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Deep convolutional neural networks (DCNNs) have achieved great success for image
classification in medical research. Deep learning with brain imaging is the imaging
method of choice for the diagnosis and prediction of Alzheimer’s disease (AD). However,
it is also well known that DCNNs are “black boxes” owing to their low interpretability
to humans. The lack of transparency of deep learning compromises its application
to the prediction and mechanism investigation in AD. To overcome this limitation, we
develop a novel general framework that integrates deep leaning, feature selection,
causal inference, and genetic-imaging data analysis for predicting and understanding
AD. The proposed algorithm not only improves the prediction accuracy but also identifies
the brain regions underlying the development of AD and causal paths from genetic
variants to AD via image mediation. The proposed algorithm is applied to the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset with diffusion tensor imaging (DTI) in
151 subjects (51 AD and 100 non-AD) who were measured at four time points of
baseline, 6 months, 12 months, and 24 months. The algorithm identified brain regions
underlying AD consisting of the temporal lobes (including the hippocampus) and the
ventricular system.

Keywords: Alzheimer’s disease, diffusion tensor imaging images, deep learning, causal inference, feature
selection, genetic-imaging data analysis

INTRODUCTION

Alzheimer’s disease (AD) causes progressive brain atrophy and memory loss, is a progressive,
irreversible degenerative disease of the brain, and is the most common neurodegenerative disease
in the world (Struyfs et al., 2015; Zhuang et al., 2017; Liu et al., 2018a,b). AD is an increasingly
prevalent disease affecting an estimated 5.4 million Americans and more than 30 million people in
the world. It is estimated that these numbers will be tripled by 2050. AD is the sixth leading cause
of death in the United States (Alzheimer’s Association, 2016; Leandrou et al., 2018).

Diagnosis and prediction of AD via clinical and psychometric assessments are challenging
(Leandrou et al., 2018). The AD patients cannot obtain early and accurate diagnosis through
clinical dementia rating and cognitive tests. A final diagnosis of AD is confirmed by histological
examination at postmortem biopsy. However, the histological examination of the brain for the
living patients is infeasible. Individually varying brain structure, function, and pathological effects
can be measured by images. Therefore, imaging plays an important role in improving diagnosis
and prediction of AD. According to the recommendation by the National Institute of Neurological
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and Communicative Disorders and Stroke–AD and Related
Disorders Association (NINCDS-ADRDA) Work Group, the
clinical classification of AD should explore the image markers:
magnetic resonance imaging (MRI), diffusion tensor imaging
(DTI), positron emission tomography (PET), amyloid-PET, tau-
PET, and abnormal neuronal cerebrospinal fluid (CSF) markers
(tau and/or Aβ) (Dubois et al., 2007; Leandrou et al., 2018;
Liu et al., 2018a,b).

As the size of the imaging datasets increases, manual analysis
of imaging data is tedious and time-consuming. Computer-
aided diagnosis (CAD) of AD that combines computational
models and analytical tools for high-dimensional imaging data
analysis is emerging as one of the major tools for diagnosis
and prediction of AD (Dimitriadis et al., 2018; Leandrou et al.,
2018). The widely used machine learning (ML) methods in
CAD include discriminant analysis (DA), logistic regression (LR),
random forest, neural networks, and support vector machine
(SVM) (Lorenzi et al., 2017; Sarica et al., 2017; Dimitriadis et al.,
2018; Leandrou et al., 2018). Deep learning, a rapidly resurging
subfield of ML, outperforms many classical ML approaches and is
emerging as a major analytic platform in ML (Esteva et al., 2019).
Deep learning with massive amounts of computational power
has produced a revolution in driverless cars, speech recognition,
and imaging analysis (Waldrop, 2019) and demonstrated great
potential for the diagnosis and predictive power in tuberculosis
(Heo et al., 2019), cancer (Esteva et al., 2017; Haenssle et al., 2018;
Ghatwary et al., 2019; Ladefoged et al., 2019), diabetic retinopathy
(Gulshan et al., 2016), chronic kidney disease (Ravizza et al.,
2019), AD (Payan and Montana, 2015; Hosseini-Asl et al., 2016;
Sarraf and Tofighi, 2016; Ju et al., 2017; Ding et al., 2018; Wada
et al., 2018; Spasov et al., 2019), and conversion from mild
cognitive impairment (MCI) to AD (Choi et al., 2018; Spasov
et al., 2019). There is a growing interest in the application of deep
learning to health care and medicine.

Despite its great progresses in computer vision, natural
language processing, control, decision making, diagnosis, and
early detection of complex diseases, deep leaning is also well
known as a “black box” owing to its low interpretability to
humans and still has a serious opacity problem (Waldrop,
2019). Overcoming the limitation of the lack of transparency
and interpretation remains a great challenge for deep learning
(Dubois et al., 2007). In this paper, we develop a novel general
framework that integrates deep leaning and causal inference
for image classification. The new framework for image analysis
consists of two stages: (1) develop convolutional neural networks
(CNN) to classify AD status on the basis of DTI and use of
occlusion map to find image regions that are most distinctive for
disease status and (2) the use of state-of-the-art causal inference
tools to determine if the selected image regions are causal for AD.

Brain anatomy, structural connectivity, and physical
connection between brain regions that are characterized
through water molecular diffusing within white matter
tracts can be measured by DTI. The imaging signals provide
intermediate endophenotypes. Genetic variants will influence
brain microstructure, function, and disease development.
Understanding the role that genetics has in imaging and disease
variation is key to understanding the causal chain of complex

diseases (Jahanshad et al., 2013; Bycroft et al., 2018; Elliott et al.,
2018). Therefore, to further cover the genetic bases of brain
structures and function, and mechanism of AD, a joint analysis
of the genetic brain images and AD will be carried out. We will
assess both association and causal relationships among genetic
variants, brain regions, and AD.

MATERIALS AND METHODS

Materials
The DTI images used in this study are downloaded from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI); the size
of each image was 91 × 109 × 91. ADNI is a longitudinal
multicenter study designed to develop clinical, imaging, genetic,
and biomedical biomarkers for the early detection and tracking
of AD1 (Alzheimer’s Disease Neuroimaging Initiative, 2019). DTI
images were recorded for every participant from different time
points in which they joined the research study. The diagnostic
results were normal control (NC), MCI, and AD. In this study,
DTI images of 151 individuals from NCs (100 images) and AD
(51 images) groups were chosen from four different diagnostic
time points: baseline, 6 months, 12 months, and 24 months.

Image Preprocessing
To make sure that all the images for this analysis are comparable,
we register all the DTI image data for every subject at every time
point to the common template, which can be downloaded from
the McConnell Brain Imaging Centre2. We utilized a strategy
of combination of linear and non-linear registration algorithm
to map each individual DTI data to the common template.
During the linear image registration procedure, we first map the
image data to the common template to make sure all the images
are within the standard brain region by using FLIRT (FMRIB’s
Linear Image Registration Tool) from FSL (FMRIB software
library) image analysis suite3. Then we further applied non-linear
registration algorithm, which is implemented in RNiftyReg to
map the image details within the standard brain. The linear image
registration process helps us restrain each individual DTI image
to a standard template, and the non-linear image registration
helps us to make sure that the registered image maintains the
structures details as the original data.

Genetic Data Preprocessing
We performed quality control (QC) in both individual level and
single-nucleotide polymorphism (SNP) level QC in the plink
binary format. For the individual level QC, the following steps
were applied to the data:

1. Individuals with discordant gender information were
removed from the data.

2. Individuals with missing rate >10% were
removed from the data.

1http://adni.loni.usc.edu/about/#core-container
2http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009
3http://www.fmrib.ox.ac.uk/fsl/
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3. Individuals with heterozygosity rate of more than
three standard deviations from the mean were
excluded from the data.

4. Individuals with identity by descent (IBD) > 0.185 were
excluded from the data.

After the individual level QC was conducted, the following
steps for SNP level QC were further applied to the data:

1. SNPs with missing genotype rate >10% were excluded
from the data being analyzed.

2. SNPs with P-value for Hardy–Weinberg equilibrium
(HWE) test <1E-6 were excluded from the data.

3. SNPs without polymorphism were removed from the data.

Then pre-imputation QC tool from McCarthy Groups was
further applied to check the data against 1000G reference data.
The imputation of the genetic data was conducted under the
SHAPEIT+ IMPUTE2 framework in the internal computational
clusters. The 1000G reference data were used as the reference
panel for imputation. After the imputation, the SNP level
QC steps were applied again to the data to produce the
final genetic data for analysis. Finally, a total of 1,589,061
common SNPs in 36,480 genes genotyped in 151 individuals were
included in analysis.

Architecture of Convolutional Neural
Network
The CNN model Visual Geometry Group (VGG) that won the
first and second places in the localization and classification tracks,
respectively, in the ImageNet Challenge 2014 was chosen for
image classification and prediction (Simonyan and Zisserman,
2014). To improve the classification accuracy, the VGG utilized
smaller receptive window size and increased the depth of the
network. Furthermore, to prevent overfitting and improve the
image region recognition ability of the networks, global average
pooling (GAP) layer was used as a structure regularizer and
localizer in the model to identify the complete extent of the
object and exactly which regions of an image are being used for
classification (Zhou et al., 2016).

As is shown in Figure 1, the network contained five max
pooling layers, followed with a GAP layer before a fully connected
softmax layer with two nodes.

Three-dimensional (3D) whole brain images with
109 × 91 × 91 size were input into CNN. DTI measures
microscopic random motion of water molecules, which uncovers
the orientation of surrounding tissues, and provides tract
information on brain structure. Convolution of an image with
different filters can perform operations that capture various types
of features and directional information of DTI images and can
preserve tract of DTI and the relationship between pixels. 3D
CNNs (3D-CNN) with five convolutional layers and three fully
connected layers were used for AD prediction. A 3D filter was
applied to the dataset, and the filter moves in three directions
(X, Y, Z) to calculate the low-level feature representations.
Specifically, 3D filters were arranged as in Table 1.

To overcome the small sample size limitation of medical
images, image augmentation techniques were used (Aderghal

FIGURE 1 | VGG-GAP model architecture. The CNNs in the model included
five max pooling layers and one GAP layer before fully connected layer. VGG,
Visual Geometry Group; GAP, global average pooling; CNN, convolutional
neural network.

et al., 2017). The first technique we applied was Gaussian filters
to blur the image to mimic the possible variations in the original
images. A filter size of 3 × 3, 5× 5, and 7× 7 were used
with spread parameters of 0.7, 0.7, and 0.6, respectively. The
second augmentation technique we used was translation, where
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TABLE 1 | 3D filters in five convolutional layers.

Conv layer Filter size Stride in (X, Y)
direction

Stride in Z
direction

Conv 1 11 × 11 × 11 4 4

Conv 2 5 × 5 × 5 1 1

Conv 3 3 × 3 × 3 1 1

Conv 4 3 × 3 × 3 1 1

Conv 5 3 × 3 × 3 1 1

3D, three-dimensional.

we shifted the images by ±1 pixel in each dimension. This
imitates the possible variations in registration process where the
images were aligned with the template. Finally yet importantly,
the images were flipped horizontally because some regions of
the brain (e.g., the hippocampus) are symmetrical to enlarge our
sample size. To balance the data, we randomly duplicated some
images from the under-sampled category. Data augmentation
and class balancing produced over 20 times more data than the
original dataset.

The model was trained in the Texas Advanced Computing
Center (TACC) Maverick2 with NVIDIA GTX 1080 Ti GPUs.

Deep Feature Selection for Diffusion
Tensor Imaging Images
Prediction difference analysis for visualizing the response of
CNN to a specific input was used to select features for DTI
image classification (Zintgraf et al., 2017). Specifically, prediction
difference analysis estimates the importance of input pixels by
calculating the effect of removing information from the imaging
on the class prediction precision (Zeiler and Fergus, 2014).

A sliding window (patch) of 3 × 3 × 3 was applied to each
image. The imaging signals contained in the sliding window
were taken as a feature. Each one 3 × 3 × 3 patch was
replaced by randomly sampled values from multivariate normal
distributions. The resulting new image where the imaging feature
(information) was removed was input into a previously trained
CNN model to obtain probability p1 for predicting AD. Let p0
be the probability of predicting AD using the original images
[without removing the feature (information)]. The relative
importance of the feature was evaluated by Zintgraf et al. (2017).

d = log

( p0
1−p0
p1

1−p1

)
(1)

The sliding window moved across the entire image and a
relevance matrix, W of the same size as the whole image was
generated, which reflected the relevance importance of all image
pixels. A positive value indicated that the pixel contributed
evidence for the classification of AD, whereas a negative value
showed that the pixel contributed against the classification of AD.
For details, please see Zintgraf et al. (2017).

Conditional Generative Adversarial
Network and Classifier Two-Sample
Tests for Causal Discovery
Three-dimensional functional principal component (FPC) scores
were used to summarize the imaging signal information of the
brain region (Xiong, 2018). Similarly, 1D FPCs can be used
to summarize genetic information in the gene. Conditional
generative adversarial networks (CGANs) will be used to discover
causal relationships between the brain neuroimaging region and
AD and causal relationships between the brain neuroimaging
region and gene as well (Goodfellow et al., 2014; Lopez-Paz and
Oquab, 2017) (Figure 2). Specifically, consider two variables X
and Y, which can be binary disease status or continuous FPCs
summarizing imaging signals in the brain region or genetic
variation in the gene. If X causes Y, denoted by X → Y, then
we have

Y = fY (X, NY ),

where fY is a non-linear function and realized by CGAN where
a neural network is used to approximate the non-linear function
fY (X, NY ), and NY is a noise random variable and is independent
of cause X. Similarly, if Y causes X(Y→X), then we have

X = fX(X, NX),

where fX is a non-linear function and NX is a noise random
variable and is independent of cause Y. Assume that n
subjects are sampled.

We define dataset Dw = {ui, vi, i = 1, ... , n}. We assign label 0 to
dataset Du = {ui, i = 1, ... , n} and 1 to dataset Dv = {vi, i = 1, ... , n}.
Let P be the distribution of ui, i = 1, ... , n and Q be the distribution
of vi, i = 1, ... , n. We use the K nearest neighbor (KNN) as a
binary classifier to classify two datasets and define the test statistic
t as the classification accuracy to test the null hypothesis of equal
distributions of two datasets P = Q. Let z be a random variable.

The procedures for bivariate causal discovery using CGAN are
summarized as follows (Lopez-Paz and Oquab, 2017):

1. Use a CGAN from X→Y to generate the dataset DX → Y =
{ (xi,ŷi = fy (xi,zi)), i = 1,. . . ,n}.

2. Use a CGAN from Y→X to generate the dataset DY→ X =
{ (x̂i = fX (yi,zi),yi), i = 1,. . . ,n}.

3. Divide the total samples into training samples
and test samples.

4. Classify two datasets :Du =Dy = {yi, i = 1, ... , n} versusDv =
DX → Y = { ŷi, i= 1,. . . ,n} and calculate the two-sample
statistic t̂X→ Y .

5. Classify two datasets:Du =Dx = {xi, i = 1, ... , n} versusDv =
DY → X = { x̂i, i= 1,. . . ,n} and calculate the two-sample
statistic t̂Y→ X .

6. Calculate the test statistic T = t̂X→Y −t̂Y→X . Under
the null hypothesis of no causal relationship or test
inconclusive, the statistic T is asymptotically distributed as
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FIGURE 2 | Workflow of causal inference using CGAN and a classifier two-sample test. CGAN, conditional generative adversarial network. (A) A visual explanation of
CGAN and (B) the complete workflow of causal discovery.

TABLE 2 | AD prediction accuracy on fivefold cross validation.

Model development
time point

Prediction time point

Baseline 6 months 12 months 24 months

Baseline 0.8675 0.9123 0.8864 0.7967

6 months 0.8452 0.8963 0.7791

12 months 0.8335 0.7813

24 months 0.7643

AD, Alzheimer’s disease.

N(0,σ2), where σ2
=

0.5
ntest
− 2cov(t̂X→Y , t̂Y→X) and ntest is the

number of subjects in the test set.
Association is defined as measuring the dependence or

correlation between two variables and to use these dependencies
for prediction that is not dealing with causal problems. Almost
all currently used statistical methods in imaging genetics [such
as sparse canonical correlation analysis (SCCA), sparse reduced
rank regression (SRRR), and parallel independent component
analysis (ICA)] are association analysis methods. These methods
can detect association between genetic variation and imaging
signals. It is well known that correlation or association analysis
does not imply causation. The signals identified by association
analysis may not have specific pathological relevance to diseases.
Association signals provide limited information on the causal
mechanism of diseases. Most genetic and imaging analysis
questions to uncover the mechanism of the disease are causal in
nature. Causation analysis is essential to the genetic analysis of
complex phenotypes yet ignored for a long time.

Distinguishing causation from association is an age-
old problem. Intuitively, causation implies that changes in

one variable will directly make changes in the other. The
essential distinction between association and causation relies
on what the response will be if we intervene in the system
(Lattimore and Ongv, 2018).

There are two types of causal inference: interventional causal
inference and observational causal inference. Interventional
causal inference learns the effect of taking an action directly
via experiments, for example, randomized controlled trials.
Interventional experiments are a gold standard for causal
inference. However, because in human genetics we cannot
change the genetic materials of human subjects, experimental
interventions are unethical and infeasible. Therefore, it is
essential to develop statistical methods and algorithms to predict
the outcomes of an intervention from passive observation.

The additive noise models (ANMs) assume one causal
direction X → Y but no reversible causal direction Y → X.
Causation is asymmetric. However, the association of X and Y
can be (1) X → Y, (2) Y → X, and (3) X → Y, Y→ X.
Association is symmetric.

Additive noise models are based on the independence of
cause and mechanism (ICM) principle. ICM assumes that causes
and mechanisms are chosen independently by nature, which is
a recently proposed principle for causal reasoning and causal
learning (Peters et al., 2017). ICM assumes that the mechanism
that generates effect from its cause contains no information
about the cause, which implies that X and NY in the ANMs are
independent. However, X and NY in the non-linear regression
model Y = fY (X, NY ) may be dependent.

In summary, association is studied by observed conditional
distribution, and causation is investigated by interventional
distribution where causal effect is determined by the effect of
hypothetic manipulation of an input on an output. In other
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TABLE 3 | Average sensitivity and specificity over fivefold cross validation.

Model development time point Prediction time point

Baseline 6 months 12 months 24 months

Baseline (0.6873, 0.9600) (0.8073, 0.9700) (0.7524, 0.9717) (0.6465, 0.9313)

6 months (0.6364, 0.9600) (0.7778, 0.9717) (0.5977, 0.9417)

12 months (0.7295, 0.8995) (0.6674, 0.8833)

24 months (0.6294, 0.8853)

FIGURE 3 | Visualization of the brain regions with relative importance values at the baseline, 6 months, 12 months, and 24 months. The deeper the red color of the
brain region, the more important for AD prediction. AD, Alzheimer’s disease.

words, association is investigated by seeing, and causation is
investigated by doing.

RESULTS

Alzheimer’s Disease Classification and
Prediction
The VGG network with 3D filters was used for classification
and prediction of AD using 3D whole brain DTI images at
four different time points: baseline, 6 months, 12 months, and
24 months. We consider two classes: AD and NC. AD prediction

accuracy using VGG is listed in Table 2, and its sensitivity and
specificity are shown in Table 3, where the first and second values
in the brackets represent sensitivity and specificity, respectively.
Tables 2, 3 demonstrate that the prediction accuracy, sensitivity,
and specificity of VGG using the training dataset at baseline to
predict AD in the test datasets at baseline, 6 months, 12 months,
and 24 months were 0.8675 (0.6873, 0.9600), 0.8452 (0.6364,
0.9600), 0.8335 (0.7295, 0.8995), and 0.7463 (0.6294, 0.8853),
respectively. In other cases, we can observe similar results.
The area under the curve (AUC) using the training data at
baseline, 6 months, 12 months, and 24 months for prediction
of AD in the test datasets at the same time points was 0.8571,
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0.8291, 0.8583, and 0.7756, respectively. The low sensitivity of
prediction of AD may be due to small and imbalanced sample
size (51 AD and 100 controls). A much higher proportion
of non-AD controls have decreased sensitivity but increased
specificity. Deep VGG that has a large number of parameters to
be estimated requires large sample sizes. Although we used data
augmentation methods to increase sample sizes, augmentation
methods still did not provide large and reliable sample sizes.
Large sample sizes are an important issue for increasing the
prediction of accuracy.

Region Selection and Interpretation
Relative importance of value d was sorted. Image areas whose
relative importance value was in the top 10th percentile were
considered as features that contributed substantially to the
prediction of AD. We identified 23 important brain regions
that contributed substantially to AD prediction. The results
are shown in Figure 3 where each subfigure has 91 × 109
pixel sizes, where the darker the red color is, the more
important the brain region is to the prediction accuracy. The
brain regions with red color included the temporal lobe (the
left temporal, medial, and right temporal lobes), ventricles
and enlarged ventricle, occipital lobe, and prefrontal area. To
further interpret the image analysis results and increase their
transparency, we tested the causal relationships between DTI
image ROIs and AD disease at baseline, 6 months, 12 months,
and 24 months using CGAN-based statistics. After Bonferroni
correction, P-value < 0.0022 was the threshold to declare
significance. The number of identified brain regions that showed
significant causation to AD at baseline, 6 months, 12 months,
and 24 months was 1, 1, 2, and 4, respectively. Table 4
lists ROIs where P-values for testing causation between the
ROI and AD were <0.05. Three remarkable features emerged
from these results. First, as time passed, AD progressed from
mild (early stage), via moderate (middle stage), to severe
(late stage), which resulted in atrophy of more and more
brain regions. Therefore, we observed the increased number
of significant causal brain regions with AD as the study time
of AD increased from the baseline to 24 months. Second,
in general, as AD progressed, the significance of causation
between the brain region and AD increased (P-values for
testing causation decreased). Third, the brain region in ROI
18 (the ventricles and enlarged ventricle) (Figure 4) showed
significant causation to AD at all four time points (baseline,
6 months, 12 months, and 24 months). The brain regions in
ROI 14 (the left temporal lobe) (Figure 4) showed significant
causation at 12 and 24 months after Bonferroni correction.
The literature reports that these regions are related to AD.
The left temporal lobe is involved in language and AD
(Cretin et al., 2015; Flick et al., 2018; Trimmel et al., 2018),
and the right temporal lobe atrophy is involved in severe
impairment in emotion recognition (Everhart et al., 2015) and
causes frontotemporal dementia (Gliebus, 2014), with the brain
ventricles often affected AD (Ferrarini et al., 2006). Ventricle
enlargement is a useful structural biomarker for the diagnosis of
AD (Anandh et al., 2014).

TABLE 4 | Causations between DTI image ROIs and AD disease status.

Time point ROI index P-value

Baseline 2 0.0463

18 0.0005

6 months 8 0.0182

14 0.0108

17 0.0155

18 0.0010

12 months 6 0.0117

14 0.0018

17 0.0107

18 <0.00005

24 months 0 0.0245

3 0.0133

5 0.0092

7 0.0063

8 0.0030

9 0.0007

11 0.0084

12 0.0002

13 0.0082

14 <0.00005

15 0.0098

17 0.0239

18 <0.00005

19 0.0210

21 0.0363

22 0.0166

ROI 14 corresponds to the left temporal lobe and 17 corresponds to the right
temporal lobe. ROI 18 corresponds to ventricles and enlarged ventricle and
indicates atrophy of cerebral nerve tissue, which is typical in AD patients. DTI,
diffusion tensor imaging; ROI, region of interest; AD, Alzheimer’s disease.

Genetic Studies of Two Brain Regions
To uncover genetic architecture of brain regions, in addition
to genetic-imaging association analysis, we conducted genetic-
imaging causal analysis using the CGAN where imaging signals
within the brain region and SNPs within the gene were
summarized by 2D functional principle scores and classical
functional principle scores, respectively (Lopez-Paz and Oquab,
2016). The total number of candidate genes being tested was
61. After Bonferroni correction, the P-value for declaring
significance of both causation and association was 0.00082. We
presented the results of P-values < 0.05 in causal analysis and
association analysis of genetic variation in 61 candidate genes
with two brain regions, the left temporal lobe and frontal and
temporal left lobe, and the right temporal lobe as seen in
Supplementary Tables S1, S2, respectively, where 61 genes were
obtained from genome-wide causation studies of AD in the
manuscript (Lin et al., unpublished). In Supplementary Tables
S1, S2, the P-values in bold green denote significant causation
or association after Bonferroni corrections. The majority of
genes that had causal or association relationships with brain

Frontiers in Neuroscience | www.frontiersin.org 7 November 2019 | Volume 13 | Article 1198

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-01198 November 13, 2019 Time: 16:38 # 8

Liu et al. Transparent Deep Learning for Analysis of AD

FIGURE 4 | Three brain regions showed causation to AD. AD, Alzheimer’s disease.

neuroimaging phenotypes were identified at all time points
(baseline, 6 months, 12 months, and 24 months). We also
observed that these identified genes had causal or association
relationships with both the left temporal lobe and right temporal
lobe regions. The identified genes CD33, COBL, and APP that
had causal relationships with brain neuroimaging regions were
confirmed multiple times in the literature (Bradshaw et al., 2013;
Mez et al., 2017; Kovacs et al., 2018; Van Giau et al., 2018;
Huang C.C. et al., 2019; Huang C.Y. et al., 2019). It was also
reported that gene FGF4 was involved in neurodevelopmental
disorders (Grillo et al., 2014), FRMD6 was implicated in AD
(Hong et al., 2012), Dock9 played an important role in regulation
of morphological changes in hippocampal neurons (Kuramoto
et al., 2009), H3F3B was associated with a broad schizophrenia
phenotype (Manley et al., 2018), SCYL1was involved in cerebellar
atrophy (Lenz et al., 2018), AKAP5 played a significant role in
the regulation of sympathetic nerve activities (Han et al., 2016),
and PIGC was involved in epilepsy and intellectual disability
(Edvardson et al., 2017).

DISCUSSION

In this paper, we presented a general artificial intelligence
(AI) platform for prediction of AD using DTI images. Non-
transparency could be a major challenge of deep learning for
medical image analysis. To meet this challenge, we introduced
three approaches to medical image interpretation: feature
selection and visualization, causal analysis of neuroimaging
region, and genetic-imaging analysis. Feature selection and
visualization methods selected and visualized brain regions
as a potential pathology of AD. Further CGAN evaluation
and two-sample tests discovered potential causal relationships
between the brain neuroimaging regions and AD. We observed
the increased number of significant causal brain regions with
AD when AD progressed. In general, as AD progressed, the
significance of causation between the brain region and AD
increased (P-values decreased). We observed that the ventricles
and enlarged ventricle and the left and right temporal lobes had

strong causal relationships with AD. Temporal lobes including
the hippocampus are crucial in AD development at the early
stages, whereas the ventricles and enlarged ventricle are a useful
structural biomarker for the diagnosis of AD. Joint causal analysis
of genetic and images of the left and right temporal regions
using CGAN evaluation and two-sample tests mapped CD33,
COBL, FRMD6, APP, and other genes to the left and right
temporal brain regions.

Many findings in the paper can be confirmed in the literature.
For example, both prediction analysis using deep learning and
causal analysis using CGAN and a two-sample test identified
the brain temporal lobe region that was involved in AD. The
temporal lobe includes the hippocampus and its surrounding
regions. It is well known that the temporal lobe consists of
structures that are vital for long-term memory. There are
numerous reports that the temporal lobe including the left,
medial, and right temporal lobes are involved in AD pathology
(Kakeda and Korogi, 2010; Li and Chen, 2015; Menéndez-
González et al., 2015; Aggleton et al., 2016; Delgado-González
et al., 2017; Pettigrew et al., 2017; Wolk et al., 2017; Jung
et al., 2018; Kitchigina, 2018; Persson et al., 2018; Grajski and
Bressler, 2019; Kenkhuis et al., 2019; Lam et al., 2019; Pasquini
et al., 2019; Xie et al., 2019). DTI discovered the functional
and structural connectivity between the medial temporal lobe
(MTL) and posteromedial cortex (PMC) (Buckner et al., 2008;
Pasquini et al., 2019). The MTL includes the hippocampal
formation and other cortices. These regions underlie memory
processing through interplay with neocortical areas from the
PMC. AD-related pathological changes such as tau accumulation
and amyloidβ deposition often affect the PMC and MTL regions.
The functional and structural disconnections between the MTL
and PMC cause the development and progression of AD.

The literature confirmed the identified pathological
paths from genetic variants to AD via brain regions:
CD33 → medial temporal and hippocampus (Wang et al.,
2019) → AD (Pasquini et al., 2019) and CD33 → AD
(Miles et al., 2019); APP → medial and lateral temporal
lobe (Huang C.C. et al., 2019) → AD (Buckner et al.,
2008) and APP → AD (Zhou et al., 2011); SCYL1 →
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cerebellar atrophy (Schmidt et al., 2015) → AD (Gallo et al.,
2017); and SCYL1→ neurodegenerative disease (Schmidt et al.,
2007). These provided indirect evidences of identified biomarkers
for unraveling mechanism of AD.

The results in this paper are preliminary. Sample sizes
need to be increased and additional datasets analyzed
to replicate the results. The purpose of this paper is to
stimulate further discussions regarding the great challenges
we are facing in developing robust deep learning platforms
that combine multiple modes of imaging tools and have
high accuracy across multiple datasets and uncovering
causal pathways from genetic variants to disease via brain
imaging regions.
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