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Abstract: Single point incremental forming (SPIF) is one of the most promising technologies for the
manufacturing of sheet metal prototypes and parts in small quantities. Similar to other forming
processes, the design of the SPIF process is a demanding task. Nowadays, the design process is
usually performed using numerical simulations and virtual models. The modelling of the SPIF
process faces several challenges, including extremely long computational times caused by long tool
paths and the complexity of the problem. Path determination is also a demanding task. This paper
presents a finite element (FE) analysis of an incrementally formed truncated pyramid compared to
experimental validation. Focus was placed on a possible simplification of the FE process modelling
and its impact on the reliability of the results obtained, especially on the geometric accuracy of the
part and bottom pillowing effect. The FE modelling of SPIF process was performed with the software
ABAQUS, while the experiment was performed on a conventional milling machine. Low-carbon steel
DC04 was used. The results confirm that by implementing mass scaling and/or time scaling, the
required calculation time can be significantly reduced without substantially affecting the pillowing
accuracy. An innovative artificial neural network (ANN) approach was selected to find the optimal
values of mesh size and mass scaling in term of minimal bottom pillowing error. However, care
should be taken when increasing the element size, as it has a significant impact on the pillow effect at
the bottom of the formed part. In the range of selected mass scaling and element size, the smallest
geometrical error regarding the experimental part was obtained by mass scaling of 19.01 and tool
velocity of 16.49 m/s at the mesh size of 1 × 1 mm. The obtained results enable significant reduction
of the computational time and can be applied in the future for other incrementally formed shapes
as well.

Keywords: single point incremental forming; numerical simulation; mass and time scaling; pillow
effect; artificial neural network

1. Introduction

It is well-known that the conventional methods of sheet metal processing are cost-
effective only in the case of mass production and that the process effectiveness is very
sensitive to the complexity of part geometry. However, the introduction of flexible, inno-
vative, and rapid manufacturing methods such as incremental forming (IF) enabled the
economical production of sheet components in small batches, prototypes, and ‘custom-
made’ products; such methods appeared as early as in 2004, as reported by Esmaeilpour [1].
As Li et al. presented in 2017 [2], the SPIF technology was primarily developed for the
needs of the automotive and aerospace industries, but over time, application area expanded
considerably to other disciplines for which ‘custom-made’ products are sought. Ambrogio
et al. [3] report this in cases from medicine and Milutinović et al. [4] in case studies from
dentistry. Since the process is rather distinct in comparison to other processes of sheet metal
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forming, special design rules were presented by Afonso et al. [5]. The process was first
used solely for the production of metal parts [6–8], but in recent years, various polymer
materials have also been successfully processed by IF technologies [9].

In an SPIF process, a universal computer-driven punch is used for gradual (incremen-
tal) shaping of a sheet blank, which is clamped onto a frame to prevent its sliding. Duflou
et al. [6] present several process variations for which the IF can be performed on a CNC
milling machine or by a robot arm. However, in all cases, the proper lubrication of the
contact surface is necessary. The lubrication process is influenced by several parameters
being studied by Petek et al. [10]. Thanks to the dieless concept, Pepelnjak et al. [11] have
pointed out high flexibility combined with low tooling costs of the SPIF process, since the
tool costs, as well as the setup time, are reduced significantly in comparison to the regular
forming processes. Furthermore, due to the highly localised zone of plastic strain during
the forming process, the material formability is higher and forming load is considerably
smaller compared to conventional sheet technologies such as deep drawing. Additionally,
in contrast to conventional sheet forming, the forming forces are independent of the work-
piece size [12,13]. The main disadvantages of the SPIF technology are lower dimensional
and shape accuracy as well as significantly longer processing times in comparison to other
sheet-metal-forming processes [14,15].

Programming of the punch trajectory and the design of a SPIF process is a very de-
manding task with several influential process variables (sheet thickness, punch diameter,
punch velocity, step down, forming angle, etc.) and different phenomena (elastic spring-
back, sheet bending, sheet thinning, ‘pillow effect’) that are to be considered in the planning
of the tool path [16]. Tool trajectory is usually generated using commercial software for
computer-aided manufacturing (CAM) being developed for a milling process. However,
due to differences between milling and forming processes and due to the non-homogeneous
sheet metal material, the obtained results may not be reliable enough. Therefore, special
programs for the determination as well as optimisation of forming paths at SPIF are devel-
oped [17,18]. In order to consider the main phenomena of incremental sheet metal forming
prior to the experimental work, the numerical analyses are indispensable. Through these
digital analyses performed commonly by finite element method (FEM) simulations, the
accuracy of the produced part and forming forces applied to the CNC milling machine can
be predicted. That fact is indispensable when the CNC machine, which is not dedicated to
forming but to specific milling operations, needs to be used.

The FEM simulations of metal-processing technologies are often implemented in
industrial practice prior to the part production [19–22]. However, for process optimisation,
they are often not effective enough due to long computational time, modelling complexity,
and insufficient accuracy of the simulated part [18,19]. Although the majority of the
simulations of sheet metal incremental forming apply shell elements, long computational
times are in several cases referred to as a fundamental problem. The long computational
time is a result of complex and long tool paths and fine meshing (discretisation) of the FE
model, which is required due to the small and fast-changing contact zone between the
forming tool and the blank [23]. In order to perform the simulations in the shortest possible
time, the explicit dynamic types of solvers are mostly employed for FE simulations of the
SPIF. With this, shorter computing times in comparison to the implicitly based solvers
can be attained [20]. Furthermore, to additionally shorten the computational time, several
approaches based on different simplifications in the process modelling have been suggested.
It should be noted that some of the commercial FE programs are not able to simulate ISF
processes due to the complex path of the tool [24].

As an alternative to classical flow rule theory, which is dominantly used in simulations
of the metal-forming processes, Robert et al. [25] proposed a simple elasto-plastic model of
material behaviour based on an incremental deformation theory of plasticity. They reported
a shortening of CPU time while still maintaining a sufficient level of accuracy. Later, Robert
et al. [26] developed a simplified model for the forming tool/blank contact conditions
incorporated into the ABAQUS software. The new algorithm enabled shortening of the
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computational time by 65% compared to a standard contact algorithm. In contrast, Hadoush
and van den Boogaard [27] utilised a mesh refinement/derefinement (RD) approach in
SPIF simulation to overcome the necessity of having an initially fine mesh. As a result, the
computing time was reduced by 50% in relation to the reference model. Muresan et al. [28]
and Sebastiani et al. [29] were among the first to introduce a decoupling method for ISF
process modelling in order to reduce the computational time. Starting from the fact that
forming zone is localised and small compared to the rest of the blank, they subdivided
the FE model into an elastic zone and an elastic-plastic deformation zone. Those two
separate domains are then alternately solved in a step-wise algorithm. A similar approach
was exploited by Hadoush et al. [30], who implemented a direct sub-structuring method,
speeding up the SPIF simulation by a factor of 2.4 compared to the traditional implicit
simulation. Hadoush et al. also combined adaptive mesh refinement with the two-domain
method to further reduce the computational time. Bambach [31] reached significant saving
in the CPU time (up to 80%) and satisfactory geometrical accuracy in the ISF simulation of
a cone shape by combining an adaptive remeshing strategy based on a multi-mesh method
and subcycling (use of different time steps for elements of different size). In his study,
Bambach also provided a simple model for the CPU time calculation in a case of explicit FE
simulations of the ISF process. By assuming that the CPU time per element and increment
is a constant that depends only on the speed of the computer, the total CPU time can be
determined from the following expression:

tCPU =
tool path length ·number o f increments

tool velocity·stable time increment
, (1)

The possibilities of the computational efficiency improvement in the FE simulation of
ISF processes using a selective element fission method are presented in [19]. The compu-
tational performance was upgraded up to 74% by dividing the toolpath into a number of
segments and meshing the FE model with elements of different size in accordance with the
predefined split toolpath segments and deformation regions. In that manner, the number
of elements in the FE model was reduced along with unnecessary, time-consuming calcu-
lations for the elements out of the localised deformation zone. In another study dealing
with shortening of the ISF simulation time, Sena et al. [32] applied an adaptive remeshing
technique that automatically refines only a portion of the sheet mesh in the vicinity of
the tool. In engineering practice, scaling of process time (tool velocity) and/or mass is
often employed in FE explicit simulations of the ISF process (especially in case of large-size
components) to overcome the problem of long computational time. This approach could
be very effective in reducing the CPU time, but special attention is required regarding
the definition of the tool trajectory and the selection of the scaling factors [31]. Generally,
by increasing the tool velocity and the mass scaling factor, the reliability of FE model
decreases, and, in particular, a noticeable inaccuracy in the shape of the workpiece and
sheet thickness may occur [32]. Therefore, the scaling level must be carefully adopted, and
a compromise between the simulation accuracy and the simulation time is necessary to
achieve an optimal solution.

To increase modelling process accuracy and efficiency, the FE approach has been
widely combined with artificial neural networks (ANN) in recent years. ANN is a promis-
ing and sophisticated computer modelling technique that can be used to simulate and
optimize a variety of manufacturing processes, including metal-forming processes and
multi-response parameters. The early works applying the approach of ANN combined
with Taguchi method were reported already in 1999 by Ko et al. [33], where they presented
the implementation of this new approach combined with FEM in the cold heading process.
In 1998, Forcellese et al. [34] evaluated the effect of the training set size of ANN on the
reliability of the prediction of the springback in the free-bending process, which was also
presented in the overview work by Pattanaik in 2013 [35]. In the following years, the ANN
methods were further developed and applied to several forming technologies including
deep drawing [36], ring rolling [37], electrohydraulic forming [38], bending [39,40], incre-
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mental forming [41], and several other application areas [42–46]. Hamouche et al. [47]
have developed a novel approach to select and classify a sheet metal process by machine-
learning method from the final part geometry and achieved an accuracy of 89%. Besides
the evaluation of the forming applications, other aspects influencing the forming pro-
cesses were also observed. Merayo et al. have evaluated by ANN the material properties
of formable materials [48,49], while Trzepieciński et al. [50] have focused on the analy-
ses of friction coefficient evaluated by multi-layer artificial neural networks (ANNs) and
backward elimination regression.

In recent years, the methods of machine learning and different ANN approaches
have also been implemented in the optimizations of incremental forming technology.
These methods have been particularly useful where authors have observed multi-objective
optimisations [51] or sought the optimal tool path generation and manufacturing strate-
gies [52,53]. The multi-objective optimization was also implemented in incremental forming
by Taherkhani et al. [54] to achieve the best possible dimensional accuracy and surface
quality in the shortest possible processing time. However, none of the researchers have
focused on the optimization of the simulation of incremental forming as a function of the
mesh size and mass scale factor.

The key factor in implementing the simplification of the FE model in the ISP process
simulation is to know what impact the particular simplification will have on the simulation
results. The present paper deals with the effects of the above-mentioned simplifications
(tool velocity and mass scaling) in combination with the finite element size (mesh density)
on the FE modelling results in the case of a classic SPIF process. In order to shorten
the computational times of the simulations, our objective was to develop an utterly and
completely simplified FE model with sufficient geometrical accuracy. The FE model created
in the ABAQUS commercial software package was verified by comparing the predicted
digital geometry of the workpiece (truncated pyramid) with the real one (experimentally
obtained). Part accuracy and in particular the ‘pillow effect’ are discussed as well.

2. Accuracy of the SPIF Process

The accurate prediction of the geometry of the final part (i.e., the expected part dimen-
sional and shape errors) is essential for the proper design of the SPIF process. However,
SPIF numerical modelling is a very challenging issue, since the geometric accuracy of the
workpiece in the SPIF process is influenced by many factors: process variables, tool and
workpiece geometry, sheet thickness, mechanical properties of the material, friction, design
and stiffness of clamping system, etc.

Geometric errors of the final parts obtained by the SPIF can be divided into three
different categories [15]. At the very beginning of the SPIF process, an undesirable bending
of the clamped sheet occurs along the main base of the workpiece, resulting in discrepancies
between the actual part geometry and the desired one. This is caused by the vertical
component of the forming load acting at the selected distance from the blank holder, which
results in the fact that the blank is prone to bending rather than being only locally deformed
in the vicinity of the forming tool. The sheet bending effect is especially noticeable in the
case of a thin sheet and/or poor support of the sheet blank. Using a simple backing plate
or applying the rigid support next to the forming zone limits the sheet’s undesired bending
and, consequently, related geometric errors.

Another source of part inaccuracy is the well-known phenomenon of material elastic
springback caused by a sudden drop in the stress when the formed part is unloaded. In
the SPIF process, due to the gradual manner of the part’s plastic deformation, springback
occurs not only at the end of the forming process but also locally during the entire process.
In other words, as the tool moves from point to point, there is a continuous local springback
around the tool affecting the deviation in the wall geometry. Global springback that occurs
after the tool is released causes sheet/workpiece lifting, and hence, the actual depth of
workpiece is lower than the desired one. Elastic springback may also occur after the release
of the workpiece from the clamping device and after the trimming operation. Since the
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amplitude of this springback is influenced by the part shape, sheet thickness, and material
properties of the sheet metal, the geometrical errors should be considered for each part
separately [55]. Moreover, cyclic loading and unloading of the workpiece during the SPIF
process also increase the residual stresses, which amplify the springback effect and overall
geometric inaccuracy. In addition to the careful selection of the process parameters, elastic
springback can be minimised by global or local heating of the workpiece before and/or
during the process [20].

The third type of geometric error in the SPIF is a protrusion or concave curvature
occurring on the undeformed bottom of the part. This phenomenon is known as a ‘pillow
effect’, and according to Isidore et al. [56], it is one of the main reasons for geometric
inaccuracy in the SPIF process. The pillow effect is a result of sheet bulging due to the
transition of elastic deformations from the non-plastically deformed central zone to the rest
of the workpiece [57] as shown in Figure 1, but some unknowns regarding this phenomenon
exist, making it difficult to predict and control. This phenomenon is particularly emphasised
on parts with a flat bottom section.
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3. Materials and Methods

In the presented work, the influential parameters on bottom pillowing of an incrementally-
formed sheet metal part were analysed. According to the selected parameters of interest,
the orthogonal array matrix was defined. This matrix represents the basis for the parameter
values used in the FEM simulations. Based on the results of the FE simulations, the training
of the ANN was used to specify the optimal parameters of the defined parameter design
space. The quality of the ANN was finally proven by numerical simulation with optimal
values of the mass scaling and mesh size parameters and its comparison with the measured
experimental part (Figure 2).
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3.1. Experimental Setup

The SPIF process was performed on a conventional CNC vertical milling centre (HAAS
TM1) using a steady frame, which was fixed to a machine table (Figure 1b).

A punch with a semi-spherical head (Ø10 × 100 mm) made from tool steel EN
X210Cr12 was used. It was hardened to 60HRC, ground finely, and polished. The shape
and preferred dimensions of the workpiece are given in Figure 3. A square sheet metal
plate (120 × 120 × 1 mm) made from low-carbon steel quality DC04 according to EN 10130
standard was used as a blank and clamped into the steady tooling frame. Both the punch
and the surface of the formed workpiece were lubricated with conventional mineral oil.
All the process parameters were carefully selected and optimised through a couple of tests
to obtain the geometry of the workpiece with minimal deviations from the CAD model
presented in Figure 3.
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The forming strategy (tool trajectory) was programmed as ‘profile milling’ or 2 1
2 D

contour path. The tool path and NC code for the CNC milling machine were generated
using the EdgeCAM CAD/CAM software. The same tool path as for the experiment
was also applied in the FEM simulation. The feed rate of the tool was 0.04 m/s with a
rotating speed of 1000 rpm and vertical pitch (∆z) of 0.5 mm at each change of the contour
path. The total forming depth was 34 mm, with a wall angle of 49◦. The profile of the
incrementally formed truncated pyramid (Figure 4) was scanned using a 3D coordinate
measuring machine (Carl Zeiss Contura G2). The acquired geometrical data or ‘cloud of
points’ were processed and converted to an STL model that can be used in conventional
CAD software. The scanned geometry of the workpiece was subsequently compared along
the cross-section A-A (Figure 4) with the FE predicted geometry.
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3.2. Finite Element Analysis

The best way to better understand SPIF is through FE analysis. It provides for in-
dividual quantitative investigations of different process parameters, such as stress state,
thickness, and geometry, in every observed point of the mesh. In the present study,
ABAQUS/Explicit was used to simulate the investigated SPIF process. The FE model



Materials 2022, 15, 3707 8 of 22

contained a hemispherical ball end tool and a backing plate that were modelled as discrete
rigid 3D bodies. The toolpath in the simulations was generated directly from the CAM
model and was identical to the one used in the experimental production of the test part.

In order to determine the toolpath in the ABAQUS program, it is necessary to know
every coordinate of the points where the tool changes its direction. The software calculates
a path between two consecutive data points by linear interpolation. In order to shorten
the computational time, the tool speed was virtually increased. In the first case, the tool
speed of 10 m/s was selected, while in the second case, the tool speed was increased to
40 m/s. The blank was modelled as a 120 × 120 mm elastic-plastic deformable shell with
a flow curve: σf = 209 + 542.8·ε0.67 in MPa. It was meshed with quadrilateral structured
shell elements of the S4R type. The shell elements were determined with five integration
points on the sheet metal thickness. Since the size of the mesh has a crucial effect on the
simulation results, its effects were investigated. Two elements having the sizes of 3 × 3 mm
and 1 × 1 mm were selected. All translations and rotations were constrained for the nodes
along the four edges of the blank. The Coulomb’s friction model with a friction coefficient of
µ = 0.1 for lubrication with the mineral oil was selected for the tool–workpiece contact. The
simulation consists of two steps aiming at SPIF forming in the first step and removing of the
tool–specimen contact in the second step. Since ABAQUS/Explicit does not deliver reliable
results of the springback phenomenon, this step was performed with ABAQUS/Standard
implicit solver.

Finally, the influence of mass scaling or strain rate on material properties was anal-
ysed as one of the commonly used parameters in explicit simulations involving long tool
paths [55]. Most studies of the SPIF process, in which density manipulation (increase) was
used, select the highest value of mass scaling of 10 [55].

However, due to the long processing times of the SPIF, FE simulations using higher
mass scaling factors were also first evaluated in the study presented here. Since the
simulated part accuracy is of the highest importance, the optimal combination of mass
scaling and tool velocity was sought. For this purpose, combined FEM simulations and
design of experiment were used. The work was done stepwise to define first the separate
influences of mass scaling and element size, while the tool velocity range was defined
within an initial research work. Finally, the combined influences were evaluated in order to
minimise the error estimation of the pillowing effect on incrementally produced test part.

3.3. Design of Experiment

Following the goal of the numerical prediction of the incrementally formed specimen
by FEM, the presented parameters of mass scaling, tool velocity, and element size were
evaluated by the statistical design of experiment approach combined with neural network.
Neural networks are employed in many fields as efficient tools for modelling and opti-
mization [58,59]. The basic idea was to train a neural network based on the data from a
space-filling design, i.e., Fast and Flexible Filling Design, which is the option to use in cases
where one or more factors are categorical. The total number of 30 design points was split
between the two levels of the categorical factor, mesh size, so that on each categorical level
there were 15 design points. Generally, such a number of points is small for serious neural
network training purposes. However, JMP’s Fast and Flexible Filling Design algorithm
generates those points as the cluster centroids of a much larger number of points, generated
to fill the design space that is defined by the two continuous variables, tool speed and
mass scale. This significantly reduced the number of design points and, subsequently,
the required FEM experiments, while still supporting the quality of the neural network
training. JMP software uses the MaxPro criterion [60] to maximize the product of the
distances between potential design points, so that all factors are involved, thus providing
good space-filling.
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If p is the number of factors and n the specified number of experimental runs, the
MaxPro algorithm finds cluster centroids that minimize the following criterion:

CMaxPro =
n−1

∑
i

n

∑
j=i+1

 1

∏
p
k=1

(
xik − xjk

)2

 , (2)

Once the 30 design points were defined, the design table was generated, containing
30 different settings based on which 30 FEM experiments were run (15 at each mesh
size level).

3.4. Neural Network Architecture

Typically, the task of neural network is to fit high-dimensional models. Although in
our case multidimensionality was not a key issue, the task was the same, and that was
to define a set of matrix parameters and then modify them to stabilize the error, i.e., to
minimize the error between the sample value and the actual value. The JMP software and
similar statistical modelling software allow the designer of neural network to define the
number of hidden layers and the number of nodes in each layer. Most often, one hidden
layer is enough for the network level, while the number of nodes usually starts from three
and can be increased if necessary. In this experiment, standard architectures with 4 and
5 hidden nodes were used for mesh size 1 × 1 mm and 3 × 3 mm, respectively (Figure 5).
TanH activation function was used for all network nodes. The training was based on k-fold
cross-validation, best suited for small training sets. The observations were partitioned into
5 folds. During each iteration, the model was fit using the observations not in the current
fold. The log-likelihood based on that model was computed for the observations which are
in the current fold. Thus obtained, this log-likelihood value was used for validation. Once
the mean of the validation log-likelihoods for the k folds were calculated, the resulting
value was used as a validation log-likelihood for the tuning parameter. Based on this
process, the tuning parameter with the maximum validation log-likelihood was used to
construct the final solution.
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4. Results and Discussion

The effect of mass scaling size on the reliability of the FE analysis needs to be deter-
mined in the first analysis stage. After the experiment and dimensional evaluations of
the formed piece were completed, its central area presented in Figure 6 was compared
with the results of mass scaling analysis as well as numerical simulations performed with
various regimes of tool speed, mass density, and mesh size according to the DoE presented
in Table 1. Based on the observed differences, conditions for further work with numerical
simulations of SPIF were determined.
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Table 1. Selected design points for ANN training purposes.

Nr. of Run Mass Scale Tool Velocity Mesh Size Nr. of Run Mass Scale Tool Velocity Mesh Size

1 18.8 10.0 3 × 3 16 9.8 20.7 1 × 1
2 15.5 12.8 1 × 1 17 8.8 27.0 3 × 3
3 24.9 15.1 1 × 1 18 11.6 25.4 1 × 1
4 22.8 11.7 3 × 3 19 2.0 21.8 1 × 1
5 18.2 30.5 3 × 3 20 4.8 24.2 3 × 3
6 14.5 22.7 1 × 1 21 23.4 39.9 3 × 3
7 20.0 17.4 3 × 3 22 20.6 33.9 1 × 1
8 17.1 19.5 1 × 1 23 16.2 38.5 1 × 1
9 24.0 23.5 1 × 1 24 13.3 32.4 3 × 3
10 22.1 28.1 3 × 3 25 1.3 39.4 3 × 3
11 8.2 14.5 3 × 3 26 2.6 34.8 1 × 1
12 12.5 16.2 1 × 1 27 5.9 37.4 3 × 3
13 5.4 10.9 1 × 1 28 10.6 35.9 1 × 1
14 1.1 13.5 3 × 3 29 7.0 29.5 3 × 3
15 6.4 18.2 3 × 3 30 3.8 31.3 1 × 1

When analysing the geometry of the SPIF-produced truncated pyramid, the occurrence
of a ‘pillow effect’ (i.e., non-flat workpiece bottom) was observed (Figure 6). This refers to
the large elastic springback of material in this zone. The occurrence of the ‘pillow effect’ has
an adverse impact on the accuracy of the specimen. This effect is particularly common in the
SPIF of large-scale parts. However, the flat bottom being undeformed further emphasises
this geometric error. In the selected forming conditions for the experimental truncated
pyramid, the pillow effect was detected in the amount of 0.3 mm. Further, profile deviation
near the clamped edge due to sheet bending can also be noticed. Neither detected error can
be disregarded if narrow tolerances are required.
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4.1. Effects of Mass Scaling (MS) of the Simulation

The analysis of mass scaling was performed on a FE model with other influential
parameters fixed: tool speed of 40 m/s and element size of 3 × 3 mm. All simulations
aimed to determine the influence of the mass scaling factor on the simulation time necessary
to perform FE analysis of the SPIF process were performed under the same hardware
conditions. In order to present only the relative change in time spent for the FE simulation,
we determined the parameter ‘relative CPU time’ comparing each CPU time at increased
mass scaling factors with the reference of MS 1. From Figure 7, it is evident that the time
spent for the simulation is significantly shorter with the increase of mass scaling up to the
factor of 10, for which the time is only 34% of the reference one. Further increases in MS
factor up to the value of 50 show a gradual decrease in time spent for the SPIF analysis. At
the MS factor of 25, only 25% of the reference time is necessary, while at the MS factor of 50,
the calculation is with relative CPU time of 18% already 5.55 times faster than reference
MS factor 1. In Figure 7, the power approximation (power series) with high R2 factor of
0.9937 delivers the correlation between the MS factor and relative CPU time used for the
SPIF process of the truncated pyramid. Through this, the necessary CPU times at particular
MS factors could be calculated. However, it is of highest importance for fast and reliable FE
analysis to evaluate the deviations from the reference results being defined from one side
with the simulation with the MS of 1 and on the other side with the measured experimental
results. Analysis of the pillowing effect in correlation with the mass scaling factor has
shown reliable results with minimal deviations in the range below 0.2 mm of the mass
scaling up to the value of 10. The range in the MS of 10 to 25 still delivers reliable results of
part thickness. However, the geometric error is here increased. Furthermore, at MS factors
above 10, a bulge shape is also expressed at central part of the specimen, which is not to be
observed in the experimental part.
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Figure 8 presents the simulated part shape and corresponding sheet thicknesses at
various mass scaling factors. It is evident that already at the mass scale factor 30, the
observed values of part shape show some irregularities. As shown for the MS factor of
50 in Figure 8d, excessive mass scaling delivers significant errors in the observed shape
of the specimen. Based on the results given in Figures 7 and 8, it can be concluded that
the simulation of the pyramid-shaped test specimen used in the presented study delivered
reliable data with the mass scaling factor of up to 25.
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4.2. Effects of the Mesh Element Size

The goal of reliable simulations is to attain the best results in the shortest available
time. In the case of the forming processes with long forming times, as in the case of the
SPIF process, the proper selection of mass and element size must be evaluated. Once the
reasonable combinations of mass scaling and element sizes are selected, their influence
on pillowing of the part’s bottom part is to be evaluated. However, the reliability of the
obtained results of FE analysis is connected not only with the mass scaling of the dynamic
explicit code but also with the selected mesh size. The anomaly of the results from Figure 8
may also be a result of overly coarse selected mesh. In order to evaluate the influence of
element size on the accuracy of the performed simulations, a comparative analysis at punch
speed of 40 m/s with mass scaling factor of 10 was performed for the mesh sizes 1 × 1 mm,
3 × 3 mm, and 5 × 5 mm. At the same time, the used CPU time for each mesh size was
analysed as well. As expected, the CPU time needed to evaluate the model with a mesh size
of 1 × 1 mm is drastically increased (Figure 9) in comparison to the mesh size of 3 × 3 mm.
In contrast, the reliability of the results is improved as well. From the accuracy point of
view; it is evident that the most desired mesh size is 1 × 1 mm, but such a simulation
requires 5.43 times more calculation time than the one with the mesh size of 3 × 3 mm and
9.17 times more than the one with a mesh size of 5 × 5 mm. However, the element size
of 5 × 5 mm is far too coarse to deliver reliable results. Through this, the combination of
the SPIF process parameters for producing the truncated pyramid presented in Table 1 are
approved as a reasonable combination for the evaluation of bottom pillowing.

The influential parameters of FE prediction of the SPIF were selected according to the
shown separate analyses of mass scaling and FEM element size being incorporated into
the design of experiment (DoE) with the parameter ranges of mass scaling of 1 to 25, tool
velocity from 10 m/s to 40 m/s, and two mesh sizes of 1 × 1 mm and 3 × 3 mm.

4.3. Setup of Design of Experiment and Neural Network Training

The range of the most important influential parameters of the mass scale factor, tool
velocity, and two ranges of element sizes were combined into a DoE plan as described
in Section 3.4. The plan of 30 different combinations of mass scaling, tool velocity, and
element size is presented in Table 1, while the design points generated by the JMP Fast and
Flexible Filling Design are shown in Figure 10.
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To obtain the final model of neural network training, the five models derived for the
optimal value of the tuning parameter were fit to the entire data set. The model that had the
highest validation log-likelihood was selected as the final model, and the results reported
pertain to that model. The relevant measures obtained during training and validation for
the three output variables are shown in Tables 2–4.
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Table 2. Training and validation measures obtained for Yb dependent variable.

Measure
Training Validation

1 × 1 mm 3 × 3 mm 1 × 1 mm 3 × 3 mm

R2 0.96333 0.8329518 0.85133 0.9829743
RMSE 0.01215 0.0240331 0.00962 0.0118796

Mean Abs Dev 0.01029 0.0185957 0.00934 0.0116857
Log-Likelihood −35.89955 −27.71259 −9.67549 −9.041989

SSE 0.00177 0.0069311 0.00027 0.0004234
Sum. Freq. 12 12 3 3

Table 3. Training and validation measures obtained for Ym dependent variable.

Measure
Training Validation

1 × 1 mm 3 × 3 mm 1 × 1 mm 3 × 3 mm

R2 0.76554 0.6807336 0.85159 0.9957846
RMSE 0.02925 0.0464511 0.01614 0.0021425

Mean Abs Dev 0.02146 0.0413569 0.01357 0.0020838
Log-Likelihood −25.35384 −19.80499 −8.12227 −14.18058

SSE 0.01027 0.0258925 0.00078 1.377 × 10−5

Sum. Freq. 12 12 3 3

Table 4. Training and validation measures obtained for Yc dependent variable.

Measure
Training Validation

1 × 1 mm 3 × 3 mm 1 × 1 mm 3 × 3 mm

R2 0.86605 0.7816902 0.95222 0.8552495
RMSE 0.01326 0.0505438 0.00818 0.0296336

Mean Abs Dev 0.00834 0.038575 0.00689 0.0213712
Log-Likelihood −34.8498 −18.79171 −10.16188 −6.299719

SSE 0.00210 0.0306561 0.00020 0.0026345
Sum. Freq. 12 12 3 3

The deviations of particular simulated shape were compared with the measurements
of the SPIF-produced part regarding the size of the arisen pillow defined as the difference
between the pillow border ∆Yb and the pillow near the centre ∆Yc as marked in Figure 11
for the comparison between experiment and the reference simulation.

All geometrical data of the pillowing are presented in Table 5. The values of the shifted
pillow centre are defined with parameter ∆Ym. From these data, the geometric error due
to the central deformation of the part can be calculated. The magnitude of the pillow
measured on the experimentally obtained specimen was ∆Yp,exp = 0.32 mm. Finally, the
size of the simulated pillowing, defined as ∆Yp,sim, was calculated for each combination
of mass scaling, tool velocity, and mesh size. The ∆Yp,exp and ∆Yp,sim are considered as
absolute values. The comparison of calculation times needed for the simulation of the
SPIF process (excluding the calculation of springback with the standard solver) for the
performed combinations of mass scaling, element size, and tool speed is also presented in
Table 5. The simulation time needed to calculate the test with MS factor 1, tool velocity
10 m/s, and element size 1 × 1 mm was considered as the reference time. The reference
time was 09:16:52 h.
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Figure 11. Comparison of experimental results with the results from the reference simulation of the
pillowing effect (bottom part of the specimen only).

Table 5. Calculation times and geometrical accuracy of simulated model versus the experimental part.

Test No. Time
Factor (%)

∆Yb
(mm)

∆Ym
(mm)

∆Yc
(mm)

∆Yp,exp
(mm)

∆Yp,sim
(mm)

Ref. values 100 0.13 −0.46 −0.51

0.32

0.96
1 3.8 0.72 −0.06 0.29 0.75
2 19.5 0.14 −0.56 −0.50 0.96
3 13.6 0.15 −0.61 −0.53 1.00
4 3.1 0.76 0.03 0.40 0.68
5 1.6 0.85 0.17 0.59 0.58
6 11.7 0.18 −0.67 −0.57 1.07
7 1.9 0.71 0.08 0.43 0.60
8 13.1 0.15 −0.61 −0.53 1.00
9 8.9 0.21 −0.51 −0.44 0.97

10 1.3 0.87 0.12 0.58 0.61
11 3.7 0.72 −0.11 0.24 0.80
12 17.2 0.16 −0.61 −0.52 1.01
13 37.4 0.15 −0.53 −0.48 0.94
14 9.0 0.71 −0.11 0.24 0.79
15 3.5 0.76 0.05 0.42 0.66
16 15.3 0.15 −0.59 −0.52 0.99
17 1.9 0.74 0.04 0.41 0.65
18 11.5 0.18 −0.66 −0.56 1.07
19 30.9 0.17 −0.52 −0.46 0.95
20 1.5 0.70 0.04 0.41 0.61
21 1.0 0.59 0.10 0.57 0.34
22 7.0 0.34 −0.49 −0.37 1.04
23 7.3 0.30 −0.48 −0.38 1.00
24 1.6 0.80 0.10 0.56 0.56
25 3.3 0.71 −0.01 0.35 0.68
26 16.0 0.12 −0.60 −0.53 0.97
27 1.8 0.79 −0.01 0.33 0.78
28 9.1 0.17 −0.58 −0.50 0.99
29 2.0 0.67 −0.02 0.42 0.57
30 31.7 0.17 −0.52 −0.46 0.95
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The analysis of the obtained results (Table 5) shows that the influence of the mass scal-
ing observed at a constant forming speed between 10 m/s and 40 m/s does not significantly
influence the shape of the simulated pillow in the observed MS factor range from 1 to 25.
On the other side, the element size has (as expected) influence on the formed shape of the
bottom pillowing. At a larger element size of 3 × 3 mm, less accurate simulation results are
observed, while the obtained pillowing is smaller. Furthermore, the spread of the obtained
FEM results of the pillowing is here significantly larger than with the 1 × 1 mm element
size. However, all simulations express more emphasised bottom pillowing than in the
case of the experimentally obtained part. It is evident from Table 5 that the pillow effect is
emphasised, and it measures at the largest part 1.07 mm when using a mesh element of a
size of 1 × 1 mm. At the same time, the central part of the bottom edge of the workpiece is
shifted downwards by 0.1 mm. This effect does not appear on the real part at all. Finally,
the central part of the simulated pillowing ∆Yc differs in drawing depth from the real part
from 0.37 mm to 0.57 mm depending on the observed DoE run. In contrast, the outer area
of simulated pillowing at the transition zone to the part’s wall ∆Yb is between 0.12 mm to
0.34 mm larger than measured on the real part.

If a mesh element with a size of 3 × 3 mm is used, the largest observed pillow effect
measures 0.80 mm, but the simulated geometry of the bottom of the piece lies mainly below
the experimentally obtained shape of the workpiece. In contrast to the results obtained
with the mesh size of 1 × 1 mm, the simulated part measured by the parameter ∆Yb differs
in this case from 0.57 mm to 0.87 mm at the outer area of the pillowed bottom. However,
the difference between the simulated and real part in its centre is from 0.24 mm to 0.59 mm.
The shift of the central point of the specimen is with the 3 × 3 mm element size 0.29 mm,
which is three times bigger than in the case of 1 × 1 mm element size. In all cases, the
simulations show a slightly larger bend of the workpiece at the tool trajectory.

The size of the mesh element commonly has a quadratic dependence on the CPU time.
As the size of the mesh element decreases, the calculation time increases quadratically. For
example, under identical conditions, the time needed for simulation calculations for a mesh
element with a size of 1 × 1 mm was nine times the time that was needed for the mesh
element with a size of 3 × 3 mm. Therefore, a fine mesh is to be applied only in the cases
where the prediction of process parameters is crucial for the geometrical accuracy of the
formed piece. For general evaluations of proper tool path and part shaping, the mesh could
be coarse, and a mass scaling factor up to 25 can be used.

Actual by predicted training and validation plots for the 1 × 1 mm and 3 × 3 mm
mesh sizes are given in Figures 12 and 13, respectively, while optimization plots are shown
in Figures 14 and 15. From the actual by predicted plots (Figures 12 and 13), it is obvious
that the neural network performed better with the data obtained for the 3 × 3 mm mesh
size, which is also confirmed by the respective R2 values (Tables 2–4), which show the
percentage of variability that the model is able to explain.

In order to identify the optimal combination of the investigated factors, a multivariate
data analysis was performed with the following variables: deviations of the simulated
shape in comparison to the real part at its outer bottom area, differences in the formed
depth of the part shape in the middle of a pillowed area, the magnitude of the pillow, and
the time spent for the numerical simulation.

The optimal parameter combination for the element size of 1 × 1 mm is the mass
scale of 19.01 and the tool velocity of 16.49 m/s. As it is evident from the optimisa-
tion plot in Figure 14, this parameter combination delivers the values ∆Yb = 0.12 mm,
∆Ym = −0.63 mm, and ∆Yc = −0.56 mm. The FE simulation delivered for the same
mass scaling and tool velocity the values of ∆Yc of −0.51 mm, ∆Ym of −0.60 mm, and
∆Yb = 0.16 mm. Both results are sufficiently close together to use the neural network as a
reliable tool for further evaluations.
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of 10 m/s (Figure 15). Here, the selected combination of both minimal values of the input
parameters is to be understood as constituting difficult conditions for the neural network
evaluation. The pillowing parameters obtained by the neural network optimization are ∆Yc
of 0.13 mm, ∆Ym of −0.17 mm, and ∆Yb = 0.65 mm, and the parameters calculated from
the numerical FEM model are ∆Yc of −0.42 mm, ∆Ym of −0.02 mm, and ∆Yb = 0.67 mm.
Here, the differences among the obtained pillowing results of both approaches are larger
than those observed at mesh size of 1 × 1 mm. Furthermore, the spread of the pillowing
curves is here larger than in the case of 1 × 1 mm. On the other hand, the calculation times
for larger element size are significantly shorter than those observed at the mesh size of
1 × 1 mm.

The comparison of the optimal numerical evaluation of the pillowing effect with the
experimental one is presented in Figure 16.
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5. Conclusions

This paper presents numerical analyses and evaluations of commonly used simplifica-
tions of numerical simulations for single point incremental forming. The analyses delivered
the following findings:

It can be concluded that mass scaling up to 25 times and time scaling up to 40 m/s
in numerical simulations can be freely used, since they do not have a crucial effect on the
accuracy of the predicted profile, including the pillow effect.

Likewise, the CPU time can be drastically reduced down to 30% of the initial time by
implementing the mass scaling effect up to the MS factor of 10. The MS factors between
10 and 25 can be used as well, but some irregularities at fast tool path changes are to be
expected. Increasing the size of a mesh element also has an immense effect on shortening
the CPU time.

The comparisons between the selected reference simulation having mass scaling factor
1, element size 1 × 1 mm, and tool speed of 10 m/s and simulations with different values
of mass scaling, tool speed, and element sizes have shown the decrease in calculation time
down to 1%, but the accuracy of such simulation is decreased as well. Therefore, extreme
speed-up of numerical simulations has to be used with precaution, since it influences the
prediction of the pillow effect.

Finally, analyses of the part bottom deliver excessive values of pillowing in all sim-
ulated cases for the analysed case study of a truncated pyramid, which has also been
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observed by other researchers, and further variable optimisation of the parameters needs
to be introduced to decrease this geometrical error.

The performed research work represents a solid base for further use of FEM and ANN
methods in shortening the simulation time of incremental forming. This is in particular criti-
cal when large-volume parts are processed with incremental forming technology. Therefore,
the results obtained here can be beneficiary for the professionals dealing with the design
of incrementally formed parts, particularly those with geometrically demanding shapes,
for which preliminary FEM verification of the tool trajectories and process parameters
are indispensable.

Since the ANN presented here was used in one geometrical case study only, the authors
will enlarge the applicability of the presented methods to more complex geometrical shapes
as well as various process parameters in order to build an engineering-oriented fast tool for
accurate prediction of incremental forming technology.
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13. Trzepieciński, T.; Oleksik, V.; Pepelnjak, T.; Najm, S.M.; Paniti, I.; Maji, K. Emerging trends in single point incremental sheet
forming of lightweight metals. Metals 2021, 11, 1188. [CrossRef]

14. Kumar, V.; Singh, H. Optimization of rotary ultrasonic drilling of optical glass using Taguchi method and utility approach. Eng.
Sci. Technol. Int. J. 2019, 22, 956–965. [CrossRef]

15. Micari, F.; Ambrogio, G.; Filice, L. Shape and dimensional accuracy in Single Point Incremental Forming: State of the art and
future trends. J. Mater Processing Technol. 2007, 191, 390–395. [CrossRef]

16. Ambrogio, G.; Cozza, V.; Filice, L.; Micari, F. An analytical model for improving precision in single point incremental forming. J.
Mater Processing Technol. 2007, 191, 92–95. [CrossRef]

17. Nasulea, D.; Oancea, G. Integrating a New Software Tool Used for Tool Path Generation in the Numerical Simulation of
Incremental Forming Processes. Stroj. Vestn. J. Mech. Eng. 2018, 64, 643–651. [CrossRef]
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43. Zuperl, U.; Čuš, F. A Cyber-Physical System for Surface Roughness Monitoring in End-Milling. Stroj. Vest. J. Mech. Eng. 2019, 65,
67–77. [CrossRef]

44. Hegedüs, F.; Bécsi, T.; Aradi, S.; Gáspár, P. Motion Planning for Highly Automated Road Vehicles with a Hybrid Approach Using
Nonlinear Optimization and Artificial Neural Networks. Stroj. Vest. J. Mech. Eng. 2019, 65, 148–160. [CrossRef]

45. Spaic, O.; Krivokapic, Z.; Kramar, D. Development of family of artificial neural networks for the prediction of cutting tool
condition. Adv. Prod. Eng. Manag. 2020, 15, 164–178. [CrossRef]

46. Zuperl, U.; Čus, F.; Zawada-Tomkiewicz, A.; Stepien, K. Neuro-mechanistic model for cutting force prediction in helical end
milling of metal materials layered in multiple directions. Adv. Prod. Eng. Manag. 2020, 15, 5–17. [CrossRef]

47. Petkar, P.M.; Gaitonde, V.N.; Karnik, S.R.; Kulkarni, V.N.; Raju, T.K.G.; Davim, J.P. Analysis of Forming Behavior in Cold Forging
of AISI 1010 Steel Using Artificial Neural Network. Metals 2020, 10, 1431. [CrossRef]

48. Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Topological Optimization of Artificial Neural Networks to Estimate Mechanical
Properties in Metal Forming Using Machine Learning. Metals 2021, 11, 1289. [CrossRef]

49. Merayo, D.; Rodríguez-Prieto, A.; Camacho, A.M. Prediction of Mechanical Properties by Artificial Neural Networks to Charac-
terize the Plastic Behavior of Aluminum Alloys. Materials 2020, 13, 5227. [CrossRef]
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