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Many resources, such as oil, gas, or water, are extracted from porous soils and their exploration is often
shared among different companies or nations. We show that the effective shares can be obtained by invading
the porous medium simultaneously with various fluids. Partitioning a volume in two parts requires one
division surface while the simultaneous boundary between three parts consists of lines. We identify and
characterize these lines, showing that they form a fractal set consisting of a single thread spanning the
medium and a surrounding cloud of loops. While the spanning thread has fractal dimension 1.55 6 0.03, the
set of all lines has dimension 1.69 6 0.02. The size distribution of the loops follows a power law and the
evolution of the set of lines exhibits a tricritical point described by a crossover with a negative dimension at
criticality.

S
pace partitioning is of interest in a wide spectrum of fields, ranging from materials science to medicine, with
special relevance to computer graphics and the exploration of natural resources stored in soils. For example,
if different companies want to explore an oil reservoir they are interested in determining the volumetric

share corresponding to each one inside the ground1. An additional degree of complexity comes into play when
water is injected into the soil to push the oil to enhance extraction2,3. Also in medical imaging, three-dimensional
computed tomography scans need to be segmented to identify the different tissues. These pictures are discretized
into pixels and a number is assigned to the bond between neighboring pixels corresponding to the intensity
gradient. The resulting structure is similar to the one of a porous soil. By aggregating pixels pairwise from the
lowest to the highest gradient it becomes possible to identify the boundaries of tissues4.

Both problems consist in dividing space into parts: either the shares of the companies in the oil field or the
different tissues in the image processing. In both cases, regions are separated by division surfaces. Here we
consider three regions and find that their division surfaces join in a fractal thread that crosses the medium, being
surrounded by a cloud of disconnected loops (see Fig. 1). In the case of oil exploration these points, where all three
division surfaces merge, are the places where water should be injected to assure that no oil is pushed out on the
wrong side. In medical image processing, the simultaneous boundary between three parts might indicate, for
example, the region where a tumor is nested between two other tissues.

We consider a random medium consisting of pores arranged in a simple-cubic lattice connected through
channels. To each channel k a threshold pk is randomly assigned following a uniform distribution in the interval
[0, 1). The fraction of open channels is tuned by a parameter p, such that channels with pk , p are open while all
the others are closed. Hereafter we use the language of fluids where p would correspond to the fluid pressure. For
digital images, the pores would correspond to the pixels and the thresholds pk to the intensity gradient between
pairs of neighboring pixels.

To find the partitioning of the medium into three parts, we divide the (four) vertical boundaries of a cubic
system in three parts of about the same area. Each part corresponds to a different invading fluid distinguished by
dyeing them with different colors: red (R), green (G), and blue (B) [see Fig. 2(a)]. In the illustration of Fig. 2 we see
a medium of 5 3 5 3 5 pores. The pores are in the center of each cube and the edges are the bonds of the dual
lattice of the pore network. The cubes have the color of the fluid contained in the corresponding pore. We invade
the system simultaneously from all vertical walls.

Starting with p 5 0 (i.e., all channels closed), the channel with the lowest threshold, in the invasion front, is
selected and the fluid pressure p is increased to the value of this threshold. This channel and the empty pore
connected to it are then invaded and colored according to the type of fluid that penetrated into it. After that,
invasion also cascades into all pores connected to this pore through channels with thresholds lower than the actual
p. This process is repeated until all pores are invaded, under the constraint that the fluids can not displace each
other, which does not allow to invade any pore by more than one fluid.

In the final state, the medium is divided into three parts corresponding to the pores filled either with an R, G, or
B fluid. These parts are the maximum oil shares that each company could extract from the exploration regions.
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This division is solely determined by the distribution of local thresh-
olds, thus being intrinsic to the medium (for algorithmic details see
Section Methods). Here we will mainly focus on the final partitioning
of the medium, corresponding to p 5 1 (all pores invaded). However,
we later also discuss the pressure pt at which two different fluids start
to form an interface.

An example for the partitioning into three parts is shown in
Fig. 2(b). To better visualize the partitioning, we separate the three
parts in Fig. 2(c). Every face that separates two colors is part of a
division surface. Edges are shared by four different cubes. If three of
the cubes sharing a common edge have different colors, we call this
an RGB edge (thick black lines in Fig. 2). In fact, all RGB edges are on
lines where all three surfaces separating regions of different color
meet. The vertices attached to RGB edges are the RGB nodes and
we define every set of nodes connected through RGB edges as an RGB
cluster. All RGB nodes and edges of a medium form its RGB set.

Results
The surfaces dividing two colors are fractal objects of fractal dimen-
sion dsur 5 2.49 6 0.02, as seen in the inset of Fig. 3, numerically
consistent with what has been reported for watersheds in three
dimensions5,6. While these boundaries are singly connected, the
RGB set consists of one spanning cluster connecting the two sides
of the system surrounded by a cloud of smaller disconnected loops
(see Fig. 1). As shown in Fig. 3, the entire RGB set is fractal of
dimension dtot 5 1.6960.02, while the spanning cluster has a smaller
fractal dimension dsc 5 1.55 6 0.03. To analyze the topology of the
spanning cluster, we used the burning method proposed in Ref. [7].
We found that the spanning cluster has loops, however its backbone,
elastic backbone, shortest path, and its set of singly connected RGB
edges all have fractal dimensions consistent with dsc.

The difference between dtot and dsc is due to the cloud of discon-
nected loops. These loops result from the entanglement of three
compact regions, as illustrated in Fig. 4, which shows a transversal

cross section of a medium, where the three regions are simulta-
neously in contact at different locations. In this particular case, the
lower location (dashed circle) is where the spanning cluster intersects
the cross section. The upper location (dotted circle) shows the cut

Figure 1 | Set of lines on which all division surfaces between three parts are in contact for a typical random medium. In addition to the backbone

spanning the medium from left to right (shown in red), the set also contains a cloud of disconnected loops (green). The transparent planes are guides to

the eye.

Figure 2 | Illustration of the model. (a) In the initial state (p 5 0) the

vertical faces of the cubic lattice are divided into three sets. (b) Example of

the final state of the invasion (p 5 1), dividing the medium into three parts:

R, G, and B. RGB edges and nodes are shown as thick black lines and

spheres, respectively. In (c) we separate the three pieces to be able to look

inside. Solid lines represent the edges of the dual lattice of the pore

network. The color of each cube corresponds to the one of the fluid in the

pore at the center of the cube. The channels connecting the pores are

perpendicular to the faces of the cubes and for clarity they are not shown.

The RGB edges and nodes are part of the dual lattice.
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through a disconnected loop: The G and B regions are in contact in
an area completely surrounded by the R region, thus the contact line
between the three forms a closed loop (discretization effects are dis-
cussed in the Supplementary Information). The size distribution of
the loops is shown in Fig. 5(a), where the size s is defined as the
number of RGB nodes forming the loop. A power-law distribution
is observed, p(s) , s–a, with a 5 2.04 6 0.04, revealing the absence of
a characteristic size. The distribution of distances of disconnected
loops from the spanning cluster decays exponentially, i.e., the loop
cloud is mainly localized in the neighborhood of the spanning cluster
(see Supplementary Information for data).

To understand how the RGB set emerges, we now consider its
evolution with the control parameter p. Initially, when the fluids R,
G, and B start to invade from the boundary, the RGB set is empty. As
p increases, at a typical value p 5 pt, two fluids for the first time try to
invade the same channel in the bulk and with increasing p a division
surface starts to form orthogonal to these channels. If, in addition,
any of the four edges shared by two neighboring pores of different
color is also shared by a pore of the third color, an RGB edge emerges.
Figure 5(b) shows how the total number of RGB nodes, Mtot, depends
on system size at p 5 pt and at p 5 pt 1 0.03. While above pt results
are consistent with the fractal dimension observed for the final state
(p 5 1), precisely at pt, a negative scaling exponent is obtained, Mtot

, L–t, with t 5 0.68 6 0.08. This implies that, in the thermodynamic
limit, the RGB set is empty at pt, while above pt it is fractal of fractal
dimension dtot.

If we assume that the formation of RGB nodes at pt is the product
of two uncorrelated processes, namely the formation of a dividing
surface between two colors, we can show that t 5 d – 2b, where d is
the spatial dimension and b is the fractal dimension of the dividing
surfaces at pt (see Supplementary Information). For the fractal
dimension b of the set connecting two fluids at pt, Coniglio has shown
in the context of percolation that b 5 1/n, where n is the correlation-
length critical exponent of percolation8. In three dimensions,
n 5 0.8734 6 0.00069–11, giving t 5 3 – 2/n < 0.71, consistent with
our numerical result. Above the threshold pt the argument leading to
the expression for t does not hold, since in this regime the invasion is
correlated. Accordingly, the fractal dimension of the RGB set is then
different from the one of the intersection of the two division surfaces.
We conjecture that the expression for t can be generalized to any
dimension d and number of different fluids (colors) n, as far as
2 # n # d:

t d,nð Þ~ n{2ð Þd{ n{1ð Þ=n: ð1Þ

For two colors, n 5 2, t 5 –1/n 5 –b, as in percolation. In contrast for
n $ 3, given the exact and numerical values for n12, t is positive.
Above d 5 6, the upper-critical dimension of percolation, 1/n 5 2,
such that t 5 (n – 2)d – 2(n – 1).

We find that Mtot scales with the distance to pt as Mtot* p{ptð ÞzT

with fT 5 2.0 6 0.3. Therefore, we propose the following crossover
scaling for the total number of RGB nodes:

Mtot p,Lð Þ~L{tG p{ptð ÞLh
� �

: ð2Þ

This scaling behavior of Mtot(p,L) in p and L implies h 5 (dtot 1 t)/fT.
In addition, the scaling function G[x] fulfills G x½ �*xzT for x . 0. The
Ansatz in Eq. (2) is confirmed by the scaling plot in Fig. 5(c).

Discussion
We found a rich scale-free behavior in the partitioning of random
media through simultaneous invasion by three fluids. The lines
where all three fluids are simultaneously in contact form a fractal
set, the RGB set, of dimension dtot 5 1.69 6 0.02, while its spanning
cluster has dimension dsc 5 1.5560.03. The other clusters are loops
and their size follows a powerlaw distribution. At the threshold
where two fluids first form an interface, the size of the set of RGB
nodes scales with a negative exponent in the system size. We propose
a crossover scaling between this exponent and the fractal dimension
dtot above the threshold.

For an oil reservoir shared by three companies, our study shows
how the optimal injection regions scale with the reservoir size and
how they are spatially distributed. In the second example, image
analysis, our work establishes how the number of pixels forming
the simultaneous boundary between three tissues scales with the
image resolution. Besides these examples, our results have also impli-
cations to other fields. Let us consider a chemical reaction that
requires three different reactants each entering a porous medium
from another side. Supposing that all reactants have the same dif-
fusion constant our results identify the disconnected fractal region in
which the reaction will take place. Finally, knowing the properties of
the partitioning of a porous medium is also relevant for planning of
waste disposal. Often trash is buried under ground, in porous soils,
such that its decomposition gases spread through pores and frac-
tures13. These gases will eventually leave the soil and the partitioning
of the soil determines where this will happen first. In particular, the
fractal RGB set are the disposal regions where the escaping of gases
occurs, simultaneously, in three regions.

Figure 3 | Mass scaling analysis. The total mass Mtot (%, total number of

RGB nodes) and the mass of the spanning cluster Msc (p, number of nodes

in largest RGB cluster) are shown as function of the lattice length L. One

observes that for large lattices the masses scale as power laws of the lattice

size, i.e., Mtot*Ldtot and Msc*Ldsc . The fractal dimensions are dtot 5 1.69 6

0.02 and dsc 5 1.55 6 0.03. In the inset we see the area of the division

surfaces Msur (n) as function of the lattice size L. The fractal dimension of

the division surfaces is dsur 5 2.49 6 0.02. Straight lines are guides to the eye.

Figure 4 | Sketch explaining the presence of disconnected loops in the
RGB set. We see a horizontal cut through a partitioned medium. The two

red regions are connected with each other somewhere above or below the

shown plane. The arrows indicate the existence of a loop, as discussed in

the main text. On the right, one sees examples of cubes of different colors

sharing edges. RGB edges are shown as thick solid lines.
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The exact shape of the RGB set depends on the threshold distri-
bution and on the injection areas of the fluids. We also tested the
partition model with different sets of injection pores, namely, (1)
division of the six faces of a cubic medium into three injection areas,
corresponding each to two adjacent faces of the cube, (2) injection
from three vertical faces of a cube, and (3) injection from three edges
of the cube, with periodic boundary conditions. For all cases, we
obtained fractal dimensions consistent with dtot 5 1.6960.02. In
contrast, for the following injection patterns, different values for dtot

have been obtained: (1) division of the six faces such that each fluid is
injected from two opposite faces, (2) injection pores uniformly dis-
tributed in the cube, with periodic boundary conditions, and (3)
three single injection pores in the cube, also with periodic bound-
aries. These observations suggest that two conditions on the injection
areas, though not necessary, are sufficient to obtain the RGB fractal
dimension reported here. First, the injection area of each color must
be singly connected. Second, the division of the surface of the med-
ium into these areas has to be such that no single fluid can isolate the
remaining two fluids from each other.

The reported fractal dimensions were obtained for a uniform and
uncorrelated distribution of thresholds. It is well-known that dis-
order in soils is typically characterized by spatial correlations, which
can be described by their Hurst exponent H. The numerical values of
the fractal dimensions reported here will in general depend on H14–17.
Nevertheless, our qualitative and topological arguments should still
be applicable.

Models of discontinuous percolation transitions are a subject of
recent interest18–27. Some of these models lead to compact clusters
with fractal perimeters25–27 and in some cases with a fractal dimen-
sion compatible with the one of division surfaces26. The simultaneous
boundaries between three clusters are therefore quite likely related to
RGB sets.

Methods
All numerical results have been obtained with Monte Carlo simulations. Random
numbers have been generated with the algorithm proposed in Ref. [28]. Considering
the labeling scheme by Newman and Ziff29,30, we kept track of the color properties as
function of the fraction of sampled channels p. For Fig. 3, results have been averaged
over at least 2800 realizations. In Fig. 5(a), (b), and (c), results have been averaged over
at least 10000, 6400, and 300 realizations, respectively. Unless indicated otherwise,
statistical error bars are smaller than the symbol size. The algorithmic procedure
shares similarities with invasion percolation31,32 and the fracturing of ranked

surfaces33. The self-similarity of the shortest path in the spanning cluster of the RGB
set has been confirmed using the yardstick method34,35.
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