates of stroke recurrence compared to historical controls (5, 7),

likely in part due to later enrollment (9). In summary, both

the risk of recurrent ischemic stroke and periprocedural stroke

appears to be highest in the early period after an index stroke,

and therefore the risks of each must be weighed carefully in

real-world treatment decisions and in the design of future

prospective studies.

Conclusions

Recurrent stroke risk in intracranial atherosclerotic

disease remains high despite aggressive medical and

endovascular therapies. Defining a vastly heterogenous

disease exclusively based on luminal size discounts the role

of other high-risk biomarkers, such as hemodynamics and

potential for embolization, limiting the generalizability of

current treatment trials. Incorporating these biomarkers

in isolation as entry criteria into future trials may pose a

challenge given the uncertain thresholds of hemodynamic

insufficiency and thromboembolic potential. Perhaps the

integration of biomarkers, given the probable synergism, may

better target a hemodynamically insufficient subgroup

most resistant to antithrombotic therapies, justifying

endovascular flow augmentation, despite its current

risks. While randomized controlled trials should remain

the gold standard in guiding treatment, biomarkers of

stroke recurrence may perhaps be used as an adjunct
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in clinical decision-making to better estimate recurrent

stroke risk, allowing for more targeted and individualized

treatment. The myriad of stroke mechanisms in

intracranial atherosclerotic disease may be too complex

and multidimensional to be managed by simplified and

universal treatment strategies.
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