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Abstract: Although cisplatin is the standard platinum-based anticancer drug used to treat
various solid tumors, it can cause damage in normal kidney cells. Protective strategies against
cisplatin-induced nephrotoxicity are, therefore, clinically important and urgently required. To address
this challenge, we investigated the renoprotective effects of Hypoxylon truncatum, a ball-shaped
wood-rotting fungus. Chemical investigation of the active fraction from the methanol extract
of H. truncatum resulted in the isolation and identification of the renoprotective compounds,
hypoxylonol C and F, which ameliorated cisplatin-induced nephrotoxicity to approximately 80% of
the control value at 5 µM. The mechanism of this effect was further investigated using hypoxylonol
F, which showed a protective effect at the lowest concentration. Upregulated phosphorylation
of p38, extracellular signal-regulated kinases, and c-Jun N-terminal kinases following cisplatin
treatment were markedly decreased after pre-treatment with hypoxylonol F. In addition, the protein
expression level of cleaved caspase-3 was significantly reduced after co-treatment with hypoxylonol
F. These results show that blocking the mitogen-activated protein kinase signaling cascade plays
a critical role in mediating the renoprotective effect of hypoxylonol F isolated from H. truncatum
fruiting bodies.

Keywords: Hypoxylon truncatum; renoprotective effect; hypoxylonol

1. Introduction

As the number of patients using anticancer drugs increases, there is growing concern
about the side effects of anticancer drugs. The search for protective strategies against
cisplatin (cis-diammine-dichloroplatinum II)-induced nephrotoxicity is of significant importance in
cancer therapy. Cisplatin is an effective and widely used anticancer drug for many types of cancers
including those of the breasts, ovaries, testes, and solid tumors of the head and neck [1,2]. However,
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cisplatin treatment is frequently discontinued because of its dose-dependent adverse effects on the
normal kidney proximal tubules, where it decreases the glomerular filtration rate [1]. Recent studies
showing that 25–40% of all cisplatin-treated patients suffer from nephrotoxicity highlight the clinical
importance of protective strategies against cisplatin-induced nephrotoxicity [1,3,4].

Although various mechanisms of cisplatin-induced nephrotoxicity have been studied, it remains
unclear how these mechanisms integrate to induce proximal tubular damage [5]. Cisplatin-induced
proximal tubular damage is attributed to cellular damage caused by oxidative stress, DNA adducts,
mitochondrial dysfunction, cell apoptosis, and inflammation [2,6,7]. Various types of cellular stress
induced by cisplatin have been reported to activate mitogen-activated protein kinase (MAPK) pathways
including c-JUN N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38
kinase [2,8]. Specific inhibition of the MAPK superfamily, which is involved in directing cellular
responses, reduces caspase-mediated apoptosis [2,9]. Recent studies have shown that inhibition of
JNK, ERK, and p38 blocked caspase-3-mediated apoptosis in cisplatin-induced proximal tubular
damage, although this mechanism remains unclear [4,10–14].

In recent decades, interest in the production of secondary metabolites from mushrooms has
increased due to their various biological activities [10,11]. Among these, Hypoxylon truncatum (family
Xylariaceae), an inedible ball-shaped wood-rotting fungus, was reported to contain unique
benzo[j]fluoranthene compounds [12–16]. During our search for new bioactive secondary
metabolites of Korean wild mushrooms, we collected the H. truncatum mushroom (Gangneung
city, Korea) and isolated three major compounds from it: hypoxylonol C (1), hypoxylonol F (2),
and 4,5,4′,5′-tetrahydroxy-1:1′-binaphthyl (BNT) (3), from a crude methanol extract. Although the
hypoxylonol derivatives, as characteristic metabolites of H. truncatum, exhibited inhibitory activities
against tumor angiogenesis [13,14], the various biological activities of its chemical constituents have
not been researched fully. Especially, renoprotective effects against for anticancer drug-induced
damage in kidney cells have not been reported so far to the best of our knowledge. Herein, we report
our investigation of the renoprotective effects of hypoxylonol C (1), hypoxylonol F (2), and BNT (3).
We hypothesized that hypoxylonol C (1), hypoxylonol F (2), and BNT (3) can activate MAPK-caspase-3
signaling to attenuate cisplatin-induced proximal tubular damage. We, therefore, investigated the
role of MAPK-caspase-3 in renoprotection exerted by hypoxylonol C (1), hypoxylonol F (2), and BNT
using an in vitro model. The goal of this study may aid the development of promising candidates for
effective therapeutic intervention in cisplatin-induced kidney damage in cancer patients.

2. Results and Discussion

2.1. Protective Effect of H. truncatum Extract against Cisplatin-Induced LLC-PK1 Cell Death

Cisplatin-induced LLC-PK1 cell death is a major limitation for cancer patients undergoing cisplatin
chemotherapy. Little research related to the biological activity of H. truncatum has been reported to
date, and studies of the inhibitory activities of tumor angiogenesis are lacking [13,14]. Furthermore,
the biological activities of the various chemical constituents of H. truncatum have not been fully studied.
In the present study, we demonstrated for the first time the protective effects of the active constituents
of H. truncatum against cisplatin-induced LLC-PK1 cell death, and the underlying mechanisms of
these effects.

To elucidate the protective effects of the H. truncatum extract, LLC-PK1 cells were treated with
25 µM cisplatin after pre-treatment with indicated concentrations of H. truncatum extract for 2 h.
Cell viability was then measured using an MTT assay. As shown in Figure 1, cell viability was
decreased to 61.04 ± 2.52% by treatment with 25 µM cisplatin for 24 h compared with untreated
cells (Figure 1A). By contrast, H. truncatum MeOH extract showed a protective effect (Figure 1A).
Cell viability of LLC-PK1 cells was significantly increased by pre-treatment with H. truncatum MeOH
extract in a concentration-dependent manner. The maximum effect was observed at a concentration of
100 µg/mL (74.80 ± 0.18%) (Figure 1A). We next examined the protective effect of four fractions (water,
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n-BuOH, EA, and Hex) separated from the H. truncatum MeOH extract on cisplatin toxicity in LLC-PK1
cells. Only the Hex fraction showed a strong protective effect (Figure 1B–E). LLC-PK1 cell viability was
significantly increased by pre-treatment with the Hex fraction in a concentration-dependent manner.
The maximum effect was observed at a concentration of 100 µg/mL (88.68 ± 0.22%) (Figure 1B).
Therefore, treatment with the Hex fraction appeared to confer protection against cell death induced
by cisplatin.
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Figure 1. Comparison of protective effects of H. truncatum and its fractions in LLC-PK1 cells exposed to
25 µM of cisplatin for 24 h by MTT assay. Protective effect of (A) MeOH extract, (B) Hex fraction, (C) EA
fraction, (D) BuOH fraction, and (E) water fraction in LLC-PK1 cells exposed to 25 µM of cisplatin for
24 h by MTT assay. Cell viability assays were done in triplicate for each assays and were repeated at
least three times. * p < 0.05 compared with cisplatin-treated control.

Based on this result, we investigated the Hex fraction for renoprotective compounds using
column chromatography and HPLC purification and identified hypoxylonol C (1), hypoxylonol
F (2), and BNT (3) (Figure 2A). To elucidate the protective effect of these compounds, LLC-PK1
cells were treated with 25 µM cisplatin after pre-treatment with indicated concentrations of the
three compounds for 2 h. Cell viability was then measured by MTT assay. As shown in Figure 2,
cell viability decreased to 60.96 ± 0.84% following treatment with 25 µM cisplatin for 24 h compared
with untreated cells. By contrast, hypoxylonol C and F at 5 µM ameliorated cisplatin-induced
nephrotoxicity to approximately 80% of the control value. Among the three compounds, hypoxylonol
F (2) in particular showed the strongest protective effect, even at a low concentration (Figure 2B–D).
LLC-PK1 cell viability was significantly increased by pre-treatment with hypoxylonol F (2) in
a concentration-dependent manner, with the maximum effect observed at a concentration of
5 µM (86.46± 1.72%) (Figure 2C). The protection effect of hypoxylonol F was superior to the effect of the
positive control compound (N-acetylcysteine) at a concentration of 500 µM (79.38 ± 2.72%) (Figure 2E).
N-acetylcysteine is known to prevent cisplatin-induced apoptosis through the regulation of myc
proto-oncogene protein [17] and suppressed intracellular ROS [18]. In this study, a considerable
renoprotective effect was observed for hypoxylonol F (2) at 5 and 10 µM, a lower concentration than
for the other compound and N-acetylcysteine. To the best of our knowledge, this study is the first to
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demonstrate that hypoxylonol F from H. truncatum mitigates cisplatin-induced toxicity in LLC-PK1
cells. Therefore, further mechanistic studies were subsequently carried out using hypoxylonol F (2).
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Figure 2. Comparison of protective effects of compounds 1–3 isolated from H. truncatum in
LLC-PK1 cells exposed to 25 µM of cisplatin for 24 h by MTT assay. (A) Chemical structures
of isolated compounds 1–3. (B) Protective effects of hypoxylonol C (1) on cisplatin-induced
cytotoxicity. (C) Protective effects of hypoxylonol F (2) on cisplatin-induced cytotoxicity. (D) Protective
effects of BNT (3) on cisplatin-induced cytotoxicity. (E) Protective effects of N-acetylcysteine on
cisplatin-induced cytotoxicity. Cell viability assays were done in triplicate for each assays and were
repeated at least three times. * p < 0.05 compared with cisplatin-treated control.

2.2. Effects of Hypoxylonol F (2) on Cisplatin-Induced Apoptosis in LLC-PK1 Cells

Cells were exposed to 25 µM cisplatin in the presence or absence of hypoxylonol F (2) and stained
with annexin V conjugated with Alexa Fluor 488. As shown in Figure 3, the percentage of annexin
V-positive cells, indicating apoptosis, was significantly increased to 33.33 ± 1.15% following treatment
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with 25 µM cisplatin, but was decreased to 26.33 ± 1.15% and 6.66 ± 1.52% by 50 µM and 100 µM of
compound 2, respectively (Figure 3A,B).Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 10 
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Figure 3. Effect of hypoxylonol F (2) on apoptosis in LLC-PK1 cells exposed to 25 µM of cisplatin
for 24 h by image-based cytometric assay. (A) Percentage of annexin V-positive-stained apoptotic
cells. (B) Representative images for apoptosis detection. BF (bright field): cell morphology under light
microscope. Image-based cytometric assays were done in triplicate and were repeated at least two
times. * p < 0.05 compared with cisplatin-treated control.

The underlying mechanisms for cisplatin-induced apoptotic proximal tubule cell death have
been reported previously. Caspases are cysteine proteases, and play an essential role in the execution
of the apoptosis pathway (death receptor-mediated extrinsic and mitochondria-mediated intrinsic
pathway) [19,20]. Several studies have shown that caspase-3 is the downstream executioner responsible
for the cleavage of various physiological substrates including DNA repair protein, which can be
activated by DNA strand breakage [9,21]. Cisplatin causes DNA strand breakage, thus blocking
replication and transcription, which may ultimately lead to cell cycle arrest and apoptosis [22].

Cisplatin induces apoptotic proximal tubule cell death by enhancing caspase-3 activation [9],
which is preceded by the activation of JNK, ERK, and p38 [8,9]. In proximal tubular cell lines including
LLC-PK1 [23], OK [24], HK-2 [23], TKPTS [4], and primary cultures of renal proximal tubular cells [25],
inhibition of JNK, ERK, and p38 enhanced cell viability by inhibiting apoptosis after cisplatin treatment.
Thus, the prevention of cisplatin-induced apoptotic cell death in renal cells is beneficial in reducing the
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side effects of cisplatin. In addition, JNK, ERK, and p38 pathways appear to be potential targets for
cisplatin-induced apoptosis in LLC-PK1 cells. Therefore, we further explored whether hypoxylonol
F (2) could decreased cisplatin-induced apoptosis in LLC-PK1 cells.

To elucidate the underlying molecular mechanism of hypoxylonol F (2)-mediated protection
against cisplatin toxicity, LLC-PK1 cells were exposed to 25 µM cisplatin for 24 h with or without
50 µM or 100 µM of hypoxylonol F (2), followed by Western blotting analysis to evaluate MAPK
phosphorylation and caspase-3 cleavage. As shown in Figure 4, p38, JNK, and ERK phosphorylation
was increased by 25 µM cisplatin, whereas it was markedly decreased by treatment with 5 µM
and 10 µM hypoxylonol F (2) (Figure 4A). Quantitative analysis showed that p38, JNK, and ERK
phosphorylation was significantly decreased in the presence of hypoxylonol F (2) compared with
the cisplatin-treated group (Figure 4B). In addition, caspase-3 cleavage was significantly increased
by cisplatin treatment, whereas it was significantly decreased in the presence of hypoxylonol
F (2) (Figure 4A,B). In agreement with previous studies, these results indicate that the most critical
signaling pathway in the protective effect of hypoxylonol F (2) against cisplatin-induced toxicity in
LLC-PK1 cells is the inhibition of MAPK phosphorylation and cleavage of caspase-3.
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pathway. (B) Each bar graph shows the densitometric quantification of western blotting bands.
Western blot assays were repeated at least three times. * p < 0.05 compared with cisplatin-treated control.



Int. J. Mol. Sci. 2018, 19, 948 7 of 10

3. Materials and Methods

3.1. General Experimental Procedures

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVACE III 400 NMR
spectrometer (Bruker, Rheinstetten, Germany) operating at 400 MHz (1H) and 100 MHz (13C),
with chemical shifts given in ppm (δ). Preparative high performance liquid chromatography (HPLC)
was performed using a Gilson 306 pump (Gilson, Middleton, WI, USA), while HPLC analysis used a
Shimadzu Nexera X2 HPLC system (Shimadzu, Kyoto, Japan) equipped with a UV detector (Shimadzu,
SPD-M20A). Low-resolution electrospray ionization mass spectrometry (ESI-MS) data were measured
using a Shimadzu LCMS-2020 system.

3.2. Mushroom Material

A H. truncatum specimen was collected in Yeongok-myeon, Gangneung city, Korea, in September
2016 and identified by Dr. Soon-Ja Seok at the National Academy of Agricultural Science,
Rural Development Administration. A voucher specimen (MCO-NP-I-0026) was deposited at the
Library of Natural Products Research Institute, Korea Institute of Science and Technology.

3.3. Extraction and Isolation

Dried and powdered H. truncatum (50 g) was extracted successively with MeOH (2 × 1 L) at
room temperature and filtered. The filtrate was evaporated under a vacuum to obtain a MeOH
extract. The crude extract (6.3 g) was used for the bioassay-guided fractionation and isolation of
compounds. The methanolic extract was re-suspended in water and partitioned successively with
hexane (Hx), ethyl acetate (EtOAc), and normal butanol (n-BuOH). The Hx fraction (1.2 g) was
separated by preparative HPLC using a MeOH/H2O mobile phase (0–60 min: 50:50 to 100:0; v/v)
and an ODS column (Phenomenex C18, 250 × 21.2 mm, 10 µM) at a flow rate of 8 mL/min to yield
three fractions (A, B, and C). Purification of A, B, and C was performed by semi-preparative HPLC
using a CH3CN/H2O mobile phase (0–60 min: 30:70 to 80:20) and an ODS column (Phenomenex
Gemini C6 Phenyl, 250 × 10 mm, 5 µm) at a flow rate of 4 mL/min to afford compounds 1 (158 mg),
2 (67 mg), and 3 (119 mg) (Figure 2A). The chemical structures of these compounds were determined by
comparison of their spectroscopic data (Figures S1–S15) with those of previously reported reference
compounds [13].

Hypoxylonol C (1). Yellow amorphous powder. 1H-NMR (400 MHz, acetone-d6) δ 12.61 (s, 1H, OH-9),
8.65 (s, 1H, OH-4), 7.56 (t, 1H, J = 8.0 Hz, H-11), 7.49 (dd, 1H, J = 8.0, 1.2 Hz, H-12), 7.28 (d, 1H, J = 8.0 Hz,
H-6), 6.84 (dd, 1H, J = 8.0, 1.2 Hz, H-10), 6.68 (d, 1H, J = 8.0 Hz, H-5), 5.59 (dd, 1H, J = 8.5, 4.2 Hz, H-1),
5.48 (m, 1H, H-3), 5.14 (brd, 1H, OH-3), 4.28 (s, 1H, OH-1), 4.11 (dd, 1H, J = 13.8, 5.5 Hz, H-6b), 3.38 (dd,
1H, J = 16.5, 5.6 Hz, H-7), 2.47 (dt, 1H, J = 13.0, 4.3 Hz, H-2), 2.31 (dd, 1H, J = 16.4, 14.0 Hz, H-7),
2.14 (ddd, 1H, J = 13.0, 8.5, 3.2 Hz, H-2); 13C-NMR (100 MHz, acetone-d6) δ 206.2 (C-8), 163.8 (C-9),
155.9 (C-4), 144.3 (C-12d), 139.6 (C-12a), 138.3 (C-12c), 137.9 (C-12b), 137.7 (C-11), 136.6 (C-6a),
123.7 (C-6), 120.8 (C-3a), 119.0 (C-12), 117.2 (C-10), 115.7 (C-8a), 114.4 (C-5), 65.5 (C-3), 62.8 (C-1),
49.9 (C-6b), 43.7 (C-7), 42.4 (C-2); HRFABMS m/z 335.0925 [M − H]− (calcd. for C20H15O5, 335.0919).

Hypoxylonol F (2). Yellow amorphous powder. 1H-NMR (400 MHz, acetone-d6) δ 12.60 (s, 1H, OH-9),
7.53 (t, 1H, J = 8.0 Hz, H-11), 7.48 (dd, 1H, J = 8.0, 1.2 Hz, H-12), 7.29 (d, 1H, J = 8.0 Hz, H-6), 6.82 (dd,
1H, J = 8.0, 1.2 Hz, H-10), 6.69 (d, 1H, J = 8.0 Hz, H-5), 5.38 (d, 1H, J = 8.5 Hz, H-1), 5.11 (d, 1H,
J = 8.5 Hz, H-3), 4.09 (dddd, 1H, J = 13.8, 5.4, 23.9, 0.7 Hz, H-6b), 3.39 (dd, 1H, J = 16.4, 5.5 Hz, H-7),
2.47 (dt, 1H, J = 12.6, 4.3 Hz, H-2), 2.34 (dd, 1H, J = 16.3, 13.8 Hz, H-7), 2.24 (dt, 1H, J = 12.6, 8.5 Hz, H-2);
13C-NMR (100 MHz, acetone-d6) δ 206.3 (C-8), 163.6 (C-9), 155.7 (C-4), 144.2 (C-12d), 139.4 (C-12a),
139.0 (C-12c), 137.5 (C-12b), 137.1 (C-11), 136.6 (C-6a), 123.8 (C-6), 121.0 (C-3a), 120.9 (C-12), 117.0 (C-10),
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115.8 (C-8a), 114.6 (C-5), 67.0 (C-3), 65.2 (C-1), 50.1 (C-6b), 43.7 (C-7), 43.3 (C-2); HRFABMS m/z 337.1074
[M + H]+ (calcd. for C20H17O5, 337.1076).

4,5,4′,5′-Tetrahydroxy-1:1′-binaphthyl, BNT (3). Yellow amorphous powder. 1H-NMR (400 MHz,
acetone-d6) δ 11.04 (br d, 4H, OH-4, 5), 7.16 (d, 2H, J = 8.0 Hz, H-7), 7.07 (t, 2H, J = 8.0 Hz, H-2),
6.83 (d, 2H, J = 8.0 Hz, H-3), 6.72 (dd, 2H, J = 8.0, 1.3 Hz, H-6), 6.59 (d, 2H, J = 8.0, 1.3 Hz, H-8);
13C-NMR (100 MHz, acetone-d6) δ 155.4 (C-5), 154.8 (C-4), 137.3 (C-8a), 131.2 (C-1), 129.8 (C-7),
127.6 (C-2), 119.2 (C-8), 115.8 (C-4a), 109.7 (C-6), 109.3 (C-3); HRFABMS m/z 317.0778 [M − H]+ (calcd.
for C20H13O4, 317.0773).

3.4. Cell Culture and MTT Cell Viability Assay

The protective effect of the isolated compounds against cisplatin-induced renal cell damage
was determined using an Ez-Cytox cell viability assay kit (DOGEN, Seoul, Korea) as reported
previously [26]. LLC-PK1 cells (American Type Culture Collection, Rockville, MD, USA) were
cultured in Dulbecco’s modified Eagle medium (Manassas, VA, USA) containing 10% fetal bovine
serum (Invitrogen, Grand Island, NY, USA), 1% penicillin/streptomycin, and 4 mM L-glutamine.
All cell culture was performed in a humidified incubator with 5% CO2 in air at 37 ◦C. Cells were
seeded into 96-well culture plates (1 × 104 cells/well) and treated for 2 h with the isolated compounds.
Next, 25 µM cisplatin was added to each well. After incubation for a further 24 h, the cell culture media
containing the compounds and/or 25 µM cisplatin was removed, and serum-free medium containing
Ez-Cytox reagent was added to each well before cells were incubated for 2 h at 37 ◦C. Cell viability
was measured by absorbance at a wavelength of 450 nm using a microplate reader (PowerWave XS;
Bio-Tek Instruments, Winooski, VT, USA).

3.5. Image-Based Cytometric Assay

The protective effect of hypoxylonol F (2) against cisplatin-induced renal cell apoptosis was
determined using an image-based cytometric assay following reported method [27].

LLC-PK1 cells were seeded into 6-well culture plates (4 × 105 cells/well) and treated with
hypoxylonol F (2) as described above, washed twice with cold phosphate-buffered saline, and scraped
from the plates. Cells were stained with annexin V Alexa Fluor 488 and propidium iodide under dark
conditions using a Tali apoptosis kit (Invitrogen, CA, USA), and analyzed using a Tali image-based
cytometer (Invitrogen, CA, USA).

3.6. Western Blotting Analysis

The protective effect of hypoxylonol F (2) against cisplatin-induced renal cellular pathway
was determined by Western blotting analysis [28]. LLC-PK1 cells were seeded into 6-well culture
plates (4 × 105 cells/well) and treated with hypoxylonol F (2) as described above, washed twice with
cold phosphate-buffered saline. Cells were scraped from the plates and lysed in RIPA buffer (Cell
Signaling Technology, Inc., Danvers, MA, USA) supplemented with 1× EDTA-free protease inhibitor
cocktail and 1 mM phenylmethylsulfonyl fluoride (PMSF) according to the manufacturer’s instructions.
A bicinchoninic acid protein assay was used for the quantitation of protein of samples, and 20 µg of
protein were separated using 10% SDS PAGE gels for 90 min at 80 V. The proteins were transferred to
PVDF transfer membranes, which were incubated with primary antibodies against phospho-p38, p38,
phospho-JNK, JNK, phospho-ERK, ERK, cleaved caspase-3, and GAPDH (1:1000 dilution). Horseradish
peroxidase-conjugated anti-rabbit IgG (1:2000 dilution) was used to detect the primary antibodies.
Bound antibodies were visualized using ECL Advance Western Blotting Detection Reagents (GE
Healthcare, Cambridge, UK). GAPDH was utilized as a loading control.
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3.7. Statistical Analysis

The data are presented as the mean ± standard deviation (SD). Statistical significance was
determined using Mann-Whitney U test. p-values <0.05 were considered statistically significant.

4. Conclusions

In this study, we describe the structural determination of three major compounds (hypoxylonol
C (1), hypoxylonol F (2), and BNT (3)) from H. truncatum extract. In addition, we identified novel
biological activities of hypoxylonol F (2) as well as the underlying molecular mechanism with respect
to their renoprotective effects against cisplatin-induced nephrotoxicity in LLC-PK1 cells. In conclusion,
our findings demonstrate that hypoxylonol F (2) suppressed apoptosis in cisplatin-induced LLC-PK1
cells by inhibiting p38, JNK, and ERK phosphorylation and caspase-3 cleavage. Taken together,
these observations help to elucidate the mechanisms involved in cisplatin-induced renal damage and
indicate the chemoprotective potential of hypoxylonol compounds.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/4/948/
s1.
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