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Transposable elements (TEs) are an integral part of the host transcriptome. TE-containing noncoding RNAs (ncRNAs) show

considerable tissue specificity and play important roles during development, including stem cell maintenance and cell dif-

ferentiation. Recent advances in single-cell RNA-seq (scRNA-seq) revolutionized cell type–specific gene expression analysis.

However, effective scRNA-seq quantification tools tailored for TEs are lacking, limiting our ability to dissect TE expression

dynamics at single-cell resolution. To address this issue, we established a TE expression quantification pipeline that is com-

patible with scRNA-seq data generated across multiple technology platforms. We constructed TE-containing ncRNA ref-

erences using bulk RNA-seq data and showed that quantifying TE expression at the transcript level effectively reduces

noise. As proof of principle, we applied this strategy to mouse embryonic stem cells and successfully captured the expres-

sion profile of endogenous retroviruses in single cells. We further expanded our analysis to scRNA-seq data from early stag-

es of mouse embryogenesis. Our results illustrated the dynamic TE expression at preimplantation stages and revealed 146

TE-containing ncRNA transcripts with substantial tissue specificity during gastrulation and early organogenesis.

[Supplemental material is available for this article.]

Transposable elements (TEs) occupy a large proportion of eukary-
otic genomes, representing ∼50% of the human genome and
40% of the mouse genome (International Human Genome
Sequencing Consortium 2001; Mouse Genome Sequencing
Consortium 2002). Although once regarded as nonfunctional par-
asitic sequences, increasing evidence suggests that TE-derived se-
quences play pivotal roles in gene regulation. During evolution,
TEs rewire host transcription networks through transposition
and co-option, resulting in a wide variety of TE-derived regulatory
elements, including promoters, enhancers, transcription termina-
tors, and chromatin loop anchors (for reviews, see Feschotte and
Gilbert 2012; Rebollo et al. 2012; Cowley and Oakey 2013;
Garcia-Perez et al. 2016; Chuong et al. 2017; Sundaram and
Wysocka 2020). In the present day, despite losing most of their
transposition abilities, TE-derived sequences continue to impact
host genomes through transcription, which generates protein-
coding TE chimeric RNAs as well as noncoding RNAs (ncRNAs)
that are involved in normal and cancer development (for reviews,
see Gifford et al. 2013; Hadjiargyrou and Delihas 2013; Hutchins
and Pei 2015; Anwar et al. 2017; Rodriguez-Terrones and Torres-
Padilla 2018).

TEs are major contributors of ncRNAs in both human and
mouse. More than two-thirds of mature long ncRNAs contain at
least one TE and almost half of the total base pairs of long
ncRNA are derived from TEs (Kelley and Rinn 2012; Kapusta
et al. 2013). TE-containing ncRNAs show substantial developmen-
tal stage and tissue specificity and participate in embryonic stem
cell (ESC) maintenance and early embryogenesis. For instance, en-
dogenous retroviruses (ERVs) are highly expressed in ESCs and

ERV-derived transcripts are involved in the maintenance of pluri-
potency (Macfarlan et al. 2012; Santoni et al. 2012; Fort et al. 2014;
Lu et al. 2014; Ohnuki et al. 2014; Wang et al. 2014). During
mouse and human embryogenesis, a large number of TEs, includ-
ing ERVs, long interspersed nuclear element-1 (LINE-1), and short
interspersed elements (SINEs) become active and contribute to a
significant proportion of total RNAs before blastocyst stage
(Kigami et al. 2003; Peaston et al. 2004; Svoboda et al. 2004;
Maksakova and Mager 2005; Fadloun et al. 2013; Göke et al.
2015; Grow et al. 2015; De Iaco et al. 2017; Ge 2017;
Hendrickson et al. 2017; Jachowicz et al. 2017; Whiddon et al.
2017; Percharde et al. 2018). Moreover, knocking down specific
TE families, including LINE-1 and MuERV-L, results in clear devel-
opmental defects (Kigami et al. 2003; Huang et al. 2017; Jachowicz
et al. 2017; Percharde et al. 2018).

Despite the importance of TEs, quantifying TE expression us-
ing high-throughput sequencing data has been challenging.
Owing to the repetitive nature of TEs, sequencing reads that over-
lap with TEs are often discarded as a result of ambiguousmapping.
Several software tools have been developed to address this issue,
and they enabled TE expression quantification in bulk RNA-seq
data (Criscione et al. 2014; Jin et al. 2015; Lerat et al. 2017;
Jeong et al. 2018; Bendall et al. 2019; Kong et al. 2019; Yang
et al. 2019). To quantify the expression of repetitive elements,
these tools often aggregate multialigned reads at TE subfamilies/
families or redistribute them to individual TEs based on heuristic
or statistical rules. Although proven to be successful in a range of
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biological systems, applications of the current TE quantification
strategies were mostly limited to bulk RNA-seq, which lacks the
ability to distinguish cell type–specific TE expression.

Recent developments in single-cell RNA-seq (scRNA-seq) pro-
vide unprecedented opportunities for examining cell type–specific
TE expression. However, effective TE quantification tools opti-
mized for scRNA-seq data are lacking. Although the assessment
of genome-wide transcriptional activity of TEs in single cells has
been attempted by counting signals at individual TE fragments
or TE subfamilies/families (Göke et al. 2015; Ge 2017; Boroviak
et al. 2018; Brocks et al. 2018; Yandım and Karakülah 2019; He
et al. 2020; Jonsson et al. 2020), such approaches are not optimal.
Compared with bulk RNA-seq, scRNA-seq signal is much noisier
and often shows 5′ or 3′ end enrichment along the transcripts.
Counting reads at individual TEs or subfamilies/families fails to
take into account the structures of the full-length transcripts,
which can consist of multiple TEs from different subfamilies/fam-
ilies. Consequently, different expression values will be assigned to
individual TEs within the same transcript. This caveat is especially
obvious when dealing with scRNA-seq data sets in which sequenc-
ing reads are enriched at either the 5′ or 3′ end of the RNA.
Counting reads without the knowledge of the full-length tran-
scripts will only capture TEs near the 5′ end or the poly(A) signal,
resulting in an inaccurate picture of the genome-wide TE expres-
sion pattern (O’Neill et al. 2020).

In this work, we present an analytical framework tailored to
TE expression quantification in scRNA-seq data sets.We systemati-
cally evaluated scRNA-seq reads that mapped to TEs and showed
that quantifying TE expression in single cells using transcripts as-
sembled from bulk RNA-seq effectively reduces noise. Applying
our strategy to mouse early embryogenesis illustrated the dynamic
TE expression during preimplantation stages and revealed TE-con-
taining ncRNAs with substantial tissue enrichment during gastru-
lation and early organogenesis.

Results

A higher percentage of reads are mapped to TEs in scRNA-seq

compared with bulk RNA-seq

Owing to the biological significance of TE-containing ncRNAs, we
decided to focus our analysis on TEs that are not part of the exons
of protein-coding genes. First, to determine the fraction of reads
that can be mapped to these TEs in scRNA-seq data, we processed
36 publicly available single-cell data sets (Supplemental Table S1).
These data sets contain both human andmouse samples and were
generated using seven different scRNA-seq protocols. Bulk RNA-
seq data sets from the same study or derived from the same cell
line were included as controls. To preserve reads that originate
from repetitive regions, multiple mapping was implemented dur-
ing the alignment step. Reads that mapped to multiple locations
or overlapped withmore than one feature were distributed equally
for signal quantification. Calculating the number of mappable
reads based on genomic locations revealed that a large proportion
of reads overlap with TEs in all tested scRNA-seq data sets, suggest-
ing that TE expression can be captured by scRNA-seq (Fig. 1A). We
also observed that a higher percentage of reads was mapped to
TEs in scRNA-seq comparedwith bulk RNA-seq. This phenomenon
was consistent across different scRNA-seq platforms even
when only uniquely mapped reads were considered (Fig. 1A;
Supplemental Fig. S1A), suggesting that the high TEmapping ratio

is prevalent in scRNA-seq data sets and not introduced by non-
unique mapping.

To evaluate whether the high TE mapping percentage in
scRNA-seq was associated with data quality per cell, we further
compared scRNA-seq data generated using Smart-seq, 10x
Genomics Chromium, SCRB-seq, and Drop-seq and examined
the relationships between the percentage of TE reads per cell and
the two key parameters indicative of scRNA-seq quality: sequenc-
ing depth and the percentage of mitochondrial reads (Ilicic et al.
2016). Our analysis revealed that a high TE mapping percentage
was observed across individual cells with limited correlation to se-
quencing depth (Supplemental Fig. S1B,C). Similarly, no strong
correlation was detected between the percentage of TE reads and
that of the mitochondrial reads (Supplemental Fig. S1C). These re-
sults suggest that the high TE mapping ratio in scRNA-seq is un-
likely to be an artifact caused by variations in sequencing depth
or cell death.

To address the concern that genomic DNA contamination
may contribute to the majority of TE signal in scRNA-seq, we
next quantified the number of total readsmapped to five nonover-
lapping genomic regions: protein-coding exons, TEs within the in-
trons of protein-coding genes, other intronic regions of protein-
coding genes, intergenic TEs, and other intergenic regions. A high-
er percentage of total reads was mapped to the intronic regions of
protein-coding genes in scRNA-seq, and the majority of TE over-
lapping reads were located within introns (Supplemental Fig.
S1A), arguing against severe genomic DNA contamination.

Although additional experiments and analyses will be needed
to pinpoint the origin of these intronic reads in scRNA-seq data,
considering their presence across diverse scRNA-seq platforms,
the limited correlation between the amount of intronic reads
and sequencing quality, as well as previous successes in using
intronic reads to infer transcription dynamics and cell states
(Gaidatzis et al. 2015; La Manno et al. 2018), we hypothesize
that these intronic reads originate from unprocessed RNA.
Indeed, consistent with previous reports (La Manno et al. 2018;
Selewa et al. 2020), we observed regions that are enriched for
unspliced scRNA-seq reads and located within introns that tend
to be flanked by AT-rich sequences, which could be involved in
the poly(A) priming step during cDNA synthesis (Supplemental
Fig. S1D).

Counting scRNA-seq reads at individual TEs leads to large

numbers of false positive candidates

Current TE expression analyses often quantify RNA-seq signal at
individual TE fragments or TE subfamilies/families (Criscione
et al. 2014; Jin et al. 2015; Lerat et al. 2017; Jeong et al. 2018;
Yang et al. 2019; He et al. 2020; Jonsson et al. 2020). Our observa-
tion that a large proportion of scRNA-seq reads map to TEs, espe-
cially intronic TEs, raises the concern that counting reads at
single TEs or TE subfamilies/families will aggregate noise and fail
to exclude TEs that are part of protein-coding genes, resulting in
high numbers of false positive candidates. To test this, we applied
a similar strategy and analyzed bulk and Smart-seq data sets gener-
ated usingmouse embryonic stem cells (mESCs) cultured in 2i me-
dium (Buettner et al. 2015; Kolodziejczyk et al. 2015). Because
mESCs represent a population with limited heterogeneity and
reads generated by Smart-seq and bulk RNA-seq share a similar dis-
tribution along the gene body (Ramsköld et al. 2012), we expected
that the expression profiles obtained with scRNA-seq to be largely
similar to those generated with bulk RNA-seq.

TE expression quantification with scRNA-seq data
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Figure 1. Counting scRNA-seq signal at individual TEs results in large numbers of false positive candidates. (A) Distribution of mappable reads in 16 bulk
RNA-seq and 36 scRNA-seq data sets. Compared to bulk RNA-seq, scRNA-seq data have a higher percentage of reads mapped to TEs. Samples were ar-
ranged by studies. Data sets used in this figure are summarized in Supplemental Table S1. (PC) Protein-coding exons defined by RefSeq; (TE) transposable
elements that do not overlap with protein-coding exons; (Other) other genomic locations; (mESC) mouse embryonic stem cell; (PBMC) human peripheral
bloodmononuclear cell; (GM12878 and GM12891) human lymphoblastoid cell lines. (B) Number of expressed (counts per million, CPM≥1) protein-cod-
ing genes and TEs inmESC bulk RNA-seq and Smart-seq samples. On average, 12,000 protein-coding genes and 6000 TEs were detected in each bulk RNA-
seq sample. In contrast, scRNA-seq captured 7000 protein-coding genes and 20,000 TEs per cell. (C) Number of candidates as a function of cell number
cutoff. (Cell number cutoff) Minimum number of cells each candidate is expressed in; (expression cutoff) CPM≥1. A cell number cutoff of 10 requires a
candidate to have at least 1 CPM in at least 10 cells. Although the majority of protein-coding gene candidates were consistently detected in mESC Smart-
seq data, a large number of TE candidates were detected in fewer than 10 cells. (D) Correlation between bulk RNA-seq and averaged scRNA-seq signal at
protein-coding genes and TEs (Teichmann laboratory, mESC). Low correlation between bulk RNA-seq and averaged Smart-seq signal was observed at TEs
regardless of expression cutoff. (Cell cutoff) Minimum number of cells each candidate is expressed in; (CPM cutoff) minimumCPM value for one candidate
to be considered as expressed. Color scale represents the number of candidates. (E) TE-family enrichment analysis using TE candidates identified frommESC
bulk RNA-seq and Smart-seq. Enrichment of ERV elements was observed with bulk RNA-seq data, but not in single cells. Smart-seq data of four single cells
with different percentage of TE reads and merged Smart-seq data from 10 cells were included.
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We first calculated the numbers of expressed protein-coding
genes and expressed TEs (CPM≥1) in these data sets. On average,
12,000 protein-coding genes and 6000 TEs were detected in bulk
RNA-seq samples. In contrast, scRNA-seq captured an average of
7000 protein-coding genes and 20,000 TEs per cell (Fig. 1B). To
evaluate the quality of these expressed candidates, we examined
the following three parameters: (1) the number of cells each candi-
date is expressed in, (2) the correlation between the signal in bulk
RNA-seq and the average signal across single cells, and (3) for TE
candidates, the overrepresented TE families among all candidates.
We reasoned that a candidate representative to the population
should be expressed in a relatively large number of mESCs and
show a strong correlation between its bulk RNA-seq and averaged
scRNA-seq signal. However, only protein-coding genes matched
this expectation (Fig. 1C,D; Supplemental Fig. S2A). A large propor-
tion of TE candidates were only detected in a small number of cells
and showed weak correlations between scRNA-seq and bulk RNA-
seq signal regardless of the expression cutoff. This observation re-
mained valid afterwe performed the same analysis by counting sig-
nals from individual exons. The exon length distributions were
comparable to those of TEs, ruling out the possibility that length
discrepancy between TEs and protein-coding genes contributes to
false positive TE candidates (Supplemental Fig. S2B–D).We further
compared overrepresented TEs within candidates identified from
bulk RNA-seq and scRNA-seq by performing a TE-family enrich-
ment analysis (Supplemental Fig. S3A). Although ERV1 and ERVK
elements have been shown to be expressed in stem cells (Santoni
et al. 2012; Fort et al. 2014; Lu et al. 2014; Ohnuki et al. 2014;
Wang et al. 2014), they were only enriched in bulk RNA-seq in
this analysis (Fig. 1E). scRNA-seq candidates obtained from this
analysis were depleted of ERV1 and ERVK and instead enriched
for SINEs (Fig. 1E; Supplemental Fig. S3B), which are often found
near protein-coding genes and provide sequences that could act
as reverse transcription priming sites (Medstrand et al. 2002).

In summary, the high number of TE candidates obtained
from scRNA-seq, the weak signal correlation between individual
cells, as well as the discordance between bulk and scRNA-seq
strongly suggest that counting scRNA-seq reads at individual TEs
will result in large numbers of false positive candidates.

Transcript assembly improves TE expression analysis

Transcript annotation serves as the cornerstone for expression
quantification. Our ability to accurately assess the expression of
protein-coding genes relies on well-annotated gene structures,
which help to focus analysis on genomics regions with true signal.
Although individual TEs are well annotated, it is usually unclear
which TEs are expressed in a biological system andwhat the under-
lying transcript structures are. We reason that the large number of
false positive candidates in scRNA-seq analysis is caused by count-
ing sparse and noisy signal atmillions of TE copies, of which only a
small proportion are truly expressed (Supplemental Fig. S3C).
Indeed, the signal correlation between averaged scRNA-seq and
bulk RNA-seq is much stronger at TEs that overlap with the exons
of RefSeq annotated ncRNA (Supplemental Fig. S4A). Therefore,
we hypothesize that incorporating transcript structures into the
analysis should help to reduce noise.

Several recent studies took advantage of well-studied TE tran-
scription units such as full-length ERVs or LINEs for TE expression
quantification, but did not consider transcripts that are composed
of TEs from different families or classes (Tokuyama et al. 2018;
Bendall et al. 2019; McKerrow and Fenyö 2020). To obtain a

more comprehensive catalog of ncRNAs with exonized TEs, we
performed transcript assembly using mESC bulk RNA-seq data.
We selected transcripts with lengths exceeding 200 nt and identi-
fied 692 transcripts whose exons overlap with TEs but not the ex-
ons of RefSeq annotated protein-coding genes (Fig. 2A,B;
Supplemental Fig. S5). These include transcripts that are entirely
derived from TEs (e.g., some ERV transcripts and LINE transcripts)
as well as transcripts derived from multiple fragmented TEs and
TE–non-TE hybrid units. These transcripts were termed TE tran-
scripts. To test the accuracy of our assembly, we focused on the pro-
moters of assembled TE transcripts and examined several genomic
signatures that are indicative of active transcription. Indeed, the
majority of our TE transcript promoters overlap with FANTOM5
CAGE peaks (The FANTOM Consortium and the RIKEN PMI and
CLST (DGT) 2014) and are enriched for ATAC-seq signal while de-
pleted of CpG methylation (Fig. 2C).

Using these newly generated transcriptmodels, we recalculat-
ed the expression of the TE transcripts. Because a major source of
noise in measuring TE expression comes from intronic reads
(Supplemental Fig. S4A) and intronic signals areproducts of passive
cotranscription ofmature RNAs (Lanciano andCristofari 2020),we
only quantified signals within the exonic regions of these TE tran-
scripts. Quantifying TE expression at the TE transcripts led to a
much stronger correlation between mESC bulk and Smart-seq
data (Fig. 2D; Supplemental Fig. S4B). Furthermore, we obtained
much more consistent TE-family enrichment results between
bulk and scRNA-seq and were able to identify the expression of
ERV elements at single cells (Fig. 2E,F).

Although Smart-seq-based protocols generate deeper se-
quencing depth with reads covering the entire transcript, other
popular scRNA-seq strategies such as 10x Genomics Chromium,
Drop-seq, and SCRB-seq produce shallow sequencing with reads
biased toward the 5′ or 3′ end of the RNA (Ramsköld et al. 2012;
Soumillon et al. 2014; Macosko et al. 2015; Zheng et al. 2017).
Counting reads at individual TEs using data with 5′ or 3′ signal en-
richment will only capture TEs that are located at either end of the
transcripts, thus biasing our understanding about TE expression.
We reason that our approach can help to overcome this limitation
by using the annotation of full-length TE transcripts.

To support our reasoning, we analyzed the data set froma pre-
viously publishedmESC differentiation study, in which single-cell
Smart-seq2, single-cell SCRB-seq, and bulk RNA processed with
SCRB-seq protocol were performed (Semrau et al. 2017). Using in-
dividual TEs as reference, we observed a severe discordance of TE
expression between SCRB-seq and Smart-seq2, likely resulting
from differences in signal distribution along the transcripts
(Supplemental Fig. S6A). Conversely, using full-length TE tran-
scripts as reference led to significantly improved signal correla-
tions (Supplemental Fig. S6B). Moreover, quantifying TE
expression at transcript level allowed us to recover the enrichment
of ERVs from all data sets, whereas only Smart-seq2 showed ERV
enrichments when counting at individual TEs (Supplemental
Fig. S6C).

Taken together, these results suggest that our analysis ap-
proach is applicable not only to scRNA-seq data with a high num-
ber of reads covering the entire transcript body, but also to other
popular scRNA-seq strategies that feature shallow sequencing
depth at the 3′ end of the transcripts.

Finally, we examined whether the incorporation of an expec-
tation–maximization (EM) algorithmwill improve the accuracy of
expression quantification at repetitive regions.We simulated RNA-
seq reads at TE transcripts with a wide range of coverages and
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Genome Research 91
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.265173.120/-/DC1


quantified the observed signal by redistributing multiple mapped
readswith an EMalgorithmusing the amount of uniquelymapped
reads as priors. In line with previous reports (Jin et al. 2015; Yang
et al. 2019), we found that redistributing multiple mapped reads
using the EM algorithm outperforms even-distribution, resulting
in a higher percentage of observed reads matching the ground
truth (Supplemental Fig. S7). Based on these observations, we im-

plemented this EM-based algorithm in the expression quantifica-
tion step.

Dynamic TE expression in preimplantation embryos

Encouraged by the results from the mESC data, we decided to ap-
ply our strategy to a more complex biological system: mouse

A B C

D

F

E

RefGeneRefGene

Figure 2. Transcript assembly improves scRNA-seq TE expression analysis. Data sets used in this figure are summarized in Supplemental Table S1. (A)
Flowchart of scRNA-seq TE quantification pipeline. In short, transcript assembly was performed with bulk RNA-seq data, and transcripts that overlap
with TEs but not protein-coding exons were used for expression quantification in scRNA-seq data. (B) Transcript assembly using three mESC bulk RNA-
seq data (Wang laboratory) yielded 692 TE transcripts. Among these TE transcripts, 179 overlap with ncRNAs annotated by RefSeq. (C ) FANTOM5
CAGE peaks, ATAC-seq signals, and CpG methylation signals at the promoter region of TE transcripts with RPKM≥1 (reads per kilobase million). (D)
Correlation between mESC bulk RNA-seq and averaged Smart-seq (Teichmann laboratory) signals at TE transcripts. Color scale represents the number
of candidates. (E) TE-family enrichment analysis using expressed TE transcripts. Enrichment of ERV elements was observed with both bulk RNA-seq and
Smart-seq samples. (F ) Examples of TE transcript. Assembled TE transcripts, uniquely mapped reads of mESC bulk RNA-seq, Smart-seq, merged Smart-
seq, ATAC-seq, and CpG methylation were included. (Left) A TE transcript that initiates from RLTR16b_MM. This TE transcript overlaps Platr14, a long
ncRNA known to impact the mESC differentiation-associated genes. (Right) A TE transcript that initiates from RLTRETN_Mm. This transcript is largely com-
posed of TEs and reflect the transcription unit of ERV.
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embryogenesis. The dynamic regulation of the epigenome during
development not only fine-tunes protein-coding genes, but also
allows specific TE expression at different developmental stages
(Rowe and Trono 2011; Gifford et al. 2013; Gerdes et al. 2016;
Rodriguez-Terrones and Torres-Padilla 2018; Deniz et al. 2019).
Several recent studies used scRNA-seq to profile the transcription
landscape of mouse embryos from zygote to early organogenesis,
providing valuable resources for dissecting the dynamic expres-
sion of TEs.

To facilitate TE expression quantification, we performed tran-
script assembly using 37 bulk RNA-seq samples (Supplemental
Table S1) that cover a range of tissues and developmental stages
and obtained 5299 TE transcripts (Fig. 3A,B; Supplemental Fig.
S8A; Supplemental Table S2). Sevenhundred seventy of these tran-
scripts overlap with known ncRNAs annotated by RefSeq (Fig. 3A).
Comparedwith assembled protein-coding transcripts, which show
similar length and exonnumber as RefSeq protein-coding gene an-
notations, assembled TE transcripts are shorter in length and pos-
sess fewer exons, a pattern consistent with annotated ncRNAs
(Supplemental Fig. S8B,C).

Next, we analyzed three publicly available data sets in which
the transcription landscape of mouse embryos from zygote to gas-
trulation was profiled using Smart-seq derived protocols (Deng
et al. 2014; Mohammed et al. 2017; Cheng et al. 2019). In these
data sets, a significant number of reads overlap with TEs, and
∼3% of the total reads are mapped to TE transcripts
(Supplemental Fig. S9A,B). After data integration and dimension
reduction using the top 4000 variable features, we observed clear
clustering patterns that were driven by cell type and developmen-
tal stage (Fig. 3C). Among the top 4000 variable features, 410 are TE
transcripts, suggesting that the expression of TE transcripts could
be cell type– or developmental stage–specific (Supplemental Fig.
S9C–E). Indeed, we were able to observe TE transcript expression
with strong tissue or stage specificity (Fig. 3D).

To further investigate the dynamics of TE transcription, we
focused on preimplantation stages, in which high TE expression
was documented. Because of the limited number of cells, scRNA-
seq signals of each TE transcript across all the cells with the same
developmental stage were averaged to reduce noise. Grouping TE
transcripts based on their expression patterns across preimplanta-
tion stages resulted in the following six clusters (Fig. 3E): TE tran-
scripts that are maternally deposited (cluster 1), TE transcripts that
are up-regulated duringminor andmajor waves of zygotic genome
activation (clusters 2 and 3), TE transcripts that are up-regulated
during zygotic genome activation and keep accumulating until
the blastocyst stage (cluster 4), and TE transcripts that are up-regu-
lated in the early- and mid-blastocyst stage (clusters 5 and 6).

Wenext performedTE enrichment analysis and observed that
TE transcripts with distinct expression profiles tend to be enriched
for different TE subfamilies (Fig. 3F). For instance, IAP elements are
highly enriched in cluster 4, consistent with a previous report that
IAP expression initiates from the two-cell stage, accumulates, and
then disappears at the blastocyst stage (Pikó et al. 1984;
Poznanski and Calarco 1991; Svoboda et al. 2004). We also ob-
served the enrichment of ERVL and ERVL-MaLR members in clus-
ter 2, in linewith previous studies suggesting that ERVL and ERVL-
MaLRmembers are highly expressed during the two-cell stage and
constitute ∼5% of the total transcripts (Kigami et al. 2003; Peaston
et al. 2004; Svoboda et al. 2004). MTA_Mm-int and ORR1B1-int
from the ERVL-MaLR family were also enriched in cluster 6, show-
ing high expression during E4 blastocyst stage, an intriguing obser-
vation that is yet to be validated. Moreover, transcription factor

binding site analysis using a 500-bp window upstream of TE tran-
scripts identified footprints of transcription factors that were
shown to be involved in mouse early embryogenesis such as
Krupple-like factors, GABPA, and ELF5 (Ristevski et al. 2004;
Donnison et al. 2005; Zhou et al. 2005; Bialkowska et al. 2017), sug-
gesting shared regulatorynetworks betweenTE transcripts andpro-
tein-coding genes (Supplemental Fig. S10).

Tissue-specific TE expression during mouse gastrulation and early

organogenesis

Comparing to preimplantation stages, TE expression during gastru-
lation and organogenesis is much less well studied, and a compre-
hensive catalog of tissue-specific TE transcripts is lacking. To
address this, we analyzed a 10x scRNA-seq data set in which more
than 100,000 cells were assayed using mouse E6.5 to E8.5 embryos
(Pijuan-Sala et al. 2019). Comparing with mESC or mouse preim-
plantation data analyzed in previous sections, this E6.5 to E8.5
10x data contains considerably fewer TE overlapping reads, with
∼1% of the UMI mapping to TE transcripts (Supplemental Fig.
S11A,B). Although TE transcripts are in general lowly expressed
and lack the high standardized variance observed at some protein-
coding genes, they still constitute a small proportion of the top
1000 variable features that can be used to recapitulate the clustering
pattern in the original study (Fig. 4A,B; Supplemental Fig. S11C).
Furthermore, we were able to observe TE expression patterns that
are enriched in small clusters of cells, suggesting that TE transcripts
display considerable tissue specificity during these stages (Fig. 4C).

Next, we systematically examined the dynamic TE expression
and obtained 146 TE transcripts that show substantial tissue en-
richment (Supplemental Table S3). Hierarchical clustering analysis
using the expression of these TE transcripts showed that tissues
with similar origins are grouped together (Fig. 4D). For instance,
tissues within the hematoendothelial lineage including hema-
toendothelial progenitors, endothelium, blood progenitors, and
erythroids are adjacent to each other, and tissues linked to the neu-
ronal lineage including neuromesodermal progenitor, spinal cord,
forebrain/midbrain/hindbrain, and neural crest are clustered
together.

Although 10x reads were enriched at the 3′ end of the tran-
script, all TEs located along the transcripts were captured using
our assembled full-length TE transcripts (Fig. 4E). Among the 146
TE transcripts, 84 initiated fromTEorhave >50%of their exonic se-
quences contributed by TEs (Fig. 4D; Supplemental Fig. S11D).
Overlapping these 146 TE transcripts with annotated ncRNAs re-
vealed that 51 have been annotated by RefSeq. Although these
known ncRNAs tend to contain a lower percentage of TEs, tran-
scripts that are almost exclusively composed of TEs are largely un-
annotated, demonstrating the value of our approach in capturing
transcripts that originated from highly repetitive regions.
Moreover, we observed that TE transcripts enriched in different tis-
sues display distinct sequence composition. For instance, TE tran-
scripts enriched in extraembryonic ectoderm, extraembryonic
endoderm, parietal endoderm, and visceral endoderm are almost
exclusively composed of LTRs, although we did find that several
highly expressed transcripts in extraembryonic ectoderm are de-
rived from LINEs (Supplemental Fig. S12).

Discussion

Current genome-wide TE expression quantification tools often
count signal at individual TEs or TE subfamilies/families. This
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Figure 3. Dynamic TE expression in mouse preimplantation embryos. (A) Using 37 bulk RNA-seq samples, 5299 TE transcripts were constructed. Of
these, 770 TE transcripts overlap with ncRNAs annotated by RefSeq. (B) More than half of all the assembled TE transcripts either initiate from TEs or
have >50% of their exons composed of TEs. (C, upper) UMAP of scRNA-seq data from mouse zygote to E6.5 embryos. Cells were colored based on devel-
opmental stages. (Lower) Expression of cell type–specific markers. (D) Examples of developmental stage– and tissue-specific TE transcripts. (E) TE transcripts
were grouped into six clusters based on their expression pattern across preimplantation stages. (F) TE subfamily enrichment analysis using TE transcripts
within each of the six clusters.
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Figure 4. Tissue-specific TE expression duringmouse gastrulation and early organogenesis. (A, upper left) Fewer uniquemolecular identifiers (UMIs) were
mapped to TE transcripts than to protein-coding genes. (Upper right) The averaged expression level of TE transcripts across all the cells was lower compared
to protein-coding genes. (Lower left) TE transcripts lack the extreme standardized variance observed at protein-coding genes. (Lower right) TE transcripts
account for 73 of the top 1000 variable features. (B) UMAP of scRNA-seq data. Cells were colored based on tissue information provided by the original
study. (C) Examples of tissue-specific TE transcripts. (D) Normalized expression pattern (center, heatmap) of 146 TE transcripts (columns) across 37 tissues
(rows). Transcript length, annotation status (top, bar plot), and TE composition (bottom, bar plot) were shown for each TE transcript. (E) Genome browser
view of two TE transcripts with strong tissue enrichment. Assembled TE transcripts, uniquely mapped reads of merged bulk RNA-seq (from 37 samples that
were used for transcript assembly), and scRNA-seq signal for selected tissues were shown. (Left) A TE transcript that is initiated from an L2a element, the
second exon of this transcript is composed of non-TE sequences. (Right) A TE transcript that is almost exclusively composed of ERV sequences.
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strategy has been widely adopted in bulk RNA-seq and inspired
similar analyses with scRNA-seq data. However, we caution that
compared with bulk RNA-seq, a higher percentage of scRNA-seq
reads are mapped to TEs, making it challenging to identify bona
fide TE expression. Moreover, quantifying signal at individual
TEs or TE subfamilies/families leads to the false impression that
transcripts originated from repetitive regions aremostly composed
of a single TE or TEs from the same subfamilies/families. Although
this is true for some well-studied examples such as full-length
ERVs, in most other cases, TEs only contribute to fragments of
the full-length transcript, and TEs from different families can be
incorporated into the same transcript.

A major difference between the expression quantification of
protein-coding genes and TEs is that the transcript structures of
protein-coding genes are usually well annotated and readily avail-
able. Gene annotation guides expression analysis toward genomic
regions with true signal and facilitates accurate expression quanti-
fication with scRNA-seq data. In this study, we showed that tran-
scripts constructed from bulk RNA-seq can serve as references for
TE-containing ncRNAs and improve the accuracy of TE expression
analysis in scRNA-seq data generated across multiple sequencing
platforms. In comparison to individual TEs or TE subfamilies/
families, TE transcripts more accurately reflect the natural tran-
scription units. These transcripts contain not only previously an-
notated TE transcription units, but also novel ncRNAs that are
partially composed of TEs. Of the 5299 TE transcripts that we as-
sembled, 98 closely resemble the well-studied transcription units
of ERVs. These transcripts have >80% of their exonic sequences
contributed by TEs. They start from 5′ LTR, transcribe through in-
ternal sequences, and end at 3′ LTR. In addition, we also obtained
104 TE transcripts that initiate from TEs and are within 100 bp
away from FANTOM5 CAGE peaks (The FANTOM Consortium
and the RIKENPMI andCLST (DGT) 2014). Of these, 84 transcripts
were not previously annotated, highlighting the value of our ap-
proach in identifying TEs that potentially function as promoters.

Using our analytical pipeline, we dissected the expression dy-
namics of TE transcripts during mouse early embryogenesis and
identified 146 TE-containing ncRNAs with strong tissue specific-
ity. A close examination of these candidates revealed intricate in-
teraction between TE transcripts and protein-coding genes. For
instance, we were able to identify a ChIP-seq peak of regulatory
factor X, 3 (RFX3) at the promoter region of the TE transcript TE-
tx-3856 (Supplemental Fig. S13A). RFX3 is a transcription factor es-
sential for brain development (Baas et al. 2006; Benadiba et al.
2012; Magnani et al. 2015). Our observation that TE-tx-3856 is
highly expressed in mouse neuronal tissues suggests that this TE-
containing ncRNA is a potential downstream target of RFX3. In an-
other example, the TE transcript TE-tx-3715 overlaps with
sonic hedgehog (Shh), a secreted signaling molecule produced by
the notochord (Placzek 1995; McMahon et al. 2003). The expres-
sion pattern of TE-tx-3715 strongly resembles that of Shh, indicat-
ing that they are under the control of a common regulatory circuit
(Supplemental Fig. S13B). In addition, we also captured TE tran-
scripts TE-tx-3178 and TE-tx-2841, both of which are strongly
expressed in the epiblast (Supplemental Fig. S13C). Both
candidates initiate from TEs and were previously annotated as plu-
ripotent associated transcripts (Platr10 and Platr14) (Bergmann
et al. 2015). Earlier reports suggested that Platr10 transcript physi-
cally interacts with the promoter of pluripotent transcription fac-
tor Sox2, whereas the depletion of Platr14 alters the expression of
differentiation- and development-associated genes in stem cells
(Bergmann et al. 2015; Zhang et al. 2019). Our observation that

Platr10 and Platr14 are expressed in the epiblast suggests that
they may play similar roles during mouse early embryogenesis.
Taken together, we dissected the dynamic TE expression during
mouse early development and provided a curated list of promising
TE candidates for future functional studies.

In summary, we established an effective TE quantification
pipeline for scRNA-seq data and illustrated the dynamic TE expres-
sion during mouse early embryogenesis. In contrast to commonly
used bulk RNA-seq tools that evaluate reads at single TEs or TE sub-
families/families, our pipeline emphasizes the importance of full-
length TE transcript structures in scRNA-seq TE quantification.
Furthermore, our work provides an initial set of TE-containing
long ncRNAs duringmouse early development, laying the founda-
tion for future work on constructing a more comprehensive TE
transcript database across distinct tissue types and developmental
stages and encompasses different types of TE transcripts, such as
small RNAs and nonpolyadenylated long ncRNAs (McCue and
Slotkin 2012; Dumesic and Madhani 2014; Lanciano and
Cristofari 2020). Additionally, exploring effective techniques for
quantifying TE-derived intronic reads (Chung et al. 2019; Kong
et al. 2019; Navarro et al. 2019), as well as developing isoform-spe-
cific quantification tools for TE protein-coding gene chimeras
(Wang et al. 2016; Pinson et al. 2018; Attig et al. 2019; Jang et al.
2019) will further expand the TE analysis toolkit for scRNA-seq
and greatly advance our knowledge on the expression and the
function of TE transcripts.

Methods

Data processing of bulk RNA-seq data sets

Raw sequencing files were downloaded from NCBI Sequence Read
Archive and EMBL-EBI ArrayExpress (Supplemental Table S1) and
aligned to the mouse (mm10) or human (hg38) genomes using
STAR (Dobin et al. 2013). To retain reads derived from repetitive re-
gions, “‐‐outFilterMultimapNmax” was set to 500. To facilitate
downstream transcript assembly “‐‐outSAMattributes” was set to
“NH HI NM MD XS AS.” After alignment, signal quantification
at regions of interests was performed using featureCounts. See
“Read assignments” for details.

Data processing of scRNA-seq data sets

scRNA-seq data generated with Smart-seq-derived protocols were
processed and quantified using the same procedures as bulk
RNA-seq data. scRNA-seq data generated with the other
protocols were processed using zUMIs (Parekh et al. 2018) with
the following modifications: (1) To retain reads derived from
repetitive regions, “‐‐outFilterMultimapNmax”was set to 500 dur-
ing STAR alignment. (2) To quantify reads that were mapped
to multiple locations or features, “allowMultiOverlap” and
“countMultiMappingReads” were set to TRUE for function
“.runFeatureCount.” BAM files with cell barcode, UMI, and the
name of overlapping features were reported. (3) A customized R
script (R Core Team 2017) was used to process the BAM file gener-
ated in step 2. See “Read assignments” for details.

Constructing TE transcripts

Transcript assembly of each RNA-seq sample was performed using
StringTie2 (Kovaka et al. 2019). “-j 2 -s 5 -f 0.05 -c 2” was used to
improve the specificity of the assembly results. To generate the
master reference file, assembled transcripts from multiple RNA-
seq samples were merged using TACO with default parameters
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(Niknafs et al. 2017). Transcripts shorter than 200 nt were exclud-
ed. Transcripts whose exons that overlapped with TEs but not the
exons of RefSeq protein-coding geneswere named as TE transcripts
and used for TE expression quantification.

Read assignments

FeatureCounts (Liao et al. 2014) was used to obtain the features to
which each of the reads wasmapped. BAM files with read informa-
tion (read name, UMI, cell barcode) and overlapping features were
reported. An EM algorithm was implemented to redistribute reads
that mapped to multiple features. During the initial round of as-
signment, the n numbers of features without uniquely mapped
reads first receive fractions of reads inversely proportional to the
total number of features (N) to which each read is mapped. The re-
mainder (1−n/N) read is then assigned to the remaining features
proportionally to the amount of uniquely mapped reads after nor-
malizing for feature length. During the subsequent rounds of as-
signment, reads mapped to multiple locations are reassigned to
all the features proportionally to the amount of reads each feature
received in the previous iteration after normalizing for feature
length. The algorithm stops when the maximum read change
per feature is smaller than 1 or the number of iterations reaches
50, whichever comes first.

RNA-seq simulation

To evaluate the performance of the EM algorithm, we simulated
RNA-seq reads using Polyester (Frazee et al. 2015). One hundred
base pair paired-end stranded RNA-seq reads were simulated using
the 692 TE transcripts assembled frommESCdata sets as templates.
These simulated reads have amean fragment length of 250 bp and
sequencing error rate of 0.5%. TE transcripts were simulated to
have a mean read coverage of 5× with expression deviation from
the mean between twofold and 100-fold. We performed eight
rounds of simulation with four independent expression designs
(two replicates for each design). To evaluate the performance of
the EM algorithm, we aligned the simulated reads to themm10 ge-
nome and calculated the amount of observed reads at each TE
transcript.

Mouse early embryogenesis scRNA-seq data set analysis

Reads of the scRNA-seq data sets frommouse zygote to gastrulation
(Smart-seq-derived protocols) were quantified at protein-coding
genes (RefSeq annotation, n=20,779) and TE transcripts (assem-
bled from bulk RNA-seq, n= 5299). Only cells that had 200–
18,000 features and <10% mitochondria reads were kept. To re-
move batch effect and visualize all three data sets in the same
UMAP, data integration was performed using Seurat with the top
4000 variable features (Stuart et al. 2019). Cell typewas determined
using the stage information provided by the original studies, the
expression patterns of cell type–specific markers, and Seurat clus-
tering results.

UMIs of the 10x scRNA-seq data set frommouse gastrulation
to early organogenesis were quantified at protein-coding genes
(RefSeq annotation, n=20,779) and TE transcripts (assembled
from bulk RNA-seq, n=5299). Sample_25 was removed owing to
higher batch effect. Only cells that have more than 200 features
and were annotated by the original study were kept. Cell type in-
formation provided by the original study was used for identifying
tissue-specific markers. The 146 TE transcripts with strong tissue
enrichment were obtained by combining and filtering Seurat-de-
fined markers and customized markers. Seurat-defined markers
were obtained by running “FindAllMarkers” with “only.pos =T,
min.pct = 0.10” and selecting for TE transcripts with adjusted P-

value< 0.05. Customized markers were obtained by identifying
TE transcripts with at least 1 UMI in at least 10% of the cells in
any tissue and selecting candidates that were expressed in, at
most, three tissues. After combining Seurat-defined markers and
customized markers, manual curation was performed to remove
candidates that were highly expressed in a large number of tissues
or with suboptimal transcript structures.

TE transcript clustering in mouse preimplantation stages

Because of the limited number of cells, scRNA-seq signals of each
TE transcript across all the cells with the same developmental stage
were averaged to reduce noise. TE transcripts were then grouped
into six clusters using soft clustering (R package TCseq) based on
their expression patterns across preimplantation stages.

TE subfamily/family enrichment analysis

For each TE-family, its enrichmentwas calculated using the follow-
ing equation: The observed frequency of TEs belonging to this
family in all candidates divided by the expected frequency of TEs
belonging to this family in genomic regions that do not overlap
with protein-coding genes. The significance for the observed fre-
quency was calculated with Fisher’s exact test and corrected for
multiple testing with the Benjamini–Hochberg method. Only TE
families with more than 20 members in the candidates and more
than 100members in the backgroundwere included in the figures.
TE subfamily enrichment analysis was performed similarly. Only
TE subfamilies that were significantly enriched in the candidates
had more than 10 members in the candidates and more than
100 members in the background and were plotted.

Other statistical analysis and figure generation

All the statistical analyses and associated figures were done using R
(R Core Team 2017). Genome browser view was generated with
WashU epigenome browser (https://epigenomegateway.wustl
.edu/). A browser session showing the expression patterns of TE
transcripts during mouse gastrulation and early organogenesis is
available (https://epigenomegateway.wustl.edu/browser/?session
File=https://raw.githubusercontent.com/wanqingshao/TE_expres
sion_in_scRNAseq/master/datahub/Gottgen_eg-session‐‐da9eced
0-e71d-11ea-be04-31bc80338b33.json).

Publicly available data sets used in this study

Descriptions and accession IDs of all the data sets used in thisman-
uscript are provided in Supplemental Table S1.

Software availability

A detailed description of our analysis framework and customized
scripts used for this work are publicly available at GitHub (https
://github.com/wanqingshao/TE_expression_in_scRNAseq) and as
Supplemental Code.
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