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A framework for large-scale metabolome drug
profiling links coenzyme A metabolism to the
toxicity of anti-cancer drug dichloroacetate

Sébastien Dubuis', Karin Ortmayr® ' & Mattia Zampieri®

Metabolic profiling of cell line collections has become an invaluable tool to study disease
etiology, drug modes of action and to select personalized treatments. However, large-scale
in vitro dynamic metabolic profiling is limited by time-consuming sampling and complex
measurement procedures. By adapting a mass spectrometry-based metabolomics workflow
for high-throughput profiling of diverse adherent mammalian cells, we establish a framework
for the rapid measurement and analysis of drug-induced dynamic changes in intracellular
metabolites. This methodology is scalable to large compound libraries and is here applied to
study the mechanism underlying the toxic effect of dichloroacetate in ovarian cancer cell
lines. System-level analysis of the metabolic responses revealed a key and unexpected role of
CoA biosynthesis in dichloroacetate toxicity and the more general importance of CoA
homeostasis across diverse human cell lines. The herein-proposed strategy for high-content
drug metabolic profiling is complementary to other molecular profiling techniques, opening
new scientific and drug-discovery opportunities.
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mechanistic information on the primary targets and

downstream secondary effects of selected lead com-
pounds. Large-scale approaches enabling the characterization
of cell responses to external perturbations have therefore
turned into highly relevant technologies in drug discovery and
development!~*. Among these approaches, the profiling of drug-
induced changes in model organisms at the mRNA and protein
level>® has provided invaluable insights into drug modes of action
(MoA)7-?, drug-drug interaction mechanisms'® and drug
repurposing>!!. Conceptually similar to transcriptomics and
proteomics platforms, metabolomics provides an orthogonal
multi-parametric readout aiming at quantifying the full spectrum
of small molecules in the cell, the so-called metabolome. Applied
to drug discovery research, metabolome profiling of drug-
perturbed cell lines in vitro was key in revealing drug modes of
action and in identifying potential weaknesses in cellular drug
response, as well as genetic polymorphisms associated with drug
susceptibility2-1°,

Metabolomics-based approaches have a notable advantage over
existing functional genomics platforms in that they enable an
unparalleled throughput?®2l. However, despite significant
advancements in high-resolution mass-spectrometry (MS) pro-
filing of cellular samples?!~23, efficient experimental and com-
putational workflows for large-scale dynamic metabolome
profiling in mammalian cells in vitro are lagging behind. Meta-
bolome screenings that adopt classical metabolomics techni-
ques?425 are often hampered by a limited throughput, laborious
sample preparation and the lack of rigorous, yet simple, data
analysis pipelines to interpret dynamic metabolome profiles. To
address these limitations, our group developed a high-throughput
and robust method to perform large-scale metabolic profiling in
adherent mammalian cells at steady state?®, using a 96-well plate
cultivation format combined with time-lapse microscopy and
flow-injection time-of-flight mass spectrometry?> (TOFMS).
Here, we extend this methodology to allow rapid sample collec-
tion and the analysis of dynamic changes in the intracellular
metabolome of diverse mammalian cell lines upon external per-
turbations. We applied this methodology to profile the diversity
of metabolic adaptive responses in five ovarian cancer cell lines to
the potential anti-cancer drug dichloroacetate (DCA), and shed
light on its mode of action.

The presented framework for in vitro large-scale dynamic
metabolomics of perturbed adherent mammalian cell lines is
complementary to and scales with high-throughput growth-based
phenotypic screens of large compound libraries. Moreover, we
provide a proof of principle that our approach can generate tes-
table predictions to elucidate the origin of drug response varia-
bility and drug modes of action. Such a platform may
complement and improve the translational value of classical
in vitro phenotype-based drug screenings®!?7, and provide
insights into the mechanisms of action of small molecules facil-
itating early stages of drug discovery?8-39,

Q major bottleneck in drug discovery pipelines is the lack of

Results

High-throughput dynamic metabolome profiling of drug
action. Large-scale metabolic profiling of transient drug respon-
ses among diverse cell types necessitates new methodologies
enabling parallelized and rapid sample collection, high-
throughput metabolome profiling and an effective normal-
ization approach for metabolomics data. Here, we developed a
combined experimental-computational approach enabling the
rapid profiling of drug-induced dynamic changes in the baseline
metabolic profile of diverse cell lines in parallel. This approach
was applied here to study the metabolic responses of five ovarian

cancer cell lines to DCA, an activator of pyruvate dehydrogenase
(PDH).

The five ovarian cell lines IGROV1, OVCAR3, OVCAR4,
OVCARS, and SKOV3 were grown in parallel in 96-well plates
for 4 days. Cells were exposed to the corresponding drug dose
yielding 50% growth inhibition (GIs,Table 1) and metabolomics
samples were collected every 24h following the extraction
protocol described in ref. 2° and summarized in Supplementary
Figure 1. In the present study, nine replicate plates were prepared:
one plate served to continuously monitor cell growth via cell
confluence by time-lapse microscopy using an automated multi-
well plate reader (Fig. 1), while the remaining plates were used for
metabolome extraction immediately before, and at 24, 48, 72 and
96 h after drug exposure (Supplementary Figure 1). At each
sampling time point, one plate was used to generate cell extract
samples, while the second plate served to determine extracted cell
numbers per well using bright-field microscopy?®. Cell extract
samples were profiled by flow injection analysis (FIA) and
TOFMS (FIA-TOFMS) as described previously??, enabling high-
throughput analysis of large sample collections. The detected ions
were annotated based purely on the accurate mass, and by
assuming that deprotonation is the most frequent and reliable
form of ionization in negative mode. By matching measured m/z
against calculated monoisotopic masses of metabolites listed in
the Human Metabolome Database (HMDB3!) and in the
genome-scale reconstruction of human metabolism (Recon 232),
we putatively annotated 2482 ions (Supplementary Data 1).
Importantly, in absence of prior chromatographic separation,
FIA-TOFMS cannot distinguish isobaric metabolites, as well as
in-source fragments that are detected at the identical exact mass.

To estimate time-dependent (e.g. drug-induced) changes in
intracellular metabolite abundances from non-targeted metabo-
lomics data, we here developed a regression-based analysis
approach to compare transient changes in the metabolome of
drug-treated cells against steady-state unperturbed cell metabolic
profiles (Supplementary Figure 2) determined following the
approach described in ref. 2° and here briefly summarized.

By definition, the intracellular concentrations of metabolites at
steady state are constant in time. Hence, in samples from
unperturbed growing cells for each metabolite i in cell line j,
measured intensities, I;; scale proportionally with the metabolite
abundance in the cell [m;], times the extracted cell number (N,
derived from bright-field microscopy?®, see Supplementary
Figure 3):

- [m)]; (1)

Hence, we can model the measured metabolite intensities in a
given cell line as follows:

I

]‘i:“j‘i'Nc_F)Bi’ (2)

where f; is an offset value corresponding to the experimental MS
background signal, and «;; represents the abundance of

Table 1 Drug concentrations used in metabolomics
experiments

Cell line Oxamate dose (mM) Dichloroacetate dose (mM)
IGROV1 13 1

OVCAR3 40 12

OVCAR4 18 25

OVCARS8 6.7 25

SKOV3 31 25

The given concentrations correspond to the effective concentration in the medium
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Fig. 1 Growth of ovarian cancer cell lines upon drug perturbation. Cell confluence measured by time-lapse microscopy during growth of five ovarian cancer
cell lines in RPMI-1640 medium (i.e. untreated condition in gray), and upon dichloroacetate (orange) and oxamate (green) treatments (Supplementary

Figure 11). Cell confluence is reported as mean = SD across three replicates

metabolite i per cell. Notably, a;; contains an unknown scaling
factor that is reflective of the fundamental proportionality
between metabolite concentration and MS signal intensity. For
each metabolite, we use a multiple regression scheme to fit the
linear model and regress the cell line-specific « values and the
offset 8 across all cell lines at once (Supplementary Figure 4). To
assess the reliability of the parameter estimates, each fitted
parameter is associated with a p-value (F statistic with the
hypothesis that the coefficient is equal to zero). It is worth noting
that this procedure allows systematically filtering out annotated
ions which are unlikely to originate from extracted cells because
the measured ion intensity does not exhibit any dependency with
the cell number, as well as ions for which the measured intensities
are below the detection limit, and the estimated cell line-specific «
values are below or close to 0. Out of the 2482 ions annotated in
the ovarian cancer cell dataset, we obtained relevant parameter
estimates for 1546 putatively annotated ions, i.e. «>0 and p<
0.001 in at least one cell line, with a median coefficient of
variation of 17.4% (Supplementary Figure 5).

To evaluate dynamic metabolite changes upon an external
perturbation, we calculate time-dependent fold-change values
for each metabolite based on the parametrized model derived
from steady-state unperturbed metabolome profiles. For each
metabolite i and time point ¢ after exposure to treatment D, we
estimate the deviation of metabolite abundance from the
unperturbed steady-state condition as follows:

D,j

. i
FC/ —logz( —

‘X]i N]t +ﬁz> (3)

where Ifi’] is the intensity measured for metabolite i at time ¢
after exposure of cell line j to compound D. ItDi"] is compared to
the corresponding theoretical steady-state unperturbed meta-
bolite intensity (denominator in Eq. (3)) which is calculated
from the previously estimated o and S parameters and the
extracted cell number at the time of sampling, N, derived from
bright-field microscopy images (Supplementary Figures 1 and
3). For each time point, the difference between measured and
expected metabolite intensities is expressed in log, fold-
changes, and significance is quantified by means of p-values
from t-test analysis. In the following, our metabolome profiling
pipeline was applied to investigate the metabolic response to
the small-molecule agent DCA (Fig. 2a and b), in the five
ovarian cancer cell lines IGROV1, OVCAR3, OVCAR4,
OVCARS, and SKOV3.

Interplay of DCA MoA and coenzyme A (CoA) metabolism.
DCA is a mitochondria-targeting small molecule that activates
PDH by inhibiting pyruvate dehydrogenase kinase (PDK)33. By
blocking PDH phosphorylation, DCA favors increased flux of
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pyruvate into mitochondria®*. To date, the exact mechanism by
which DCA is toxic to cancer cells has remained unclear?.
Recent studies suggested that the activation of PDH diverts
metabolism from fermentative glycolysis to oxidative phosphor-
ylation, leading to a loss in mitochondrial membrane potential
and a reopening of voltage-sensitive and redox-sensitive mito-
chondrial transition pores, which ultimately triggers an apoptotic
cascade in cancer cells®3.

Despite large differences in doubling times (Supplementary
Figure 6), degrees of invasiveness*® and metabolic phenotypes®’
(Supplementary Figure 7), the five selected ovarian cancer lines
exhibited common metabolic adaptive changes to DCA exposure.
In our dynamic metabolome data, we observed a consistent
reduction in pyruvate levels across all cell lines upon DCA
treatment (Fig. 2d), and a reduction in lactate secretion
(Supplementary Figure 8). Strikingly, the most significant
metabolic change (p-value 5.7e—43) across all five cell lines was
a marked depletion of intracellular pantothenate (Figs. 2a and
3a), which was additionally confirmed by quantitative LC-MS/
MS measurements (Supplementary Figure 9). While pyruvate
depletion and reduced lactate secretion are likely direct
consequences of PDH activation, a depletion of pantothenate
and a concomitant increase in the total pools of CoA (Fig. 3a and
Supplementary Figure 10) hints at an unexpected activation of de
novo CoA biosynthesis.

Pantothenate is the primary precursor required for CoA
biosynthesis. CoA in turn regulates its own biosynthesis via
allosteric inhibition of the first enzymatic step in the pathway,
catalyzed by mitochondrial pantothenate kinase 2 (PANK2)3839
(Fig. 3a, d). While human PANK2 locates in the inner
mitochondrial membrane?4!, the remaining CoA biosynthetic
steps take place in the cytoplasm. Notably, CoA pools in the
different cellular compartments are tightly regulated, such that
typical CoA concentrations are 1-2 orders of magnitude higher in
mitochondria (~2-5mM) than in the mitochondrial intermem-
brane space and the cytosol (~0.02-0.14 mM)*243, We hypothe-
size that a hyper-activation of PDH in the mitochondrial matrix
could entail a depletion of CoA in the immediate surroundings of
PANK2, hence lifting allosteric inhibition of de novo CoA
biosynthesis. In such a scenario, our observations are consistent
with an attempt of DCA-treated cells to re-equilibrate CoA levels
across compartments by increasing CoA biosynthesis (Fig. 3a).
According to this model, the resulting increased pantothenate
phosphorylation would explain the observed depletion of
intracellular pantothenate, and the parallel accumulation of total
CoA in the cells* (Fig. 3a). Moreover, we observed the largest
amount of intracellular pantothenate at steady state (Fig. 3a) in
the two cell lines with the highest sensitivity (i.e. lowest GIs() to
DCA, OVCAR3 and IGROVI1 (Fig. 3b and Supplementary
Figures 11 and 16), supporting a functional association of CoA
metabolism with the MoA of DCA.
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Fig. 2 Analysis of transient dynamic metabolic changes upon external perturbation. a and b Schematic representation of the enzymatic reactions targeted
by oxamate and dichloroacetate, and volcano plots summarizing overall metabolome changes. Each dot corresponds to a metabolite. The negative logg of
the product between minimum p-values over the time course across the five cell lines is plotted against the median of maximum fold-changes. Metabolites
highlighted in red have an absolute log, fold-change >1 and a p-value <1e—10. ¢ KEGG pathway enrichment of metabolites consistently affected by
dichloroacetate and oxamate treatments, highlighted in panel b. Only enriched pathways with a significance corrected for multiple tests g-value (Storey) <
0.001 are considered. d Time-dependent fold changes (red line) of lactate upon oxamate treatment, and pyruvate upon oxamate and dichloroacetate
treatments. Data are the mean £ SD of three replicates. The profiles of all other detected metabolites are shown in gray

To test our hypothesis, we selected IGROV1 and SKOV3
cells, which exhibit different steady-state levels of pantothenate
and a distinctly different sensitivity to DCA (Fig. 3b). We
monitored the growth of IGROV1 and SKOV3 cells upon DCA
treatment, with and without supplementing the medium with
2.1 uM pantothenate or 100 uM CoA (Fig. 3c). We found that
increasing extracellular pantothenate concentration strongly
aggravated the toxicity of DCA in both cell lines (Fig. 3¢), while
being neutral for cells in normal RPMI-1640 medium (contain-
ing 0.25 uM pantothenate). Surprisingly, even in the absence of

DCA, supplementing CoA to the medium had a strong toxic
effect on cells. Cells supplemented with 100 or 500 uM CoA
(Fig. 3c and Supplementary Figure 12) exhibited a first phase of
normal growth, followed by rapid growth arrest (Fig. 3c).
Interestingly, supplementation of CoA completely masked DCA
toxicity when co-administered (Fig. 3¢ and Supplementary
Figure 12).

The synergistic effect of pantothenate with DCA, and the
antagonistic interaction of DCA with CoA reinforce our premise
of a functional interplay between CoA metabolism and cell
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Fig. 3 Influence of CoA metabolism on dichloroacetate action. a Schematic representation of the CoA biosynthetic pathway. Pantothenate kinases (PANK)
catalyze the rate-limiting step in CoA biosynthesis3°. For each pathway intermediate, relative steady-state (SS) abundances in the untreated condition
(right-hand side) and dynamic changes upon dichloroacetate treatment (left-hand side) are shown. Steady-state levels of pathway intermediates are
represented as the distribution of residuals in the linear fitting of raw MS measurements multiplied by the inferred cell line specific a values. b Determined
Glso concentrations for oxamate and dichloroacetate across cell lines (Supplementary Figure 11). € IGROV1 and SKOV3 cells were grown in RPMI-1640
medium before addition of perturbing agents and continuous confluence monitoring for ~5 days. Six conditions were tested: normal RPMI-1640 medium
(Control), addition of 2.1uM pantothenate, with and without 11 mM (IGROV1) or 25 mM (SKOV3) of dichloroacetate (Pan/Pan + DCA), addition of 100
uM CoA with and without 13 mM (IGROV1) or 31 mM (SKOV3) of dichloroacetate (CoA/CoA + DCA). d Schematic representation of CoA metabolism.
CoA plays a central role in energy and fatty acid metabolism, acting as an acyl group carrier to form acetyl-CoA and other important compounds, such as
fatty acids, cholesterol, and acetylcholine. PANK2, the first and rate-limiting metabolic enzyme in the CoA biosynthetic pathway, is allosterically
regulated3842 and localizes in the mitochondrial inter-membrane space?42. CoA is produced in the cytosol and subsequently actively transported into the
mitochondrial matrix. Alternatively, can access CoA from the extracellular environment thanks to the action of extracellular ectonucleotide
pyrophosphatases contained in the serum’9. These enzymes cleave the CoA molecule to form 4'-phosphopantetheine, which can enter the cells one
enzymatic step above CoA formation by COASY

growth inhibition caused by DCA (Fig. 3d). Because CoA metabolome changes in IGROV1 cells upon addition of 2.1 uM

biosynthesis is regulated (i.e. repressed) immediately downstream
of pantothenate (Fig. 3a), CoA levels can be controlled in spite of
high pantothenate concentrations. Hence, supplementing pan-
tothenate to the medium has no toxic effect to cells (red curve in
Fig. 3c). However, when cells are additionally challenged with
DCA, CoA biosynthesis is activated and higher levels of
pantothenate can lead to higher CoA biosynthetic flux (orange
curve in Fig. 3c). To verify our conclusions, we monitored

pantothenate or 200 uM CoA. Consistent with our expectations,
supplemented pantothenate is internalized but metabolism is
otherwise unperturbed, while CoA addition induces pleiotropic
changes in intracellular metabolite abundances, indicating a large
deviation from metabolic steady state (Supplementary Figure 13).
We concluded that by directly providing CoA extracellularly we
bypassed the main control mechanism for CoA homeostasis and
in turn impaired cell growth.
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Model-based analysis of DCA MoA and CoA toxicity. We next
asked whether the observed growth inhibitory effect of CoA was
restricted only to ovarian cancer cell lines. To this end, we tested
the effect of CoA on seven additional cancer cell lines from dif-
ferent tissue types, and one non-cancer cell line (HEK293 kidney
cells). Despite distinct differences in sensitivity, all cell lines
exhibited growth reduction upon supplementation of culture
media with 100 uM CoA (Fig. 4). To better understand the
interplay between biosynthesis/utilization of CoA and DCA
toxicity, we created a minimal kinetic model that consists of only
two reactions following Michaelis—Menten kinetics: biosynthesis
of CoA (Eq. (4)) and CoA utilization for biomass production (Eq.
(5), Fig. 5a), assuming a growth inhibitory activity of CoA:

pcAl 1)

= B (P il 4
VcoAa = Veoa,,, <[DC Al + Kpen (4)

[CoA]
[CoA] + Kgyp - ( 1+

Vbiomass — Vbiomass

'max

[coAP) (5)

K

where Vcoamax a0d Vbjomassmax represent the corresponding
maximum flux capacities, [DCA] and [CoA] are the concentra-
tions of DCA and CoA, respectively, Kpca and Kcoa are the
Michaelis—Menten constants, and K; is the inhibitory constant for
CoA. The model assumes that in unperturbed cells, CoA is not
limiting for biomass production (i.e. [CoA] > K,), and that cells
are ultrasensitive to high levels of CoA, which in turn inhibit
biomass production (i.e. K;>> Ky,).

This simple model is able to qualitatively recapitulate the toxic
effect of increasing CoA levels either as a consequence of
increased CoA biosynthesis upon DCA treatment or external
addition of CoA (Fig. 5b). In addition, the model can be used to
predict the effect of a reduced CoA biosynthetic flux (e.g. reduced
VCoa,max)- In such a scenario, the model qualitatively predicts two
phases: a first one where reduction of intracellular CoA levels
increases biomass production, and a second phase in which CoA

biosynthesis becomes limiting for growth (Fig. 5¢). A qualitatively
similar behavior is expected when CoA biosynthesis is inhibited
in the presence of DCA (Fig. 5d).

To test the model predictions, we supplemented IGROV1 cells
with different concentrations of DCA, in the presence or absence
of 1.5 mM hopantenate, an inhibitor of the first enzymatic step in
CoA biosynthesis. In agreement with our minimal model, cells
with hopantenate exhibit an initially higher proliferation rate with
respect to unperturbed cells, before entering in a second phase of
reduced growth (Fig. 5e-h). Moreover, in the first phase
hopantenate fully reverted the growth inhibitory effect of DCA,
allowing cells to grow at similar if not higher rates as untreated
cells, hence confirming that enhanced CoA biosynthesis is at the
core of the mode of action of DCA. Overall, these experimental
results are consistent with our minimal model, and emphasize the
importance of CoA homeostasis and its role in mediating DCA
toxicity. To our knowledge, this is the first time that a toxic effect
of CoA in mammalian cells has been shown and was linked to the
mode of action of DCA.

Consistent with our in vitro results, in vivo inhibition of PANK
in mice by hopantenate resulted in 167-fold higher expression of
PDK*. This observation suggests dichotomous compensatory
mechanisms to regulate CoA homeostasis: inhibition of CoA
biosynthesis activates PDK, which in turn represses PDH*, while
inhibition of PDK by DCA has the opposite effect, and promotes
CoA biosynthesis. The resulting over-induction of cytosolic de
novo CoA biosynthesis can in turn aggravate DCA toxicity. It is
important to note that the mechanism by which enhanced CoA
biosynthesis inhibits growth remains unclear. It is possible that
rather than CoA directly, it is the accumulation of an
intermediary product of CoA metabolism or the hyper-
utilization of CoA*®*” that becomes toxic to cells. To test
whether the observed adaptive response to DCA was an indirect
effect associated with a general stress response upon growth
inhibition and/or reduced lactate secretion, we tested the effect of
oxamate, a small molecule that inhibits the conversion of
pyruvate into lactate.
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Fig. 5 Mechanistic model of CoA-mediated toxicity of dichloroacetate. a Schematic overview of the minimal model, where CoA production can be
increased by dichloroacetate (DCA), or reduced by hopantenate (HoPan). CoA is directly used to form new biomass, which in turn CoA can inhibit by an
undefined mechanism. b CoA inhibits growth in a concentration-dependent manner, while (¢) HoPan inhibition of the first steps in CoA biosynthesis
can reduce CoA levels and have an initial beneficial effect on growth, until CoA biosynthesis becomes growth-limiting. d On the contrary, DCA inhibits
growth (bold red line) by virtue of increasing CoA levels (dashed red line). Addition of HoPan initially restores growth (bold blue line) by reducing CoA
levels (dashed blue line). e-h Experimental verification of the model. IGROV1 cells were supplemented with HoPan (e), or increasing concentrations of
DCA, in presence or absence of 1.5 mM HoPan (f-h). Growth is monitored continuously using cell confluence measurements. Relative confluence data
reported are mean + standard deviation across three replicate wells, normalized to the initial confluence, while the kinetic parameters used for model

simulations can be found in the Methods section

Oxamate elicits different metabolic responses. Oxamate is a
competitive inhibitor of lactate dehydrogenase (LDHA) with
respect to pyruvate*® (Fig. 2b). A growing body of evidence
indicates that oxamate induces apoptosis exclusively in cancer
cells*®49. According to current theory, the inhibition of lactate
production, together with typically high glycolytic rates in cancer
cells, causes an over-production of toxic superoxide by the
mitochondrial electron transport chain. Since both drugs decrease
lactate secretion rates (Supplementary Figure 8), oxamate treat-
ment could lead to similar metabolic adaptive mechanisms as
DCA.

In our dynamic metabolome profiling data, we observed a
significant accumulation of intermediates in TCA cycle upon
oxamate treatment, and a concomitant reduction of intracellular
ATP levels, in accordance with previous findings®’. In particular,
we observed a consistent and large accumulation of sorbitol and
sedoheptulose 7-phosphate (Fig. 2b). Overall, we found that the
significant metabolic changes common to all cell lines locate in
central metabolic pathways like oxidative phosphorylation and
nucleotide metabolism (Fig. 2c). Taken together, changes induced
by oxamate were largely different from those induced by DCA
(Fig. 3a-c, Supplementary Figure 14), suggesting for radically
different metabolic adaptive strategies. Unlike PDH activation by
DCA, inhibition of LDHA seems to redirect intermediates in
upper glycolysis to other pathways, such as NADPH-dependent
reduction of glucose to form sorbitol, or the pentose phosphate
pathway (as indicated by accumulation of sedoheptulose 7-
phosphate, Fig. 2b). Both metabolic responses are known to
counteract oxidative stress®1->2. Interestingly, we also observed a
marked reduction in the levels of N-acetylaspartic acid (Fig. 2b), a
potent oxidative stress agent> associated with poor prognosis in

ovarian cancer’*, The marked differences between metabolic
adaptive responses to oxamate and to DCA reinforce our
previous observation of a selective functional link between CoA
metabolism and the mode of action of DCA.

Discussion
In this study, we present a novel experimental and computational
workflow for high-content dynamic metabolome profiling that
enables a systematic and high-throughput investigation of
dynamic changes in the intracellular metabolism of adherent
mammalian cells upon environmental perturbation. Our metho-
dology provides a novel way to perform high-throughput
dynamic metabolic screens in adherent cell lines, facilitated by
a miniaturized parallel 96-well cultivation system, a simple and
rapid metabolite extraction procedure and automated time-lapse
microscopy?®. We additionally exploit the unique throughput
advantages of flow-injection high-resolution MS-based metabo-
lomics which has become an invaluable tool>>~># for exploratory
studies and the profiling of large sample collections. Altogether,
our methodology offers new scientific and clinical opportunities
for large-scale in vitro exploratory metabolome drug screenings
and a complementary tool to more targeted approaches®. Of
note, as compared to more conventional LC-MS-based approa-
ches, even moderately sized studies can benefit from our
exploratory methodology, given the extended metabolic and
chemical space covered, the reduced complexity of sample pre-
paration, the rapid measurement and the automatized acquisition
of normalization parameters.

A major challenge common to many high-content screenings,
and particularly relevant for non-targeted approaches, is the
computational analysis of large datasets for the generation of
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testable predictions. Here, we implemented a systematic data
processing and analysis pipeline that allows comprehensively
interpreting dynamic metabolic profiles and extracting the most
informative features (Supplementary Figure 2). While changes in
metabolite abundance do not necessarily correspond to changes
in conversion rates (i.e. fluxes), altered metabolite pools can be
reflective of functional changes in the cell®. By investigating the
dynamic responses to the perturbing agents DCA and oxamate,
we proposed a previously undescribed role of CoA metabolism in
mediating the toxicity of DCA. Therapeutically, high dosages of
DCA are needed in order to effectively suppress tumor growth3>,
limiting further development and usage of this compound in
clinics. Nevertheless, our results suggest that compounds affecting
CoA production are likely to exhibit strong epistatic interactions
with DCA. In light of the promising initial evidence that we
provided here, this possibility warrants more attention in future
studies.

We have shown here that our experimental and computational
framework for high-throughput drug metabolome profiling can
provide key insights into the cellular response to bioactive com-
pounds. As such, this technique can become a powerful com-
plementary tool to aid lead selection at early stages of drug
discovery, and to predict compound modes of action®l, similar to
approaches exploiting large compendia of cellular gene expres-
sion profiles!®. For instance, comparative analysis can reveal
uncharacterized compounds featuring metabolic responses simi-
lar to drugs with known molecular targets’. Our proof-of-
principle example illustrates how in vitro high-content metabolic
drug profiling can provide a first coarse-grained characterization
of a compound mode of action and guide the design of follow-up
experiments in clinically relevant models, aiming at a mechanistic
understanding of drug action. Despite the difficulty in translating
the relevance of in vitro phenotypes into in vivo outcomes®?, we
envisage that this approach can be applied to the profiling of large
sets of bioactive compounds?® in a large cohort of cell lines®30%.
In such a setting, this methodology can potentially deliver
invaluable insights to highlight mechanistic biomarkers to be
tested in vivo, to resolve the functionality of genetic variations,
and to understand the interplay between the drug mode of action
and intrinsic cell-to-cell tolerance variability.

Methods

Cell cultivation. The ovarian cancer cell lines IGROV1, OVCAR3, OVCARA4,
OVCARS, and SKOV3 were obtained from the National Cancer Institute (NCI,
Bethesda, MD, USA) and maintained according to standard protocols at 37 °C with
5% CO, in RPMI-1640 (Biological Industries, cat. no. 01-101-1A) supplemented
with 2 mM L-glutamine (Gibco, cat. no. 25030024), 2 g/L p-glucose (Sigma Aldrich,
cat. no. G8644), 100 U/mL penicillin/streptomycin (Gibco, cat. no. 15140122), and
5% fetal bovine serum (FBS, Sigma Aldrich, cat. no. F6178). After thawing, the cells
were expanded in standard cell culture flasks (Nunc T75, Thermo Scientific). After
one week, the cells were transferred to fresh medium where FBS was replaced by
dialyzed FBS (Sigma Aldrich, cat. no. F0392) in order to facilitate metabolite
quantification. Cells were maintained in this medium with dialyzed FBS for the
remaining duration of the experiment. Three of the cell lines (IGROV1, OVCAR3,
OVCAR4) were exemplarily tested for mycoplasma contamination, and were
confirmed mycoplasma-free. Overall, the cell lines were expanded in T75 for a total
of 3 weeks from thawing until perturbation and metabolomics experiments. With
the aim of determining the starting cell density for the experiment, a preliminary
cultivation in 96-well cell culture plates was done one week prior to the experiment.
To this end, for each cell line, 150 uL of eight different dilutions containing dif-
ferent starting cell numbers were plated in triplicate in a 96-well plate. After 72 h,
all wells were imaged using a Spark™ 10M (TECAN) and confluence was deter-
mined in each well. The optimal starting cell density was subsequently calculated so
as to obtain 80% confluence after 72 h.

Cell growth and segmentation. All procedures for cell growth monitoring and
image analysis were adopted from ref. 2%, and are here briefly summarized. A
TECAN Spark 10M plate reader was used to monitor live adherent cell cultures
directly in the 96-well culture plate. The choice of image acquisition frequency
depends on how fast are the expected growth dynamic changes. Here, we selected a
time frequency of 1.5h as a reasonable tradeoff between the fastest doubling time

among our cell lines (~20 h) and the time it takes to acquire the images for a full
plate on the TECAN plate reader (~30 min). It is worth noting that our procedure
can be adapted to other commercially available plate readers. Full detail on bright-
field image processing and the extraction of cell confluence and average adherent
cell size is described in ref.26 (MATLAB code available for download), and is
summarized in Supplementary Figure 3.

Perturbation experiments. Sodium oxamate and sodium DCA were obtained
from Sigma Aldrich (cat. no. 02751 and 347795, respectively), and stock solutions
of 400 mM oxamate and 250 mM DCA were prepared in distilled water. To
determine the Glso drug concentrations, nine different concentrations of oxamate
and DCA were tested (Supplementary Figure 10). For each cell line, cells were
seeded in 135 uL of fresh medium in 96-well plates according to the previously
calculated optimal density. After 24 h, oxamate and DCA, dissolved at different
concentrations in 15 pL of medium, were added to the cells in triplicates. Imme-
diately upon drug addition, 24, 48, and 72 h after drug exposure, all wells were
imaged using a Spark™ 10M (TECAN) plate reader, and the cell confluence was
determined. For each condition and cell line, the growth rate was obtained by
fitting an exponential curve to the cell confluence measurements. After calculating
the growth rate reduction relative to the untreated condition for each drug con-
centration, and fitting a sigmoidal curve to the degree of growth inhibition across
drug concentrations (shown in Supplementary Figure 10), the GIso was estimated
from the fitted curve as the drug concentration causing a 50% reduction in growth
rate (Fig. 3b).

Metabolomics experiments. Cell lines were plated in nine 96-well plates
according to the optimal density previously calculated, using 135 pL of medium. To
minimize the effect of evaporation, the outmost rows and columns of the plate were
omitted, and filled with PBS instead. After 24 h, cells were perturbed with 15 uL of
medium containing drug concentrations close to the respective Gls, for each cell
line. When the calculated GIs, dose could not be reached due to limited solubility,
the highest concentration possible was used (400 and 250 mM for oxamate and
DCA, respectively). 15 pL of fresh medium without drug addition were used as a
control. The final concentrations used for each drug and each cell line are given
Table 1.

Sample collection and metabolite extraction. The metabolomics sampling pro-
cedure was adapted from an experimental workflow for steady-state metabolome
profiling described in ref. 26, and is here briefly summarized. Samples were col-
lected immediately before, and at 24, 48, 72, and 96 h after drug addition. Two
replicate 96-well plates were processed at each sampling time point (plate A and
plate B, see also Supplementary Figure 1). In plate A, the cell culture medium was
aspirated from all wells using a multichannel aspirator, and 150 puL of ammonium
carbonate (75 mM, pH 7.4, 37 °C) was gently added to each well using a multi-
channel dispensing pipet. Immediately after aspiration of the washing solution,
100 pL of cold extraction solvent (40% methanol, 40% acetonitrile, 20% water, 25
uM phenyl hydrazine®®, —20 °C) were added to each well using a multichannel
pipet. Plates were sealed with aluminum adhesive to prevent evaporation, imme-
diately transferred to —20 °C for 1h, and subsequently stored at —80 °C until
further processing. In plate B, the cell culture medium was aspirated, and the cells
were washed with ammonium carbonate (75 mM, pH 7.4, 37 °C). After aspiration
of the washing solvent, 150 uL of PBS (Gibco, cat. no. 10010015) were added to
each well, and cell confluence was immediately measured in all wells using a Spark™
10M (TECAN) plate reader, adopting bright-field microscopy. The cell confluence
from plate B was later used to derive extracted cell numbers for normalization,
using previously determined average adherent cell sizes (Supplementary Figure 3).
Before injection in the mass spectrometer, the 96-well plates were briefly thawed on
ice, and the bottom of all wells was scratched using a multichannel pipet with wide-
bore tips in order to disrupt and detach all cells from the well bottom. The plates
were centrifuged (4 °C, 4000 rcf), and the supernatant was transferred to fresh 96-
well plates for FIA-TOFMS measurements.

FIA-TOFMS analysis. FIA-TOFMS analysis was performed as described in ref. 23
on an Agilent 6550 iFunnel Q-TOF LC/MS System (Agilent Technologies, Santa
Clara, CA, USA) equipped with an electrospray ion source operated in negative
ionization mode. In this setup, the samples are injected into a constant flow of an
isopropanol/water mixture (60:40, v/v) buffered with 5 mM ammonium carbonate
at pH 9 using a Gerstel MPS2 autosampler (5 pL injection volume). Two com-
pounds were added to the solvent for on-line mass axis correction: 3-amino-1-
propanesulfonic acid, (HOT, 138.0230374m/z, Sigma Aldrich, cat. no. A76109) and
hexakis(1H,1H,3H-tetrafluoropropoxy)phosphazine (940.0003763m/z, HP-0921,
Agilent Technologies, Santa Clara, CA, USA). The ion source parameters were set
as follows: 325 °C source temperature, 5 L/min drying gas, 30 psig nebulizer
pressure, 175 V fragmentor voltage, 65 V skimmer voltage, 750 V octopole voltage.
The TOF detector was operated in 4 GHz high-resolution mode with a spectral
acquisition rate of 1.4 spectra per second. Mass spectra were recorded in the mass
range 50-1000r/z. Alignment of MS profiles and picking of centroid ion masses
were performed using an in-house data processing environment in Matlab R2015b
(The Mathworks, Natick)23.
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lon annotation. The ion annotation process is based on a list of known metabo-
lites, compiled from the HMDB3 and the Recon2 genome-scale reconstruction of
human metabolism32. In order to allow annotation of a-keto acid derivatives
formed in presence of phenyl hydrazine® in the extraction solvent, we added the
sum formulae for the phenylhydrazones (+CsHgN, —H,0) of a total of 30 a-keto
acid compounds (selected via KEGG SimComp search http://www.genome.jp/
tools/simcomp/) to the metabolite list for annotation. The monoisotopic mass is
calculated for each of the listed metabolites based on its sum formula. A list of
expected ion masses corresponding to the listed metabolites is subsequently gen-
erated, considering only ionization by deprotonation (—H+) in negative mode
electrospray ionization. Subsequently, these theoretical ion masses are searched
against the detected ion mass-to-charge ratios (/z) within a tolerance of 0.003
amu. The final list of annotated ions is compiled considering the best metabolite
match (i.e. smallest difference to the expected mass) for each ion.

Data processing and computational analysis for steady-state metabolome
data. All steps of data processing and further analysis were performed in Matlab
2015b (The Mathworks, Natick). For steady-state metabolome profiles, the bioin-
formatics pipeline is described in ref. 2° and is here summarized. Multiple
regression analysis to estimate the relative metabolite concentrations at steady state
was performed using the Matlab fitlm function. This function infers model para-
meters a (cell line-specific) and by minimizing the Euclidian distance between
measured metabolite intensities and model predicted ones. It is worth noting that
the S represents the MS background signal, or in other words the ion intensity
when no cells are extracted. Hence, this particular parameter is independent from
cell types. Because of the difficulties in reliably estimating the extracted cell number
from bright-field microscopy images above a confluence of 80% (Supplementary
Figure 3), and the observed deviation from metabolic steady state (Supplementary
Figure 4), we excluded all metabolome measurements taken above this cell density
threshold. For each metabolite, we solve the following linear model:

(e, 1 ] Neen, 1 0 0 1
Icelll.Z Ncelll,z 0 0 1
Icelll.3 Ncelll.S 0 0 1

1

= sl «, e
Icellz.l 0 Nce112,1 0 1 cell; “eell, cell ﬁ]
[cellz.z 0 I\fcellz 2 0 1
L, 3 0 N, 0 1
Leat,p] | 0 0 o Na, 1|
(6)

where I, is the measured metabolite intensity in sample 1 of cell line 1, Negyy,; is
the corresponding number of cells extracted in sample 1 of cell line 1. Cell line
specific as and 8 are the unknown parameters to be fitted. We selected the
metabolites exhibiting a significant alteration in at least one cell line using a one-
way ANOVA test, including a step correcting for multiple hypothesis testing®®-%3
(Supplementary Figure 15).

Data processing and computational analysis for dynamic drug-induced
metabolome changes. The full matrix of dynamic metabolic profiles after DCA
and oxamate treatments is provided in Supplementary Data 2. In order to deduce a
specific metabolic fingerprint induced by an external perturbing agent, we first
selected the most significant metabolic changes conserved across the cell lines,
performed pathway enrichment analysis on the resulting list of metabolites, and
lastly analyzed response variability across all cell lines.

Separately for each perturbation (i.e. oxamate and DCA), we extracted the most
significant and prominent metabolic changes that are conserved across the different
cell lines. To this end, for each individual metabolite time course we calculated the
median of maximum absolute fold changes and the product of lowest p-values
across cell lines. As a result, each metabolite is associated with a unique median
fold-change and p-value, summarizing the effect of the perturbation on all cell
lines.

Metabolites with an absolute log, fold-change > 1 and a combined p-value < 1e
—10 were then tested against KEGG metabolic pathways. Pathways with an
overrepresented number of altered metabolites were selected based on a
hypergeometric statistical test and p-value correction for multiple tests®®7.

Metabolites that exhibit cell line-specific responses to a given perturbation were
selected on the basis of the response variability exhibited across the different cell
lines. The standard deviation for each metabolite was calculated from the
aforementioned maximum fold changes in each cell-line time course, and
metabolites with a standard deviation > 1.5 are retained and subjected to pathway
enrichment analysis (Supplementary Figure 15).

Minimal kinetic model. Here we describe cell proliferation as a function of CoA
biosynthesis, assuming that DCA activates CoA biosynthesis and CoA inhibits
growth. Reactions for the production (vc,s) and consumption (Vpiomass) of COA
follow a Michaelis—Menten type of kinetics (see Eqgs. (4) and (5) in the main text).

The two key assumptions are that CoA is not limiting for biomass production
(i.e. [CoA] > K,,)), and that cells are ultrasensitive to high levels of CoA, which in
turn inhibit biomass production (i.e. K;> K,,). To simulate the effect of a reduced
CoA biosynthesis as a function of hopantenate (HoPan) we divided vcoa max by
HoPan concentrations. In the simulations reported in Fig. 5, we used the following
parameters: Vpiomass,max = 1> Kcoa = 0.01, Ki =1, Vcoa,max = 0.45, [CoA], = 10,
[DCA] =0.01, and [HoPan] = 5. The system of differential equations was solved
using the SymBiology toolbox in Matlab 2015. It is worth noting that qualitatively
the model would behave similarly if we assumed that the growth inhibitory
compound is not the total pool of CoA, but an intermediary toxic compound of
CoA metabolism that rapidly equilibrates with the CoA pool.

Quantification of pantothenate using LC-MS/MS. SKOV3 cells were seeded in
RPMI-1640 medium in six-well plates, and supplemented with 11.3 mM DCA in
RPMI-1640, or an equal volume of medium without DCA. After 24 h, cells were
washed once with 75 mM ammonium carbonate (pH 7.4, 37 °C) and extracted with
500 pL extraction solvent (40% acetonitrile, 40% methanol, 20% water, 25 uM
phenyl hydrazine), pre-cooled to —20 °C. The six-well plates were sealed, incubated
at —20 °C for one hour, and then stored at —80 °C until further processing. Prior to
LC-MS/MS measurements, the plates were thawed, and cells were detached from
the bottom of each well using a cell culture scraper. The extract was transferred to
separate sample tubes and centrifuged for 5 min at 13,000 rpm to separate cell
debris. The supernatants were then transferred to fresh sample tubes, supple-
mented with equal volumes of fully 13C-labeled extract of Escherichia coli (prepared
in-house), and subsequently dried by vacuum centrifugation. Standard solutions
containing different concentrations of pantothenate (p-pantothenic acid calcium
salt, Fluka 21210) were prepared similarly, i.e. supplemented with 13C-labeled cell
extract and dried by vacuum centrifugation. Immediately prior to analysis, all
samples were reconstituted in water (10x concentrated) and kept on ice until
analysis. Chromatographic separation and MS/MS detection on a triple quadrupole
mass spectrometer was performed as described in detail in Buescher et al. ©, using
an injection volume of 10 L.

Data availability. All data generated or analyzed during this study are included in
this published article as supplementary data.
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