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Abstract
Background: We present a simple, data-driven method to extract haemodynamic response
functions (HRF) from functional magnetic resonance imaging (fMRI) time series, based on the
Fourier-wavelet regularised deconvolution (ForWaRD) technique. HRF data are required for many
fMRI applications, such as defining region-specific HRFs, effciently representing a general HRF, or
comparing subject-specific HRFs.

Results: ForWaRD is applied to fMRI time signals, after removing low-frequency trends by a
wavelet-based method, and the output of ForWaRD is a time series of volumes, containing the HRF
in each voxel. Compared to more complex methods, this extraction algorithm requires few
assumptions (separability of signal and noise in the frequency and wavelet domains and the general
linear model) and it is fast (HRF extraction from a single fMRI data set takes about the same time
as spatial resampling). The extraction method is tested on simulated event-related activation
signals, contaminated with noise from a time series of real MRI images. An application for HRF data
is demonstrated in a simple event-related experiment: data are extracted from a region with
significant effects of interest in a first time series. A continuous-time HRF is obtained by fitting a
nonlinear function to the discrete HRF coeffcients, and is then used to analyse a later time series.

Conclusion: With the parameters used in this paper, the extraction method presented here is
very robust to changes in signal properties. Comparison of analyses with fitted HRFs and with a
canonical HRF shows that a subject-specific, regional HRF significantly improves detection power.
Sensitivity and specificity increase not only in the region from which the HRFs are extracted, but
also in other regions of interest.

1 Background
In functional magnetic resonance imaging (fMRI), local
brain activation temporally changes blood oxygenation,
which induces a blood oxygenation level dependent
(BOLD) contrast in MR images [1]. Given a model of the

BOLD response to a stimulus pattern, statistics can be
used to quantify the match between the predicted and
measured signals in a voxel, and significant activation is
assessed via hypothesis testing. Statistical parametric map-
ping (SPM) estimates parameters of the noise distribution
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in every voxel to determine a threshold for the computed
statistic [2]. It uses the general linear model (GLM): the
response to a stimulus pattern is modelled as the output
of a linear, time invariant (LTI) system [3]. The response
to one type of stimulus is modelled by convolving its tem-
poral distribution with the response function of that type
of stimulus. The total response is the sum of responses to
all individual stimulus types. The stimulus pattern is
known from the experimental setup. However, the
haemodynamic response function (HRF), i.e., the tempo-
ral BOLD impulse response, is unknown. Essentially, it is
a smooth curve that starts to rise two seconds after the
stimulus, peaks after six seconds, and returns to baseline
within 30 seconds.

The resolution of discrete fMRI time samples yields a
coarse description of the HRF, which is a problem for
designs with short and/or randomised stimuli. In slice-
wise MRI acquisition, there is no optimal sampling for all
slices, and slight differences in temporal onset between
voxels in different slices must be accurately modelled to
obtain good sensitivity. This requires a continuous-time
HRF model. It is sometimes preferable to use a common
HRF for many experiments and many regions. In many
cases though, a common HRF cannot be assumed [4,5].
Two ways to solve this problem are (i) including a HRF
model with more basis functions [5], and (ii) estimating
the shape of the HRF in the statistical analysis [4,6]. A
drawback of the first and simple approach is that it covers
only limited variation in the HRF shape, while more
advanced approaches suffer from high complexity and
long computation times. For previous work on the varia-
bility of the BOLD response between brain areas and even
across repeated measurements of the same subject, see
Neumann et al. [7].

Extracting a HRF from fMRI data requires assumptions
about its shape, and is computationally expensive. A sim-
ple method described in the literature is selective averag-
ing with a long interstimulus interval (ISI), assuming non-
overlapping responses [8,9]. Trials with overlapping
responses are also averaged, ignoring the fact that the
overlaps introduce errors [3,10,11]. Other studies use a
functional description of the HRF, whose parameters are
determined by curve fitting (examples in [12-14]), one of
which [12] uses frequency-domain deconvolution.
Another technique based on the GLM expands the HRF
into a set of basis functions [15,16].

Ciuciu et al. [4] use a Bayesian method to extract the HRF.
The method can simultaneously extract multiple HRFs
from multiple experiments. Woolrich et al. [6] use a fully
Bayesian approach to fMRI modelling, including the HRF.
Both these approaches use certain prior assumptions for
the shape of the HRF: in the first case, causality, smooth-

ness, and starting and ending at baseline level, and Gaus-
sian temporal autocorrelations; in the second case, a set of
predefined prior HRF shapes, and many priors for model-
ling the noise distribution and autocorrelation.

The HRF extraction method described here is data-driven
instead of model-driven. It is based on Fourier-wavelet
regularised deconvolution, ForWaRD for short, developed
originally for denoising and deblurring of images [17].
ForWaRD combines frequency-domain deconvolution for
identifying overlapping signals, frequency-domain regu-
larisation for suppressing noise, and wavelet-domain reg-
ularisation for separating signal and noise. It is related to
recent wavelet-based deconvolution techniques [18-20],
with the advantage that the roles of signal (for fMRI:
sparse, high frequency) and response (for fMRI: smooth,
low frequency) can be interchanged: unlike other wavelet-
and vaguelette-based deconvolution methods, ForWaRD
does the first step entirely in the frequency domain.

The method described in this paper uses an fMRI data set
and the stimulus time pattern, and produces a time series
of image volumes, which contains the HRF in each voxel.
Compared to the simple extraction methods above, this
method has the advantage of taking overlapping
responses into account. On the other hand, it is much
simpler than the Bayesian ones described above, in that it
does not rely on shape assumptions/priors of the HRF: the
extracted time points are determined only by the fMRI sig-
nal and the stimuli: the method is data-driven. This
important property means that the extracted HRF is not
biased by any a priori model. The only requirements for
ForWaRD are (i) LTI responses and (ii) separability of sig-
nal and noise in the frequency/wavelet domain. Studies of
the linearity of the BOLD response indicate that (i) is a
reasonable assumption, and given the smoothness of the
HRF and the availability of smooth wavelet basis func-
tions, (ii) is satisfied as well. Another important advantage
is the fact that wavelet-based signal processing methods
are much better in preserving the 1/f-type temporal auto-
correlations that are found in fMRI time signals than time-
domain methods [21]. Models that do not preserve this
structure yield biased results, leading to an increase in
false positives [21,22]. Finally, our method is fast: HRF
extraction from a single fMRI data set takes about the
same time as spatial resampling.

To avoid possible misunderstandings we would like to
stress that our method only concerns the relation between
stimulus and haemodynamic response, but does not
make any statement about the underlying neural
response. Although it is known from the work by Logo-
thetis et al. [23] that the BOLD response in the visual cor-
tex of the monkey brain roughly corresponds to a
convolution of the neuronal local field potential (LFP)
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with some neural response function (NRF), the exact form
of this coupling is still unknown and remains an area of
active research. In our method, we describe the haemody-
namic response as a convolution of the stimulus (not the
LFP) with an impulse response function, i.e., the HRF.
Given the stimulus pattern our method can recover the
HRF, but we do not claim to be able to extract the NRF via
deconvolution.

The output time series can be used to determine subject-
specific, group-specific, and region-specific HRFs, e.g., by
averaging time signals in the corresponding regions. We
demonstrate this in an fMRI experiment using two acqui-
sitions, where the HRF extracted from the first fMRI time
series is used to predict responses in a second experiment.
A functional description for the HRF is found by fitting a
combination of two gamma density functions with varia-
ble parameters for height, dilation, peak location and lag.
We show that contrast and localisation improve by using
the extracted HRF instead of the canonical HRF from the
SPM2 program (a sum of two gamma density functions
(GDFs) with fixed parameters).

The remainder of this paper is organised as follows. Sec-
tion 2.2 reviews the ForWaRD method for regularised
deconvolution. Sect. 2.2.4 describes how ForWaRD is
used for HRF extraction, and it describes how the method
was tested on simulated noisy time series and demon-
strates a possible application using event-related fMRI
data. Sect. 4 contains some general conclusions.

2 Methods
This section briefly reviews the standard General Linear
Model (GLM) in fMRI, and describes the ForWaRD
method [17] for extracting the HRF.

2.1 The General Linear Model
Statistical parametric mapping (SPM) is a common analy-
sis method for fMRI. It (a) computes a statistic for every
voxel using the GLM, (b) chooses a threshold based on the
parameters of the noise and multiple testing correction;
(c) thresholds the statistic map.

The GLM describes the response in an fMRI experiment as
a weighted sum of explanatory signals. An explanatory sig-
nal is the response of one stimulus type. Let the matrix
Y[T×N] denote the fMRI data set, whose elements yij have
time index i = 1, ..., T and position index j = 1, ..., N . In
the GLM,

Y = Xβ + e. (1)

X[T×M] is the design matrix, whose columns are the explan-
atory signals, and are multiplied by the weights in matrix
β[M×N]. Matrix e[T×N] is the residual signal for each yij. A

least-squares estimate b for β is given by (XTX)-1XTY .
Assuming a Gaussian temporal distribution of the residu-
als (this follows from the GLM if the temporal noise in Y
is Gaussian), standard hypothesis testing can be used to
assess the significance of the elements of b.

2.2 Deconvolution, ForWaRD, and HRF extraction
In the GLM, a single response g to a pattern f of stimuli of
the same type, is a convolution of f with the impulse
response h, plus an additive term representing noise and
other confounding effects.

2.2.1 Deconvolution
Discrete circular convolution, denoted by '*', corresponds
to multiplication in the frequency domain:

g(n) = (h * f)(n) + e(n)  G(k) = H(k)F(k) + E(k),
(2)

capital letters denoting Fourier transforms of the corre-
sponding lower-case signals. In the absence of noise, and

given g and f, it is possible to compute an estimate  of h
through deconvolution. In the frequency domain, the

Fourier transform  of  is obtained by pointwise divi-
sion:

Deconvolution of a noisy signal is an ill-posed problem.
A unique solution may not exist, be meaningless, or at
best unstable: if noise is amplified at frequencies k where
F(k) is close to zero, parts of the unmodelled signal e may
appear in the extracted response (see Fig. 2i). An ill-posed
problem can be regularised by adding extra information
(or constraints) to the problem, so that its solution
approximates the noise-free case [24]. Examples of such
constraints are: minimising the norm between the solu-
tion and the data (minimum-norm), and making the
solution more stable (smooth around optimum). For-
WaRD uses regularisation methods in the frequency and
wavelet domains (see Fig. 1) to overcome this problem.

2.2.2 Fourier shrinkage

Frequency-domain shrinkage attenuates the noise after
the pointwise division, by multiplying each frequency

coeffcient  (k) by a factor λ (k). Two popular methods
are Wiener shrinkage and Tikhonov shrinkage [17]:
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Here  is the variance of the noise e(n) in (2). The

remarks at the end of this subsection explain how to esti-

mate  and determine optimal regularisation parame-

ters α and τ. An estimate of the spectrum |H(k)|2 of the
unknown response function needed for Wiener shrinkage
is obtained by the iterative algorithm of Hillery and Chin

[[25], Sect. 4]. The estimated response function  is the

inverse Fourier transform of  (see Fig. 2ii).

2.2.3 Wavelet shrinkage

Shrinkage in the wavelet domain is done using wavelet-
domain Wiener shrinkage (WDWS), which reduces the
noise and preserves details in the signal [17,26]. The dis-
crete wavelet transform describes a sampled signal c0 of
length N as a sum of localised basis functions. A discrete
wavelet transform with J levels of decomposition 

recursively splits the signal into an approximation part cJ

and detail signals d1, d2, ..., dJ, which are weighted sums of

shifted and dilated versions of a scaling function φ and an

associated wavelet ψ, respectively. The fast wavelet trans-
form [27], which performs downsampling at each level, is
not shift-invariant. ForWaRD uses a shift-invariant dis-
crete wavelet transform (SI-DWT), which uses a polyphase
decomposition (subsampling for all shifts) [28]. Recon-
struction is possible via the inverse transform, denoted by
SI-IDWT.

WDWS is performed via two wavelet transforms (for
details, see [[17], section IV.C]). First, a wavelet transform

of  is computed using (φ1, ψ1). A pilot estimate is

obtained via scale-dependent thresholding of the detail

coeffcients , resulting in thresholded detail coef-

fcients , n =1,...,N. Another wavelet transform of

 with wavelet basis (φ2, ψ2) yields detail coeffcients

. These are shrunk by wavelet-Wiener filtering

coeffcients:

Here  is the noise variance at level j. Finally, the For-

WaRD estimate  is the SI-IDWT of the shrunk coef-

fcients  using wavelet basis (φ2, ψ2), see Fig.

2iii.

Remarks:

• The variance σe is estimated based on the median abso-
lute detail (MAD) coeffcient of a one-level wavelet trans-
form [[29], §5.4] of the the noise e(n).

• In the frequency-domain shrinkage step, the parameters

τ (Tikhonov) and α (Wiener) can be tuned to minimise

the mean squared error (MSE) between the estimate 

and the exact response function h. The exact MSE cannot
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Stages of ForWaRDFigure 2
Stages of ForWaRD. HRF coeffcients after: frequency domain 
inversion (+); frequency domain shrinkage (*); wavelet 
domain Wiener shrinkage (×).

ForWaRD HRF extraction schemeFigure 1
ForWaRD HRF extraction scheme. Fourier shrinkage (deter-
mined by λ) is applied to partially attenuate noise amplified 
during the inversion step. Subsequent wavelet shrinkage 
(determined by κ) effectively attenuates the residual noise.
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be computed, but it can be approximated very accurately,
see [[17], section VII].

• A complete Matlab implementation of the original For-
WaRD algorithm, on which our method is based, is avail-
able 1

2.2.4 Using ForWaRD for HRF extraction
The ForWaRD-based HRF extraction scheme (see Algo-
rithm 1) works as follows: The BOLD response to a stim-
ulus pattern f is relative to the baseline. Low-frequency
trends in the baseline may contaminate the extracted HRF.
Trends are removed beforehand by a standard wavelet-
based technique [30]: transform each time signal (with
length N) to the wavelet domain, using a fast wavelet
transform (FWT) of log2(N) - 3 levels; remove the detail
coeffcients, and subtract the low-scale signal from the
time series. The influence of the detrending on the For-
WaRD estimates is minimal, because the low-pass trends
are in a much lower frequency band than the HRF.
Processing takes place on a voxel-by-voxel basis, so images
can be partitioned to reduce the computation load. The
output is a time series of volumes which, inside activated
brain areas, contain the HRF. Implementation has been
performed in Matlab (The Mathworks, USA).

Algorithm 1 ForWaRD-based HRF extraction scheme.

1: for all Voxels do

2: load the discrete time series g and stimulus pattern f;

3: compute and subtract the time series mean;

4: remove low-frequency trends;

5: apply ForWaRD to the mean-corrected and
detrended signal g and stimulus pattern f to obtain the

estimate  of the HRF coeffcients.

6: end for

2.3 Tests on simulated fMRI time signals
The routine presented in Sect. 2.2.4 was tested on signals
with varying properties (SNR, temporal resolution, low-
frequency trends) with different settings of the routine
itself (decomposition level, wavelet filters, etc.). Figures
3a–d shows the test setup: (a) convolve a stimulus pattern
with a known HRF to obtain the activation signal; (b) add
noise and a low-pass trend to it to obtain the total
response; (c) recover the HRF from this total response,
and (d) reconstruct the activation signal by convolving
the stimulus pattern with the recovered HRF. The MSE

between the activation signal and the reconstructed ver-
sion was used to measure the reconstruction accuracy.

2.3.1 Simulation of fMRI time signals
128 EPI scans of a subject at rest were acquired on a 3T
Intera system (Philips Medical Systems, The Netherlands),
with repetition time (TR) 3 s, image size 64 × 64 × 46 vox-
els of 3.5 × 3.5 × 3.5 mm3. A total of 512 noise time sig-
nals were collected from a region of 8 × 8 × 8 voxels (see
Fig. 4). A randomised stimulus pattern f(n), n = 1, ..., N
was obtained by thresholding a vector of random values.
The stimulus f(n) n = 1, ..., N was convolved with an
impulse response function h(n), in this case the canonical
haemodynamic response function HRFspm, to describe the
activation signal s(n). HRFspm(t) (see Fig. 3f) is the differ-
ence of two gamma density functions (GDF),

where the GDF γm, l(t) has the form:

Four types of low-frequency trends: flat, linear, sinusoidal
and quadratic (see Fig. 5a) were added to the signal. The
SNR of the time signals was set by choosing the standard
deviations σs of the signal and σe of the noise, as well as
the scalar mn such that

Trends with standard deviation σt > 0 were scaled by mt so
that mtσt = mnσe. The time signal in each voxel was the sum
{EPI noise} + {activation} + {trend} (Fig. 3b). Tests
included time signals with varying (a) input SNR, (b) low-
frequency trends, (c) repetition time (TR), and (d)
response onset.

2.3.2 Reconstruction of activation signals
The HRF was extracted from each time signal by the For-
WaRD-based routine, and the mean HRF was used to
reconstruct the activation signal by convolving it with the
stimulus pattern. The following settings of the ForWaRD-
routine were varied: (a) type of frequency shrinkage, (b)
levels of the wavelet transform, (c) wavelet-domain
threshold level, and (d) the wavelet basis. The default val-
ues were: SNR 0 dB, no trend, TR 2 s, onset delay 0 s,
Tikhonov shrinkage, τ 0.1, decomposition level 3, θ 3, φ1
Daubechies-4, φ2 Daubechies-3 [31].
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Test set-upFigure 3
Test set-up. (a) The fMRI response as an LTI signal: HRF (i), stimulus pattern (ii), and the activation signal (iii) as (i) convolved 
with (ii). (b) In the GLM, confounds such as trends (ii) and noise (iii) are added to the response (i). (c) The total response: acti-
vation signal + confounds + noise. (d) The ForWaRD-reconstructed HRF (i) compared to the original (ii). (e) The activation sig-
nal using the extracted (i) and original (ii) HRF. (f) The canonical HRF, HRFspm, see Eq. (6).
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2.4 Event-Related fMRI experiments
An application of the HRF extraction method is demon-
strated in an event-related fMRI experiment. HRF coef-
fcients were extracted from the fMRI data set, and HRFs
were computed by fitting a model function to HRF coef-
fcients (both whole-brain and region-of-interest). These
HRFs were then used in a subsequent GLM-based analysis.

2.4.1 Fixed-ISI experiment
The subject in the MRI scanner had to make a fist on the
appearance of a visual stimulus, and relax after 1 s. Cues
were given on a white screen placed inside the scanner: a
red disc was a cue to make a fist, a white disc meant that
the subject had to rest. The experiment consisted of 156
scans, acquired as described in Sect. 3.1. Cues were given
every 24 s (8 scans × 3 s, no jittering), starting at scan 2.
Increased task-related activity was expected in the motor

cortex, the premotor cortex, the supplementary motor
area and the cerebellum.

The EPI data were denoised with a wavelet-based tech-
nique [32], using SUREShrink in the wavelet domain [29].
Realignment, normalisation, and statistical analysis were
done with SPM2 [2]. Slice timing correction was not
applied. The design matrix X contained a set of 6 Fourier
basis functions (3 sines, 3 cosines) modulated by a Han-
ning window, in the time interval of 8 scans after each
stimulus, and a constant signal modelling the time series
mean. The Fourier basis was used to model a large class of
signals using only few assumptions.

The variance ratio [33] was computed in each voxel, and
an F-test was used to determine significance. False discov-
ery rate (FDR) control [34] with q = 0.05 was used to cor-
rect for multiple hypothesis testing.

(a) Low-frequency trends: (i) flat, (ii) linear, (iii) sinusoidal, (iv) quadraticFigure 5
(a) Low-frequency trends: (i) flat, (ii) linear, (iii) sinusoidal, (iv) quadratic. (b) log10(MSE) of noisy (×) and reconstructed (o) sig-
nals given the input SNR.

Area sampled from EPI data: (a) transverse, (b) sagittal, (c) coronalFigure 4
Area sampled from EPI data: (a) transverse, (b) sagittal, (c) coronal.
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2.4.2 Random-ISI experiment
A second experiment used a random stimulus sequence,
created by thresholding a sequence of random values (39
stimuli, ISI mean: 6.05 scans, σ : 4.31 scans, no jittering).
The number of scans was 256, scanning parameters and
preprocessing were as in Sect. 3.1.

Due to overlapping responses, the windowed Fourier
basis set could not be used. It was replaced by the canon-
ical HRF from the SPM2 program and its time and dila-
tion derivatives. An F-test of the variance ratio with FDR q
= 0.05 was used to assess significance.

2.4.3 Extracting and modelling HRFs from the time series
A stricter FDR-corrected threshold (q = 0.0001) was
applied to the variance ratio maps, sampling the HRF in a
smaller number of voxels.

A continuous HRF was obtained by fitting a generalised
version of HRFspm (6) to the coeffcients returned by For-
WaRD and selective averaging. We use HRFgam to denote
the difference of two GDFs with 8 parameters, i.e.,
H(eight), D(ilation), P(eak location) and L(ag) of both
GDFs:

Levenberg-Marquardt's nonlinear curve-fitting algorithm
was used to determine these parameters and 95% predic-
tion intervals for the fitted functions.

2.4.4 Using fitted HRFs to model responses
HRFs measured from an fMRI data set cannot be used to
test for activation in that same data set: a model must be
specified a priori, so that inferences are not made from
models that are determined by the data itself. We tested
for activation in the random-ISI experiment with the HRFs
fitted to the coeffcients extracted from the fixed-ISI data,
and vice versa. The GLM was estimated using the stimulus
times and the fitted HRFs, and their correlation the fMRI
time signals was computed. Significance was determined
via a one-sample t-test, and FDR control with q = 0.05 was
used to correct for multiple hypothesis testing.

3 Results
3.1 Simulated fMRI time signals
The properties of the signal and parameters of the extrac-
tion routine that noticeably influenced the original activa-
tion signal s(n) and its reconstruction r(n), are listed
below.

3.1.1 Output MSE as a function of input SNR
Figure 5b shows the MSE for various input SNR values. For
input SNRs up to 9 dB the MSE decreases; it increases
above 9 dB.

3.1.2 Choice of shrinkage type and τ parameter
Wiener shrinkage uses an iterative algorithm [25] to esti-
mate |H|2 (see (4)), the number of iterations was limited
to 10. Figure 6 shows the MSE for both types of frequency
domain shrinkage, varying SNR and regularisation param-
eter τ. For low SNR and heavy regularisation (τ ≥ 1),
Tikhonov regularisation outperforms Wiener shrinkage.
For higher SNRs or mild regularisation, Wiener shrinkage
performs better. The best value for τ depends on the
shrinkage type, the SNR and the TR. For short TR, mild
regularisation (τ ≤ 0.1) is preferable. A long TR requires
heavy regularisation.

3.1.3 Different response delays
Figure 7 shows that HRFs with different onset delays can
equally well be extracted with ForWaRD. The MSE hardly
changes with different delays, indicating that the shape of
the response is preserved. The increased MSE for negative
shifts is caused by the fact that the HRF was only sampled
post-stimulus.

3.1.4 Different wavelet filters
We tested 15 different wavelet filters for (φ1, ψ1), as well
as for (φ2, ψ2): Daubechies wavelets 1 ... 5 (the filter
number indicates the number of vanishing moments),
Daubechies' symmetric wavelets 2 ... 6 [35] (filter 1 corre-
sponds to the Daubechies-1 filter), and Coiflets 1 ... 5
[35]. Different filters did not yield large differences in per-
formance.

3.1.5 Decomposition level and noise threshold
Figure 8 shows the MSE for different SNRs, different θ and
different decomposition levels. We find that two-level
decompositions produce the smallest errors for the lower
SNRs, and three-level decompositions perform best for
the higher. Four-level and five-level decompositions yield
higher errors. A higher θ often yields a lower MSE.

3.1.6 Different low-frequency trends
Tests with low-frequency trends (see Fig. 5a) show that the
type of frequency domain shrinkage changes the result.
(see Fig. 9). The MSE is higher with Tikhonov than with
Wiener shrinkage, especially for lower SNRs. Trends are
not removed perfectly with either shrinkage type, but the
extra information about f and the power spectral density
of h in Wiener shrinkage make it less sensitive to trend
residuals.

HRFgam( ) ( ) ( )., ,t H t L H t LP D P D= − − −1 1 2 21 1 2 2
γ γ

(9)
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3.1.7 Summary
Even though the default parameters (see Sect. 2.3.2) make
the algorithm robust for a wide range of signals (different
SNR, sampling frequency, etc.), the method is also robust
changing its parameters, such as the wavelet filters and
decomposition level. The MSE of the reconstructed signal
was lower than the input MSE in most of the tested situa-
tions.

The robustness to onset delay makes ForWaRD an attrac-
tive alternative to other delay correction methods such as
including a temporal derivative of the standard HRF in the
model [16]: these only correct for small synchronisation

errors, and are not usable when the HRF is not well mod-
elled by the standard function.

3.2 Event-related fMRI: fixed-ISI
Activation maps are shown in Fig. 10a as 'glass brain' max-
imum intensity projections (MIP) in two orthogonal
directions. Low statistic values are shown in grey, high val-
ues in black. The highest value is indicated with a '<' sign.
Activation was found in the expected areas, predomi-
nantly in the motor cortex. A whole-volume HRF was
extracted from the post-stimulus volumes using selective
averaging [9], by taking the mean response of each vol-
ume, weighted by the map of significant statistic values. A

Output MSEs of Tikhonov (left) and Wiener (right) shrinkage with a TR of 0.5 s (top) and 3 s (bottom), for different input SNRs and a varying regularisation parameter τ × τ = 0.01, o τ = 0.1, : τ = 1, *: τ = 10Figure 6
Output MSEs of Tikhonov (left) and Wiener (right) shrinkage with a TR of 0.5 s (top) and 3 s (bottom), for different input 
SNRs and a varying regularisation parameter τ × τ = 0.01, o τ = 0.1, : τ = 1, *: τ = 10.
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region-specific HRF in the 7 × 7 × 7-voxel neighbourhood
of a selected voxel (see the '<' in Fig. 10a) was computed
by using only the time signals from that region. Figure
11a–b shows the extracted HRFs.

The ForWaRD algorithm used 128 scans of the experi-
ment, starting with scan 2 (first stimulus). Whole-volume

HRF and region-specific HRF time points were computed
using the post-stimulus time series (see Fig. 11c–d). The
HRFs extracted by ForWaRD are similar to the results from
selective averaging, except that the baseline of the For-
WaRD-extracted HRF decreases. This is because the HRF
does not return to baseline within the sampled interval
(24 s), so in the GLM the response decreases at the end of

Output MSE for varying response onset delays, for Tikhonov (left) and Wiener (right) shrinkage, SNR = -2 dB (×), 0 dB (o), 2 dB ( ), 4 dB (*), and 6 dB (+)Figure 7
Output MSE for varying response onset delays, for Tikhonov (left) and Wiener (right) shrinkage, SNR = -2 dB (×), 0 dB (o), 2 
dB ( ), 4 dB (*), and 6 dB (+).

Output MSE for different SNRs, with various levels of decomposition and threshold levelsFigure 8
Output MSE for different SNRs, with various levels of decomposition and threshold levels. Left: θ = 2, right: θ = 3, with a two-
level transform (×), three-level(o), four-level ( ), five-level(*).
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every stimulus. In some cases (see Fig. 11c–d) this was
fixed manually by setting the baseline to the last HRF coef-
fcient.

3.3 Event-related fMRI: random-ISI
The contrast of the random-ISI experiment was generally
weaker than in the fixed-ISI experiment, but localisation
was better, see Fig. 10b.

A post-stimulus time series was made with ForWaRD,
using all 256 scans of the experiment. Selective averaging
could not be used because of overlapping responses. With
a random ISI, a much longer post-stimulus interval can be
sampled [11]. The post-stimulus volumes produced by
the extraction routine were used to create a whole-volume

HRF and a region-specific HRF in the same way as in the
fixed-ISI case.

Figure 12 shows the extracted HRF coeffcients and the fit-
ted HRFs. A comparison between Fig. 11c–d and Figure 12
shows that the ForWaRD-extracted HRF coeffcients from
the random-ISI design agree better with the model func-
tion than those from the fixed-ISI design, especially in the
region-specific case. A possible explanation is that the
fixed-ISI stimulus signal does not contain enough fre-
quency information to do the Fourier inversion, resulting
in a lower-quality estimate. In contrast, selective averaging
does not work with overlapping responses and random
ISIs.

Maps of the variance ratio using the F-test with FDR q = 0.05Figure 10
Maps of the variance ratio using the F-test with FDR q = 0.05. The highest value is indicated with a '<' sign. (a) Fixed-ISI exper-
iment, range 3.86–20.63 and (b) random-ISI experiment, range 5.43–41.63 (b). The indicated areas are: l.motor cortex (1), sup-

Output MSE for different SNRs and low-pass trends in the dataFigure 9
Output MSE for different SNRs and low-pass trends in the data. Left: Tikhonov shrinkage, right: Wiener shrinkage. No trend 
(×), a linear trend (o), a sinusoidal trend ( ), or a quadratic trend (*).
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3.4 Activation detected with fitted HRFs
Figure 13 shows the activation detected in the fixed-ISI
dataset with the HRFs extracted by ForWaRD from the ran-
dom-ISI dataset. There is good correspondence between
the maps of the whole-volume (a) and region-specific (b)
HRFs, respectively, and the detected activations match the
expected pattern (see Fig. 10). Figure 14 shows the activa-
tion detected in the random-ISI dataset with the HRFs
from the fixed-ISI dataset, using both selective averaging
(a-b) and ForWaRD (c-d), which are in very good agree-
ment. Where selective averaging is possible, ForWaRD
yields results very similar to those produced by selective
averaging. The statistical maps for ForWaRD between the
fixed-ISI and random-ISI time series are in good corre-
spondence.

An analysis was also performed performed with the gen-
eral HRFspm. The activation maps in Fig. 13 are in very
good correspondence with Fig. 15a, indicating that both
HRFspm and HRFgam model the data well. The values for
the variance ratio in Fig. 16 for the fixed-ISI experiment
show that all models explain the data well, and HRFgam
with the regional HRF yields the best fit to the data.

Figures 14 and 15b show that HRFspm yields a poor fit to
the data; this is also shown in Fig. 16. The higher variance
ratios for HRFgam indicate that a larger portion of the
measured variance is explained by the model, and that the
residual of the GLM (1) is small. The fitted region-specific
HRFs generally perform better than whole-volume HRFs,
and the maps of detected activation indicate that the fitted
HRFs do not only detect activation in the region from

HRFs extracted from the fixed-ISI data by selective averaging (top row) and ForWaRD (bottom row)Figure 11
HRFs extracted from the fixed-ISI data by selective averaging (top row) and ForWaRD (bottom row). Left: whole-volume, right: 
region-specific. The extracted coeffcient are the × at each TR. Dotted lines: fits of HRFgam to the coeffcients. Error bars show 
the 95% confidence intervals for the fitted function.
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which they were extracted, but that they are general
enough to also detect activation in other areas, corre-
sponding to the predicted activated regions (see the blue
ellipses in Fig. 10).

4 Conclusion
We have developed a technique to extract HRF coeffcients
from fMRI time series based on the ForWaRD deconvolu-
tion technique. Frequency-domain deconvolution allows
extraction of the HRF even when the responses to subse-
quent stimuli overlap, and the sensitivity to noise of fre-
quency-domain deconvolution is compensated by Wiener
or Tikhonov shrinkage in the frequency domain, followed
by wavelet-domain Wiener shrinkage. Before applying
ForWaRD, low-frequency trends are removed from the
time signal with a standard wavelet-based method. Tests

of the extraction routine using simulated activation, sev-
eral types of trend and noise from a real fMRI time series,
demonstrate its robustness. Results show that the method
is robust to trends in the data, and the performance does
not differ much between the noise levels we tested. The
output of our algorithm is a post-stimulus time series, rep-
resenting the HRF coeffcients in every voxel. At present,
the extraction method is capable of recovering one HRF
from one time series. The algorithm used in this paper is
entirely data-driven: it does not use a priori models of the
data. Other advantages of this algorithm are its simplicity,
i.e., the algorithm works independently of other pre- and
postprocessing steps; and its speed and low computa-
tional complexity.

Activation in the fixed-ISI data set, using the F-test with FDR q = 0.05Figure 13
Activation in the fixed-ISI data set, using the F-test with FDR q = 0.05. The highest value is indicated with a '<' sign. HRFs 
extracted from the random-ISI data set by ForWaRD and modelled with HRFgam. (a) whole-volume HRF, range 3.08–10.62. (b) 
region-specific HRF, range 2.99–12.72.

HRFs extracted from the random-ISI experiment by ForWaRD: whole-volume (a) and region-specific (b)Figure 12
HRFs extracted from the random-ISI experiment by ForWaRD: whole-volume (a) and region-specific (b). ×: extracted HRF 
coeffcients. Dashed lines: function HRFgam fitted to ×. 95% prediction intervals for the fitted functions are shown as error bars.
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The default settings of the method used in the tests as well
as in the fMRI experiments (see Sect. 2.3.2) lead to a good
and robust performance of the extraction algorithm.

We have demonstrated the use of ForWaRD-extracted
HRFs in combination with continuous HRF functions to
predict event-related fMRI responses. Given the output of
the extraction routine, continuous functions (in this case
gamma densities) are fitted to the average HRF coeffcients
in a region of a (statistical or anatomical) map.

Results from the experiments with extracted and fitted
HRFs indicate that subject-specific and region-specific
HRFs lead to stronger contrasts and better localisation
than a standard HRF. The results with the random-ISI data
suggest that it is possible to use ForWaRD in combination
with relatively complex prior experiments to extract HRFs,
and that it is beneficial to use these HRFs instead of stand-
ard functions for detection and modelling of subse-
quently acquired data. The advantage of using a single,
tailored HRF over a model that spans several basis func-
tions, is that the statistical analysis is more specific and

Activation maps of the fixed-ISI data set (a, range 3.10–10.80), and the random-ISI data set (b, range 3.32–8.61), using HRFspmFigure 15
Activation maps of the fixed-ISI data set (a, range 3.10–10.80), and the random-ISI data set (b, range 3.32–8.61), using HRFspm. 
The highest value is indicated with a '<' sign.

Activation maps of the random-ISI data set, using the F-test with FDR q = 0.05Figure 14
Activation maps of the random-ISI data set, using the F-test with FDR q = 0.05. The highest value is indicated with a '<' sign. 
HRFs modelled by HRFgam, coeffcients extracted from the fixed-ISI data set by selective averaging with whole-volume HRF (a, 
range 3.10–10.11) and region-specific HRF (b, range 3.10–10.21), and ForWaRD with whole-volume HRF (c, range 3.11–10.15) 
and region-specific HRF (d, range 3.13–10.10).
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more powerful, resulting in a stronger contrast and better
localisation.

A possible extension of the method is the extraction of
multiple HRFs from one or multiple experiments. Decon-
volution in the frequency domain of multiple waveforms
has already been done in ERP research [36]. The For-
WaRD-based method may be extended in a similar way.
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