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Abstract: Extensive evidence shows that a core neurobiological mechanism of autism spectrum disorder
(ASD) involves aberrant neural connectivity. Recent advances in the investigation of brain signal variabili-
ty have yielded important information about neural network mechanisms. That information has been
applied fruitfully to the assessment of aging and mental disorders. Multiscale entropy (MSE) analysis can
characterize the complexity inherent in brain signal dynamics over multiple temporal scales in the dynam-
ics of neural networks. For this investigation, we sought to characterize the magnetoencephalography
(MEG) signal variability during free watching of videos without sound using MSE in 43 children with
ASD and 72 typically developing controls (TD), emphasizing early childhood to older childhood: a critical
period of neural network maturation. Results revealed an age-related increase of brain signal variability in
a specific timescale in TD children, whereas atypical age-related alteration was observed in the ASD
group. Additionally, enhanced brain signal variability was observed in children with ASD, and was con-
firmed particularly for younger children. In the ASD group, symptom severity was associated region-
specifically and timescale-specifically with reduced brain signal variability. These results agree well with a
recently reported theory of increased brain signal variability during development and aberrant neural con-
nectivity in ASD, especially during early childhood. Results of this study suggest that MSE analytic method
might serve as a useful approach for characterizing neurophysiological mechanisms of typical-developing
and its alterations in ASD through the detection of MEG signal variability at multiple timescales. Hum Brain
Mapp 37:1038–1050, 2016. VC 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Dynamical brain signal variability is not simply attribut-
able to noise, which rather emerges as a key component of
neural systems at multiple hierarchical levels [Faisal et al.,
2008; McDonnell and Ward, 2011]. Recent advances in
nonlinear complexity analysis over a range of temporal
scales have encouraged the investigation of brain signal
variability. Those advances have provided important infor-
mation related to neural network mechanisms [Ghanbari
et al., 2013; Misic et al., 2011; Vakorin et al., 2011]. The
theory of aberrant neural connectivity lies at the heart of
many mental disorders. Therefore, numerous complexity
analysis methods have been developed and applied fruit-
fully to the assessment of aging and mental disorders
[reviewed by Stam, 2005; Takahashi, 2013].

Among complexity analyses, multiscale entropy (MSE) is
a proposed entropy-based index of physiological complex-
ity. It uses temporal coarse-graining procedures evaluate
signals at multiple temporal scales, in recognition of the
likelihood that the dynamical complexity of biological sig-
nals might operate across a range of temporal scales [Costa
et al., 2002, 2005]. Brain activity, a dynamic process with
various interactions among widely diverse brain regions
over time [reviewed by Sporns et al., 2000; Tononi et al.,
1998] and across multiple timescales [Gans et al., 2009], is
universally characterized as a scale-free network organiza-
tion [Barabasi 2009; Ravasz and Barabasi, 2003]. Evaluating
a particular pattern of complexity values across the varying
timescales facilitates the detection of intrinsic brain signal
variability from a purely random system. In that sense,
neurophysiologic signals such as magnetoencephalography
(MEG) and electroencephalography (EEG) have high tem-
poral resolution. They are therefore rather suitable for iden-
tifying brain signal variability across large timescales. As a
consequence, application of MSE to M/EEG signals in char-
acterizing the brain signal complexity is expected to add
another dimension to already identified neural dynamics of
mental disorders [reviewed by Takahashi, 2013].

Autism spectrum disorder (ASD), a heterogeneous neu-
rodevelopmental disorder, is clinically defined by a triad
of deficits: impaired social interaction, impaired communi-
cation, restricted interests, and repetitive behaviors [APA,
2013]. Appearing during the first 3 years of life, it is a
strongly genetically influenced psychiatric disorder of
young people [Rutter, 2000]. Recent theoretical and empiri-
cal work has indicated that a core neurobiological mecha-
nism that is putatively linked to ASD symptoms involves
aberrant neural connectivity [reviewed by Courchesne and
Pierce, 2005; Schipul et al., 2011; Wass, 2011], widely taken
as “hypo-connectivity” [Belmonte et al., 2004; Minshew
and Williams, 2007]. This hypo-connectivity theory has
been challenged by recent results of studies suggesting
“hyper-connectivity” in ASD individuals [Keown et al.,
2013; Kitzbichler et al., 2015; Lynch et al., 2013; Supekar
et al., 2013; Uddin et al., 2013a]. Uddin et al. [2013b] intro-
duced the reasonable hypothesis that abnormal ASD

developmental patterns shift from intrinsic hyper-
connectivity to hypo-connectivity during the pubertal
period.

A handful of recent reports have described exploration
of abnormal brain signal variability in ASD. Lower EEG
complexity was reported in infants with high risk of ASD
[Bosl et al., 2011] and in adult subjects with ASD [Catarino
et al., 2011]. Contrary to these findings, both lower-
complexity and higher-complexity alterations were
observed in a region-dependent and timescale-dependent
manner under a resting state [Ghanbari et al., 2013], dur-
ing cognitive tasks [Misic et al., 2014], and during treat-
ment [Okazaki et al., 2015]. Several ideas might be
proposed as attempts to reconcile this discrepancy. First,
typical development and normal aging must be considered
[McIntosh et al., 2008] because emerging evidence has
indicated significant shifts in brain signal complexity with
aging [reviewed in Garrett et al., 2013]. During life-span
development through infancy and childhood, rapid and
sweeping transformations in the neural network architec-
ture are observed, such as synaptic pruning, myelination,
and structural network changes [Dean et al., 2014b; Huang
et al., 2015; Innocenti and Price, 2005; Schuldiner and
Yaron, 2015]. These alterations are thought to increase
brain signal variability during typical development [Ano-
khin et al., 2000; Lippe et al., 2009; Vakorin et al., 2011].
Although previous studies examine various age groups
ranging from infancy [Bosl et al., 2011] and childhood
[Ghanbari et al., 2013; Misic et al., 2014] to adulthood [Cat-
arino et al., 2011], no report in the relevant literature has
addressed early-to-late childhood phenomena: a critical
period in neural network development [Dean et al.,
2014a,b] and a time of frequent emergence of ASD symp-
toms. Another idea is that the degree of cognitive function
in this disorder influences neural connectivity, which
might engender alteration of the brain signal variability. A
recent study [Kikuchi et al., 2013b] demonstrated that pre-
served ability in visual reasoning tasks is associated with
rightward lateralization of neurophysiological connectivity
between the parietal and temporal regions in children
with ASD. In fact, an optimal level of signal variability is
reportedly necessary to facilitate learning and adaptation
to the changing demands of a dynamic environment
[Faisal et al., 2008]. For instance, brain signal variability
reportedly increases with age while presenting important
implications for functional benefits of cognitive processing
[McIntosh et al., 2008; Misic et al., 2010], whereas in some
brain regions, an increase in signal variability has been
associated with cognitive decline [Garrett et al., 2011;
Samanez-Larkin et al., 2010] as well as dementia [Mizuno
et al., 2010] in older adults. Consequently, studies particu-
larly addressing early childhood with intellectual assess-
ment are expected to offer crucially important information
for the exploration of aberrant neural connectivity in ASD.

For this investigation, we sought to characterize the
brain signal variability of ASD in view of typical age-
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related alterations, and strove to ascertain the possible
effects of intelligence and disease severity of ASD. To
these ends, we developed a custom-made MEG device for
young children and recruited typically-developing (TD)
children and children with ASD aged 3–9 years, a unique
period during which substantial neural connectivity devel-
opment is expected. The brain signal variability was char-
acterized using MSE analysis during free watching of
videos, with intellectual function assessed using the Kauf-
man Assessment Battery for Children (K-ABC) [Kaufman
and Kaufman, 1983].

MATERIALS AND METHODS

Participants

Some information related to this population has been
reported previously in the literature [Kikuchi et al.,
2013a,b, 2015]. From the Kanazawa University Hospital
and prefectural hospitals in Toyama, 43 children diag-
nosed with ASD with mean age of 68.6 months (40–92, SD:
10.2) and 72 TD age-matched, sex-matched, and
intelligence-matched children with mean age of 66.0
months (40–110, SD: 16.8) were recruited (Table I). The
clinical group was diagnosed using the Autism Diagnostic
Observational Schedule, Generic (ADOS) [Lord et al.,
1999], and the Diagnostic Interview for Social and Com-
munication Disorders (DISCO) [Wing et al., 2002] at the
time of MEG and K-ABC data acquisition. All children
with ASD included in this study fulfilled the diagnosis of
childhood autism (n 5 28), atypical autism (n 5 8), or
Asperger’s syndrome (n 5 7) with DISCO. Actually, ASD
children with scores below the ADOS cut-offs were
included in the study if they satisfied the criteria for ASD
using DISCO. In this study, most ASD children had “high-
functioning autism” because we recruited participants
who were cooperative and who clearly assented to partici-
pation in our experiment. Therefore, eventually, the ASD
children with low intellectual ability were few. Addition-
ally, we did not have data from children with mental
retardation to control the intellectual ability between the

groups. Therefore, ASD children with the mental process-
ing composite (MPC) score of <60 were excluded from
this study. All parents agreed to allow their children to
participate in the study with full knowledge of the experi-
mental characteristics of the research. Written informed
consent was obtained from all parents before the start of
the experiment. All protocols of the study conform to Dec-
laration of Helsinki guidelines. All were approved by the
Ethics Committee of Kanazawa and Toyama University
Hospital.

Assessment of Cognitive Function

Children’s cognitive function was assessed by a trained
assistant psychologist (Y.Y.) using the Japanese version of
the K-ABC, which was designed to evaluate intelligence
and achievement of children: 2.5–12.5 years of age. The
test, comprising 16 subsets, is summarized into two scales:
the MPC, a global measure of the child’s cognitive ability
in the two dimensions of sequential and simultaneous
processing, and the achievement scale. The MPC is
regarded as equivalent to an intelligence quotient. We
therefore used the MPC as an assessment of child’s cogni-
tive function. Each raw score is standardized to a mean of
100 (SD 15). The respective means of the MPC scores of
children with ASD and TD were 99.4 (60–134, SD: 17.3)
and 100.7 (63–128, SD: 13.3). The groups did not differ in
terms of the score (Table I).

MEG Recordings

On a separate day from that of K-ABC measurement,
MEG data were recorded using a multichannel supercon-
ducting quantum interference device (SQUID) custom-
made 151-channel whole-head coaxial gradiometer MEG
for children (PQ 1151R; KIT/Yokogawa Electric Corp.
Kanazawa, Japan) in a magnetically shielded room (Daido
Steel Co. Ltd., Nagoya, Japan). Figure 1 shows the stereo-
graphic projection of the MEG sensors onto a planar
image. Before recording, three coils were attached at the
bilateral mastoid processes and nasion as fiduciary points

TABLE I. Physical and cognitive characteristics of children

ASD children (n 5 43) TD children (n 5 72) P value

Female/male 9/34 21/51 0.39
Age (months) 68.6 (40–92, 10.2) 66.0 (40–110, 16.8) 0.30
Head circumference (cm) 51.1 (47.0–54.5, 1.57) 51.2 (48.0–54.8, 1.39) 0.87
Mental processing composite score 99.4 (60–134, 17.3) 100.7 (63–128, 13.3) 0.66
ADOS score

Communication score 3.26 (0–8, 1.9) NA
Social interaction score 6.70 (2–14, 2.7) NA
Total score 9.95 (2–17, 4.5) NA

Values represent mean (range, SD).
ADOS, autism diagnostic observational schedule.
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to localize the child’s head relative to the MEG sensor
array. The MEG data were acquired with a sampling rate
of 1000 Hz and were filtered with a 200 Hz low-pass filter.
During MEG recording, the child lay supine comfortably
on a bed with the head inside the MEG system helmet. All
children viewed a video program projected onto a screen
throughout the recording session to promote a consistent
state of alertness and concentration. The sound of the nar-
ration was carried binaurally through a tube placed in
front of the child. Before recording, children selected a
video program according to their preference from a num-
ber of video programs that were expected to be attractive
for young children. We asked children whether they were
content to view the video program. As a practical matter,
most of the children selected popular Japanese animations
except for two ASD children who selected a video pro-
gram of a running train. During MEG recording, narration
was stopped. One staff member (author Y.Y.) remained in
the shielded room to confirm that each child was concen-
trating on the video program and to encourage partici-
pants to maintain a steady body position when necessary.

Offline analysis of the MEG data was performed using a
BrainVision Analyzer 2 (Brain Products GmbH, Gilching,
Germany) and Matlab (the MathWorks Inc., Natick, MA).
The MEG data were resampled at 500 Hz with 1.5–60 Hz
bandpass and 60 Hz notch filters. Data were segmented
for 5 s (2,500 data points: 5 s 3 500 Hz). Artifacts such as
eye movements, blinks, muscle activities, and other arti-
facts were visually identified and were excluded from
analyses. The process of eliminating contaminated data
was done by an MEG expert who was blinded to the iden-
tity of the subjects. A minimum 20 s recording period (i.e.,
four segments) was accepted for each subject. Finally, the
average numbers of segments available per subject were,

respectively, 10.7 (4–16, SD: 3.7) for ASD and 11.1 (4–19,
SD: 2.7) for TD. For each subject, MSE was calculated on
all selected segments separately and was then averaged
into a single value as mean MSE.

MSE Analysis

The MSE method uses a coarse-graining procedure to
quantify the degree of signal variability in a time series
over multiple timescales [Costa et al., 2002, 2005]. Irregu-
larity at each scale was calculated using sample entropy
(SampEn), which is well suited to analyzing short and
noisy experimental data [Richman et al., 2004; Richman
and Moorman, 2000]. For extension to multiple timescales,
the original MEG time series {x1, x2, . . ., xN} was coarse-
grained using the scale factor (SF) s, with nonoverlapping
windows as shown below.

yj
sð Þ5 1=sð Þ

Xjs

i5 j21ð Þs11

xi; 1 � j � N=s (1)

Then, SampEn was calculated for each series{y(1)}:
SampEn is the negative of the logarithmic conditional
probability that two sequences of m consecutive data
points which are mutually similar (within given tolerance
r) will remain similar at the next point (m 1 1) in the data-
set (N), where N is the time series length. Considering the
EEG time series {x1, x2, . . ., xN} as observations of a sto-
chastic variable x, dynamic SampEn is defined as

hsamp r;m;Nð Þ 5 – loge Cm11 rð Þ=Cm rð Þ½ �; (2)

where Cm (r) 5 {number of pairs (i, j) with |zm
i 2 zm

j |< r,
i 6¼ j}/{number of all probable pairs, i.e., (N 2 m 1 1)
(N 2 m)}. Therein, z 5 y(s), and zm is a vector of m sample
time series of (N 2 m) length, and | zm

i 2 zm
j | denotes

the distance between points zm
i and zm

j in the space of
dimension m, and r is the effective filter for measuring
consistency of time series. Various theoretical and clinical
applications have demonstrated that m 5 1 or 2, and
r 5 0.1–0.25 of the standard deviation of the data points
provides good statistical validity for SampEn [Lake et al.,
2002; Richman et al., 2004]. For these analyses, we used
m 5 2 and r 5 0.2, which are values that were applied in
our previous study [Mizuno et al., 2010; Okazaki et al.,
2013, 2015; Takahashi et al., 2009, 2010; Ueno et al., 2015].
For the coarse-grained time series at SF s 5 1, the time
series {y(1)} was simply identical to the original time series.
The SampEn values for low SFs captured short-range tem-
poral irregularity, whereas higher SFs captured long-range
temporal irregularity. The MSE calculation was conducted
with self-produced software developed using a commer-
cially available software package (Mathematica 8; Wolfram
Research, Inc.).

Figure 1.

Stereographic projection of MEG sensors onto a color-coded

planar image showing dots corresponding to different brain

regions.
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Statistical Analysis

Almost all the SampEn values at each SF for each group
were distributed normally (tested using a Shapiro–Wilk
test). A repeated measures analysis of covariance
(ANCOVA), with group (ASD vs TD) and sex (male vs
female) as between-subject factors, SF (s: 20 scales) as
within-subject factors, and age as a covariate was con-
ducted to test for group differences. For significant main
effects for group and group-by-SF interactions, independ-
ent t tests were used to compare group differences sepa-
rately for each SF. The Greenhouse–Geisser adjustment
was applied to the degrees of freedom for all analyses.
Spearman’s rank–order correlations were used to evaluate
potential associations between MSE values and patient
physical and clinical data. We applied the Benjamini–
Hochberg false discovery rate (FDR) for group compari-
sons and correlations for correlation analyses to control
multiple comparisons. For post-hoc t tests of ANCOVA, 20
SFs and five brain subregions (i.e., 100 p values) were con-
trolled with q< 0.01. For sensor-wise group comparisons
of MSE values, 151 sensors and 20 SFs (3020 p values)
were controlled for each comparison (all children, younger
children, and older children) with q< 0.01. Similarly,
sensor-wise correlations of age and MSE values, 151 sen-
sors and 20 SFs (3020 p values) were controlled respec-
tively for TD group and ASD group with q< 0.01. For
sensor-wise correlations with ASD symptoms (communica-
tion score and social interaction score) and MSE values in
the ASD group, 151 sensors (151 p values) for each SF
were controlled with q< 0.05 because of the weaker statis-
tical power.

RESULTS

MSE Value TD vs ASD

The head size changes considerably during the develop-
mental period in this study. We found significant correla-
tion of the age and head circumference in both the TD
group (rho 5 0.36, p 5 0.002) and the ASD group
(rho 5 0.35, p 5 0.021). This correlation must affect the dis-
tance to the sensors and might act on the MEG signal,
especially when working in sensor space analysis. No sig-
nificant difference of head circumference was found
between the TD group and the ASD group (Table I). Fur-
thermore, no significant correlation was found between
the MSE value and the head circumference (data not
shown), which might indirectly reveal the irrelevance of
head-size to MSE result in this study.

For ANCOVA calculations, sensors were divided into
five subregions as frontal, central, parietal, temporal, and
occipital regions (Fig. 1). No significant interaction or main
effect for sex was observed in either brain region. There-
fore, we excluded sex for post hoc ANCOVA. Table II
presents the summary of the ANCOVA on MSE results for
group differences. Significant group-by-SF interactions
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were observed in frontal, central, and temporal regions
(higher MSE values in the ASD group at higher SFs). Sig-
nificant main effects for group were observed in the parie-
tal and occipital regions (higher MSE values in the ASD
group). Post hoc analysis identified significant increase at
coarse scales in the ASD group, except for the frontal
region (Fig. 2A). To clarify the possible group differences
across sensors, a sensor-wise group comparison of MSE
values is portrayed in the array plot (Fig. 2B) and topogra-
phy (Fig. 2C). Results revealed similar finding across
widespread brain regions. Results showed a significant
effect of age on the MSE values. Therefore, we further
divided both groups into two age bins as younger and
older children. The ASD group had fewer subjects. There-
fore, we divided the ASD group with 70 months old as
younger (21 ASD children) and older (22 ASD children)
subgroups. We similarly divided the TD group with 70
months old as younger (46 TD children) and older (26 TD
children) subgroups. As a result of ANCOVA, no signifi-
cant interaction or main effect for sex was observed in
either brain region. Therefore, we excluded sex for post hoc
ANCOVA. Regarding younger children, significant group-
by-SF interactions in central, parietal, and temporal
regions (higher MSE values in the ASD group at higher
SFs), and the main effect for group in parietal region
(higher MSE values in the ASD group) was observed.
Older children showed no group-by-SF interaction or main
effect for group (Table II). Sensor-wise MSE group differ-
ences for all children, younger children, and older children
are presented in Figure 2B. Higher MSE values were
observed in ASD, notably in younger children, but not for
older children. The higher MSE values in the ASD group
were observed predominantly across temporo–parieto–
occipital regions (Fig. 2C).

Correlations of MSE Values with

Demographic/Clinical Variables

In the TD group, MSE values increased significantly
with age in widespread brain regions at SFs around 10,
although weak association was observed in the ASD group
at finer scales in the central region (Fig. 3A–C). Closer
inspection of the TD group revealed strong correlation
particularly in the parieto–temporo–occipital regions at
around SF 10, but not in the fronto–central region (Fig.
3A,B, left panel). In the ASD group, correlation was found
only in the central region at finer timescales (Fig. 3A,B,
right panel and Fig. 3C, left middle panel). The MPC score
did not correlate with the MSE value in either the TD or
the ASD group (data not presented). Regarding possible
associations between MSE value and disease severity eval-
uated by ADOS score, slight negative correlation was
found between the communication score and MSE values
predominantly in the fronto-central regions at larger SFs
(Fig. 4A), whereas the social interaction score was not cor-
related to signal variability (Fig. 4B). These correlations

were unchanged even after adjustment for age (data not
shown). Furthermore, because a negative correlation was
found between the MPC score and communication score
(rho 5 20.34, p 5 0.028), we additionally examined the
association of the communication score and MSE values
adjusting with the MPC score. Even after adjusting with
the MPC sore, the negative correlation of MSE value and
communication score were unchanged (data not shown).
These brain regions (fronto-central region), showing nega-
tive correlation, were not overlapping with the region that
showed a significant increase of the MSE value in the ASD
group (Fig. 4C).

DISCUSSION

For this study, we used MSE analysis to evaluate MEG
signal variability in children with ASD and TD children
through early childhood to later childhood, which is a crit-
ical period of network maturation and which is a period
involving the frequent emergence of ASD symptoms.
Actually, MSE quantifies the degree of signal irregularity
over a range of timescales. Therefore, results revealed age-
related increase of brain signal variability in a specific
timescale in TD group. This finding agrees well with a
recent “increasing the brain signal variability” theory of
typical development [Lippe et al., 2009; McIntosh et al.,
2008, 2014; Misic et al., 2010; Vakorin et al., 2011]. By con-
trast, in the ASD group, atypical age-related signal vari-
ability alteration was observed. Additionally, enhanced
brain signal variability was observed in children with
ASD, which was confirmed for younger children, perhaps
reflecting an “aberrant neural connectivity” theory in ASD,
which reportedly shifts from intrinsic hyper-connectivity
to hypo-connectivity across the pubertal period [Uddin
et al., 2013b]. Although intellectual function did not affect
results in either TD children or children with ASD, the
symptom severity, a communication score, was associated
region-specifically and timescale-specifically with reduced
brain signal variability.

Age-related signal variability alteration is widely stud-
ied. It is generally characterized as an inverted u-shaped
curve [reviewed in Garrett et al., 2013]. Up to young adult-
hood, brain signals reportedly increase with age. For
example, Meyer-Lindenberg [1996] studied resting-state
EEG complexity using the correlation dimension and the
Lyapunov coefficient during normal development (54 TD
children and 12 adults). The correlation dimension was
shown to increase with age. One earlier study of the litera-
ture examined EEG dimensional complexity in across 7–17
years TD subjects at rest and during the performance of
verbal and spatial cognitive tasks [Anokhin et al., 2000].
The results indicate an overall increase of EEG dimen-
sional complexity with age both in a resting state and
during the performance of cognitive tasks, replicating
their earlier findings [Anokhin et al., 1996]. Recently,
signal complexity studies extending to coarser timescales
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Figure 2.

Group differences of the MSE value. (A) Each panel represents

average MSE curves for TD children (blue line) and children

with ASD (red line) for each subregion corresponding to Fig. 1.

Post-hoc comparisons between groups were highlighted with

p< 0.005 (light-green shaded areas), p< 0.001 (green shaded

areas), and p< 0.0005 (dark-green shaded areas). FDR (control-

ling for 20 SFs 3 five subregions) q values of 0.01 and 0.005,

respectively, correspond to p values of 0.0040 and 0.0019. (B)

Array plot showing sensor-wise group comparisons of MSE val-

ues (X-axis, SFs; Y-axis, sensors sorted by subregions according

to Fig. 1). Values represent t values for each comparison (151

sensors 3 20 SFs). Each panel shows all children, younger chil-

dren, and older children. T values for FDR (controlling for 20

SFs 3 151 sensors) adjusted q 5 0.01 correspond to 3.06

(p 5 0.0031) for all children and 2.97 (p 5 0.0044) for younger

children. T values of 4.0 correspond respectively to p 5 0.00011

for all children and p 5 0.00018 for young children. No signifi-

cant difference was found in older children. (C) Topography of t

values of group difference in all children (left). Brain regions that

showed lower than FDR adjusted q 5 0.01 are depicted (right).

r Takahashi et al. r

r 1044 r



Figure 3.

Associations between age and MSE values. (A) Topography of

correlation coefficient values between age and MSE values for

TD children (left) and children with ASD (right). Values

represent correlation coefficients. Positive values indicate age-

related MSE increase (and vice versa). (B) Array plot repre-

senting sensor-wise correlations of age vs MSE values (X-axis,

SFs; Y-axis, sensors sorted by subregions according to Fig. 1)

for TD children (left) and children with ASD (right). Rho

value for FDR (controlling for 20 SFs 3 151 sensors)

adjusted q 5 0.01 corresponds to 0.34 (p 5 0.0030) for TD

children. (C) Scatter plots showing age vs average MSE values

in TD children and children with ASD: all sensors at SF 10

(top left panel), frontal (top right panel) and central (middle

left panel) and occipital (middle right panel) sensors at SF

1–5, and frontal (bottom left panel) and occipital sensors at

SF 11–15.



Figure 4.

Association between disease severity and MSE values. (A)

Array plot of the sensor-wise correlation coefficient between

symptom severity (communication score) and MSE values (X-

axis, SFs; Y-axis, sensors sorted by subregions according to

Fig. 1) in children with ASD (left). Topography of correlation

coefficient values between symptom severity (communication

score). (B) Array plot of the sensor-wise correlation coeffi-

cient between symptom severity (social interaction score) and

MSE values (X-axis, SFs; Y-axis, sensors sorted by subregions

according to Fig. 1) in children with ASD (left). Topography of

correlation coefficient values between symptom severity

(social interaction score) and MSE values. Positive values

denote severity-related MSE increase (and vice versa). (C)

Overlapped topographies of correlation with symptom severity

(Fig. 4A, right (depicted by thresholding lower than FDR

adjusted q 5 0.05 controlling for 151 sensors)) and t values of

group difference in all children (Fig. 2C, right). Superscription

of topography of correlation with symptom severity on topog-

raphy of t values of group difference in all children (left), and

vice versa (right).
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(i.e., MSE) have been conducted. One earlier study by
McIntosh et al. [2008] explored EEG signal variability and
its relevance to cognitive performance in 8–15-year-old
children and 20–33-year-old adults. They found an
increase of signal variability with age. This increase was
associated with higher cognitive performance. Another
study, conducted by Lippe et al. [2009], specifically exam-
ined the younger age group of 1–66 months of age. They
evaluated EEG signal complexity during visual and audi-
tory tasks. Findings similarly revealed a signal complexity
increase with age in response to both stimuli. Findings of
these development-related increases in signal variability
were investigated complementarily with network connec-
tivity analyses. The results underpinned important impli-
cations of functional connectivity [Ghanbari et al., 2013;
Misic et al., 2011; Vakorin et al., 2011].

Although the theory of “increasing brain signal variabili-
ty during development” is a widely accepted hypothesis
[reviewed by Garrett et al., 2013], results of brain signal
variability in ASD vary among studies. Bosl et al. [2011]
examined resting-state EEG complexity by modified MSE
in 33 TD infants and 46 infants in families with a history
of ASD (high-risk ASD group) across ages of 6–24 months.
They found consistently lower EEG complexity in high-
risk of ASD group over all electrodes, across all timescales
and at all ages, particularly at age 9–12 months, which
must be more informative. It is noteworthy that the high
risk of the ASD group was classified with high accuracy.
Another ASD-related decrease in EEG complexity was
reported by Catarino et al. [2011]. They examined EEG
complexity using MSE in 15 adult subjects with ASD
(mean age of 29.38) and 15 TD controls (mean age of
31.44) during a face and chair matching task. They found
significant reduction of EEG complexity in subjects with
ASD over temporo-parietal and occipital regions as the
timescale increases, although EEG power was not reduced,
which indicates the irrelevance of EEG power spectra
to complexity values. They also assume that the complex-
ity reduction at a larger temporal scale suggests the exis-
tence of a power-law scaling property, which is a
characteristic of nonlinearity. Contrary to these findings,
Ghanbari et al. [2013] jointly examined MSE and synchro-
nization likelihood to obtain a more detailed characteriza-
tion of resting-state MEG activity in 26 children with ASD
(mean age, 10.1 years) and 22 TD children (mean age, 10.9
years). They found both increased and decreased signal
variability occurring both region-specifically and frequency-
specifically. It is particularly interesting that group differen-
ces between ASD and TD subject in complexity and syn-
chronization appear to be spatially complementary, such
that where synchronization was elevated in ASD, complex-
ity was reduced (and vice versa). Additionally, symptom
severity, evaluated by social responsiveness scale, was cor-
related with MEG complexity in both positive and negative
directions across frequencies. Another study was conducted
by Misic et al. [2014] to assess MEG complexity with MSE

in 14 children with ASD (mean age, 10.9 years) and 14 TD
children (mean age, 11.2 years) during the performance of
cognitive control tasks. Their data-driven multivariate anal-
ysis revealed two distributed networks in a timescale-
dependent and task-relevant manner. They assumed that
ASD involves disrupted temporal organization in these net-
works for optimal cognitive processing. Although describ-
ing only a single case, we also reported region-specific and
timescale-specific alterations in EEG signal variability along
with successful treatment of obsessive–compulsive symp-
toms using modified electroconvulsive therapy in a patient
with ASD [Okazaki et al., 2015].

A conceptual framework used to describe age-related
increase in the signal variability hypothesis can be
explained partially by stochastic resonance theory [Wie-
senfeld and Moss, 1995]. Stochastic resonance is a phe-
nomenon by which moderate-level unpredictable signal
fluctuations can increase the quality of signal transmission
or signal detection, which reportedly facilitates informa-
tion processing in a neural system [reviewed in Faisal
et al., 2008; McDonnell and Ward, 2011]. How can our
finding of enhanced brain signal variability in ASD be
interpreted? A reasonable explanation is that an optimal
level of signal fluctuations can contribute to the facilitation
of cognitive processing [McDonnell and Abbott, 2009;
McDonnell et al., 2007; Moss et al., 2004]. Therefore, a
moderate level of signal variability, an inverted U-shaped
curve, is beneficial for efficient cognitive processing. For
instance, abnormally increased signal variability was
reported in mental disorders. Patients with schizophrenia
showed higher EEG signal variability at coarser timescales:
this was decreased to healthy controlled levels using anti-
psychotic drugs [Takahashi et al., 2010]. In Alzheimer’s
disease, less EEG signal variability at finer timescales was
observed in more frontal areas, consistent with previous
findings. By contrast, higher EEG signal variability at
coarser timescales was observed across brain areas in Alz-
heimer’s disease. This increase was positively correlated
with cognitive decline [Mizuno et al., 2010]. Consequently,
overly high signal variability that might be associated with
enhanced functioning observed in children with ASD
might engender disabilities in this disorder [reviewed in
Mottron et al., 2014]. This notion appears to be applicable
to the recent hyper-connectivity hypothesis [Uddin et al.,
2013b]. Of particular note is that this hyper-connectivity
appears to be more characteristic of young (prepubertal)
children with ASD, whereas hypo-connectivity might
be more prevalent in adolescents [Uddin et al., 2013b]. It
is particularly interesting that this hyper-connectivity
observed in child ASD is reportedly associated with higher
levels of fluctuations in regional brain signals [Supekar
et al., 2013]. The present results related to enhanced signal
variability observed particularly in younger children with
ASD agree well with this notion. Growing evidence has
reported enhanced functioning in ASD without intellectual
disability, particularly related to perceptual functions and
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their related brain areas such as temporal, parietal, and
occipital regions [reviewed by Mottron, 2014; Samson
et al., 2012]. It is noteworthy that, in our study, enhanced
complexity was observed predominantly in perceptual
functioning related brain regions (Fig. 2). Considering that
we only recruited children with ASD without intellectual
disability, increased brain signal variability might reflect
enhanced brain activity in a certain brain region in ASD.
Another important finding of this study is that signal vari-
ability is associated negatively with symptom severity in
children with ASD, which is seemingly contradictive of
previously described theories. More detailed insight into
our results provides additional features that elucidate this
paradoxical finding. The brain region that showed nega-
tive correlation with symptom severity in ASD (Fig. 4A)
did not correspond to the brain regions where significant
group difference was observed (Fig. 4C). Therefore, we
might assume that brain regions which showed enhanced
complexity and disturbance in communication skill
observed in the ASD group might be presented region-
specifically and temporal-specifically under different path-
ological mechanisms. However, the question remains of
why intellectual function did not correlate with signal var-
iability, which is inconsistent with earlier findings
obtained from several studies [McIntosh et al., 2008; Misic
et al., 2010]. This inconsistency might be understood
according to the idea of a stochastic resonance theory as
described above. The moderate level, not too little or not
too much, of signal fluctuations that are appropriate for
one’s age can support efficient information processing [Li
et al., 2006; McDonnell and Abbott, 2009; McDonnell et al.,
2007; Moss et al., 2004]. In other words, intellectual func-
tion might not associate linearly with signal variability.
Our study was a cross-sectional study. The ASD group
exhibited smaller age variation than the TD group did,
which presents difficulties when investigating age-related
alteration. Additional longitudinal follow-up studies
including individuals with various ranges ages and intel-
lectual functions are expected to be necessary to clarify
these controversial points.

Some other limitations of our study must be considered.
We examined MEG data during free viewing of videos
without sound, which were selected according to the
children’s preferences. Diminished entrainability of the
ASD brain has been reported for stimuli of certain types
[Stroganova et al., 2012; Wilson et al., 2007]. This phenom-
enon might elicit different spatiotemporal properties of the
video stimuli provided during the recording periods. It is
also noteworthy that the age-related increase of EEG signal
complexity change during early childhood varies with the
stimulus [Lippe et al., 2009]. Additionally, we were unable
to evaluate the degree to which subjects devoted special
attention the video program that they selected. Future
studies that use attention-controlled conditions with the
baseline period are expected to provide more reliable evi-
dence than the current investigation has yielded. Another

technical consideration is that despite the recent advent of
cortical source solutions that increase spatial location pre-
cision, we conducted original sensor space analysis. This
study includes children in early childhood who might
have difficulties in correcting MRIs and in keeping their
body still without having some attraction such as watching
videos. Furthermore, head motion artifacts, which might
vary with age, sex and group, must exert a strong effect
on the MSE result. We strictly eliminated any contami-
nated MEG data, such as data obtained when clear head
movement occurred, as confirmed by video monitoring or
MEG artifacts. Additionally, region-specific and temporal-
specific differences in age-related trajectory patterns (Fig.
3C) might indirectly reflect the irrelevance of motion arti-
fact to the MSE results. However, differences in fine head
movements could have possibly confounded the study
results. Last, studies using MEG-MSE analysis are vulnera-
ble to multiple comparisons because of the many SFs and
sensors that are examined, thereby potentially increasing
the possibility of type I error. We applied FDR to control
multiple comparisons.

CONCLUSION

Although several limitations must be clarified, findings
derived from this study underscore the potential useful-
ness of MSE for exploring age-related variations in MEG
signal and its alterations in ASD during early childhood.
Results of this study suggest that MSE analytic methods
might serve as a useful approach for characterizing neuro-
physiological mechanisms of typical development and its
alterations in ASD through the detection of MEG signal
variability at multiple timescales.
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