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Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent
the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multi-
ple advantages, including their capacity to carry different therapeutic agents, longer circu-
lation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy
evolved in terms of their designing strategies like geometry, size, composition or chemistry
to circumvent the biological barriers. Multifunctional nanoscale materials are widely used
as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine
involving multi-component chemotherapeutic drug-based combination therapy has been
found to be an improved promising approach to increase the efficacy of cancer treatment.
Next-generation nanomedicine has also utilized and combined immunotherapy to increase
its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy sys-
temic immune function. In this review, we have summarized the progress of nanotechnology
in terms of nanoparticle designing and targeting cancer. We have also discussed its further
applications in combination therapy and cancer immunotherapy. Integrating patient-specific
proteomics and biomarker based information and harnessing clinically safe nanotechnology,
the development of precision nanomedicine could revolutionize the effective cancer therapy.

Introduction
Cancer remains the most fatal and life-threatening disease worldwide, causing an estimated 19.3 million
new cases and 10.0 million deaths in 2020 [1]. Current therapeutic approaches are not found to com-
pletely cure the advanced cancer having distant organ metastases. Treatment of cancer follows several ap-
proaches, including locoregional (surgery and radiation therapy), chemotherapy, endocrine (hormone)
therapy, targeted therapy, etc. Such therapeutic approaches also possess certain disadvantages such as fa-
tigue, numbness, nail changes, hair loss, loss of appetite, mouth sores, nausea, weight changes, vomiting,
diarrhoea, heart damage, etc [2–6]. In spite of its huge potential, chemotherapy remains disadvantageous
in having off-target side effects and non-specific delivery [7]. Nanotechnology has become a promising
approach to overcome this limitation. The nano-sized materials provide opportunities for their use in
diagnosing, monitoring, controlling, preventing and treating diseases [8]. The concept of nanoparticles
was first adapted by Nobel laureate Richard P. Feynman in his famous lecture entitled “There’s plenty of
room at the bottom” in December 1959 [9]. Nanotherapy is the therapeutic strategy harboring nanoparti-
cles ranging from 10 to 100 nm for intravenous delivery [10,11]. Nanoparticles below 10 nm diameter are
prone to renal clearance [11]. Widely used examples of nanoparticles having anticancer efficacy are Doxil,
a liposomal formulation of Doxorubicin and Abraxane, an albumin-bound nanoparticle of paclitaxel [12].
These drugs also received approval from U.S. Food and Drug Administration (FDA). Apart from that, sev-
eral other nanotechnology platforms like organic, inorganic and organometallic nanoparticles have also
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Figure 1. Overview of the basis of multifunctional cancer nanotherapy and its potential applications

The figure describes the targeting strategies involved in nanotherapy, the composition of nanoparticles, types of cargo and its

further applications in combination therapies.

been used over the past two decades for therapeutic, diagnostic and theranostic purposes [13]. Nanoparticles can
be easily custom-tailored and advantageous in having the following features: (1) carry a high payload of biologically
active drug [11,14,15], (2) protects the drug from degradation, (3) contain large surface area to accommodate multiple
targeting ligands (4) larger surface to interact with multiple types of drug molecules, (5) controlled release profile of
drug and (6) potential to bypass multidrug resistant mechanism [11,16,17].

Nanotechnology also undergoes several barriers that hinder its successful translation into the clinic. Various bio-
logical barriers limit the functionality of the nanoparticles and their clinical outcome. Nanoparticles get easily phago-
cytosed and degraded by the macrophages of the liver, spleen, lungs, lymph nodes and skin [13]. According to recent
statistics, 0.7% of the total injected dose can get targeted to tumor. The primary reason for this failure is the formation
of protein corona (proteins adsorbed on the nanoparticle from plasma and/or intracellular fluid) around nanoparti-
cles and their subsequent opsonization (the process where opsonins or extracellular proteins bind to the surface of
the nanoparticles, causing the degradation of nanoparticles by phagocytes) and eventual phagocytosis [10,13]. High
encapsulation efficiency of a drug does not always lead to high therapeutic potential. Again, hydrophobic drugs which
precipitate over time also do not show significant efficacy [10]. Therefore, designing a potent yet stable nanoparticle
has always been challenging. In the following section, we will focus on the strategies acquired by the researchers in
designing effective nanoparticles to aid anticancer therapy and we will also describe the progress made so far with
nanotherapy.

By designing suitable combinatorial nanotherapeutics, one can achieve targeted delivery, reduce side effects of free
drugs, delay in developing drug resistance and accomplish synergistic drug interactions at low doses [18]. Onco-
genic signaling pathways can also be targeted using nanoparticles to selectively target the tumor cells without causing
systemic toxicity. Moreover, nanomedicine mediated anti-angiogenic drug delivery makes them more reachable to-
wards tumor vasculature. Furthermore, nanoparticles potentiate the gene therapy to introduce therapeutic nucleic
acids into target cells to achieve curative response in cancer patients [19]. Recently, nanotherapy has also been used
to deliver immunotherapeutic drugs in combination with conventional therapeutic modalities (e.g., chemotherapy,
RNAi therapy, photothermal, photodynamic and radiotherapy) to increase anti-tumor efficacy [20]. Minimally inva-
sive photothermal therapy allows killing of cancer cells by heat generated upon their exposure to the near infrared
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Figure 2. Targeting strategies of nanoparticles

Figure illustrating (A) the passive targeting (enhanced permeability and retention effect or EPR effect) and (B) the active targeting

into a tumor. In passive targeting, nanoparticles extravasate through the leaky blood vessels of tumor vasculature having gap sizes

of 100 nm to 2 μm. Due to poor lymphatic drainage, nanoparticles home at the tumor site. In active targeting, targeting ligands are

attached to the nanoparticles that specifically target cancer’s overexpressed receptors. The optimal size range to perform the EPR

effect is 20–200 nm.

(NIR) light [20]. Similarly, photodynamic therapy utilizes photosensitizers which upon exposure to light releases re-
active oxygen species and induce cellular toxicity toward tumors [20]. Radiotherapy induced radiation damage of
cancer cells is widely used in cancer treatment, which allows curative treatment of 40% patients out of >50% of the
patients with cancer treated by radiotherapy [20,21]. Cancer immunotherapy has gained tremendous attention for
providing long-term treatment in cancer, as it facilitates immunological memory induced delay in cancer remission.
One of the key challenges of implementing immunotherapy is off-target responses. Nanotherapy has potential to over-
come this challenge by delivering these immunotherapeutic drugs to desired target sites [22]. In this review, we have
discussed the potential applications and the strength of nanotherapy by combining therapies like chemotherapy, gene
therapy and immunotherapy. The central theme of this review is on engineering multifunctional cancer nanotherapy
as described in Figure 1.

Nanoparticle designing
Engineering multifunctional nanoparticle or precision nanomedicine still remains challenging. The primary aim of
nanoparticle design is to transport therapeutic drugs and imaging agents. Such cargos are loaded on to nanoparticles
either by chemical conjugation or by encapsulation [7]. Researchers found that the encapsulation technique remains
more effective for clinical translation of a low potency drug than chemical conjugation. In order to produce effi-
cacy, the drug should comprise at least 10% (wt/wt) of the entire nanoparticle composition [13]. While designing
nanoparticles, certain criteria are needed to be taken into consideration, such as stability, pharmacological reason-
ability, pathophysiological suitability, etc [13]. Current development of cancer nanomedicine has provided answers
to problems like (1) prolonged blood circulation to improve stability and bioavailability, (2) adequate tumor accumu-
lation and (3) controlled drug release and uptake by tumor cells having a release profile for specific targeting [16,17].

Prolonged blood circulation to improve bioavailability
Proteins present in biological fluids get adsorbed in the nanoparticles when administered. Such nanoparticle-protein
complexes get easily recognized by macrophages and phagocytosed [10,23,24]. To overcome this difficulty,
poly(ethylene glycol) (PEG) is often used to form a hydrophilic “stealth” [25]. PEGylation promotes solubilization
of the nanoparticles, prevents opsonization and increases the half-life of the drug in the blood stream [26]. Doxil
(liposomal doxorubicin) is a commonly used PEGylated nanoparticle. It shows ∼100 times longer half-life compared
with free doxorubicin in circulation [27]. Current research has utilized nanotechnology to increase the solubility of
potent but poorly soluble drugs such as cyclosporine, paclitaxel, amphotericin B, etc [28].
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Figure 3. Different types of linkages formed due to various chemical conjugation reactions for active targeting

Stability of the linkages under physiological conditions (pH 7.4): Hydrazide-aldehyde conjugation (acid-labile), amide bond (sta-

ble), thiol-thiol conjugation (cleaved under reducing condition), gold-thiol conjugation (stable), thiol/maleimide conjugation (stable),

azide/alkyne conjugation (stable) and streptavidin-biotin conjugation (stable).

Adequate tumor accumulation
Nanoparticles possess unique properties due to their small size termed as “enhanced permeability and retention ef-
fect” (EPR effect) (Figure 2A) [29,30]. Harboring this phenomenon, nanoparticles extravasate through the leaky blood
vessels (inter endothelial gaps as large as 500 nm) of the tumor vasculature and preferably accumulate at the tumor
site. Due to poor lymphatic drainage, they retain at the tumor site. This phenomenon is also termed “passive tar-
geting” (Figure 2A). Nanotherapeutics used for passive targeting are listed in Tables 1 and 11. However, targeting
nanoparticles to the tumor tissue does not always remain successful due to variable vessel permeability [7].

In order to circumvent these barriers, researchers have taken advantage of conjugating tumor-targeting ligands to
the nanoparticle surface resulting in “active targeting” (Figure 2B) [7,41]. Binding of ligand to exposed cell surface re-
sults in “receptor-mediated endocytosis”. However, receptor density plays a pivotal role in such targeting. Commonly
used targeting agents are proteins (antibody and its fragments), ligands of the up-regulated receptors (peptides, carbo-
hydrates and other small molecules) and nucleic acid aptamers [11]. Nanotherapeutics used for active targeting under
clinical trial are mentioned in Tables 2 and 11. Peptides have been widely used as receptor targeting moieties for active
targeting. Table 3 enlists an elaborate list of peptide-based targeting ligands which have already been reported by Gray
and Brown [42].
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Table 1 Nanotherapeutics used for passive targeting

Name Formulation Diameter (nm) Comments Ref.

SP1049C Pluronic micelle+DOX 22–27 Micelle nanoparticle [11,31]

NK911 PEF-Asp micelle + DOX 40 Micelle nanoparticle [11,31]

Doxil PEG-liposome +DOX 80–90 PEGylated liposome
nanoparticle with a more
extended time of circulation, less
toxicity, prevents phagocytosis

[11,31]

Genexol-PM PEG- poly(l-lactic acid (PLA)
micelle+paclitaxel

20–50 Micelle nanoparticle [11,31]

Abraxane Albumin+paclitaxel 120 (May dissolve upon
exposure to blood)

Albumin nanoparticle [11,32]

XYOTAX Poly-l-glutamic acid (PG) +
paclitaxel

Not reported Polymer nanoparticle [11,33]

LE-SN-38 Liposome+SN-38 Not reported Liposome nanoparticle [11,34]

CT-2106 PG+campothecin Not reported Polymer nanoparticle [11,35]

IT-101 Cyclodextrin-containing
polymer+campothecin

30–40 Polymer nanoparticle with
extended circulation times

[11,36]

CCN Candesartan cilexetil loaded
nanoemulsion

35.5 +− 5.9 Nanoemulsion formulation with
increased aqueous solubility

[37]

NCS-DOX Nanocapsules with oily selol core
and a shell of poly(methyl vinyl
ether-co-maleic anhydride) +
DOX

170 Poly(methyl vinyl ether-co-maleic
anhydride) nanocapsules
facilitate the co-delivery of drugs

[38]

NCI/NCa (DNase)-degradable DNA
nanoclew embedded with an
acid-responsive DNase I
nanocapsule (NCa) + DOX

150–180 DNA-based nanoparticle [39]

MWCNTs/DOX/TC TAT Chitosan functionalized multi
walled carbon nanotube
(MWCNT) + DOX

200–300 Multiwalled carbon
nanotube-based nanosystem

[40]

Table 2 Antibody and peptide-based nanotherapeutics used for active targeting in the clinical trial

Name Targeting agent Therapeutic agent Status Comments Ref.

Gemtuzumab ozogamicin
(Mylotarg)

Humanized anti-CD33
antibody

Calicheamicin FDA approved Antibody-drug conjugate
(ADC)

[11,43]

Denileukin diftitox (Ontak) Interleukin 2 (IL-2) Diphtheria toxin fragment FDA approved Recombinant fusion
protein of IL-2 attached to
diphtheria toxin fragments

[11,44]

Ibritumomab tiuxetan
(Zevalin)

Mouse anti-CD20 antibody 90Yttrium FDA approved Antibody–radioactive
element conjugate

[11,45]

Tositumomab (Bexxar) Mouse anti-CD20 antibody 131Iodine FDA approved Antibody–radioactive
element conjugate

[11,45]

FCE28069 (PK2) Galactose Doxorubicin Phase I clinical trial
(stopped)

A conjugate of HPMA
copolymer, Doxorubicin
and galactose

[11,46]

MCC-465 F(ab′)2 fragment of human
antibody GAH

Doxorubicin Phase I clinical trial
Immunoliposome-encapsulated
Doxorubicin (DXR)

[11,47]

MBP-426 Transferrin Oxaliplatin Phase I clinical trial Liposomal oxaliplatin
suspension for injection

[11,48]

SGT-53 Antibody fragment to
transferrin receptor

Plasmid DNA with p53
gene

Phase II clinical trial A complex of cationic
liposome encapsulating
p53 DNA sequence in a
plasmid backbone

[11,49]

CALAA-01 Transferrin Small interfering RNA Phase I clinical trial Polymer-based
nanoparticle having human
transferrin protein targeting
agent

[11,50]

BIND-014 Prostate-specific
membrane antigen
(PSMA)–targeted peptide
(GDHSPFT, SHFSVGS and
EVPRLSLLAVFL)

Docetaxel Phase II clinical trail PLGA-PEG nanoparticle [51, 52]
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Figure 4. Structural components of multifunctional cancer nanomedicine

Commonly used therapeutic agents are chemotherapeutic drugs, RNAi therapeutics, and imaging agents include MRI contrast

agents, radionuclides, fluorescent probes, etc. Therapeutic agents can either be covalently conjugated or non-covalently encap-

sulated. Attaching imaging probes with nanoparticles containing therapeutic agents make it a theranostic platform (this image was

drawn based on the information provided in Chou et al. 2011 [70], Figure 1).

Conjugation of ligands with the nanoparticles is mediated via covalent or non-covalent chemical conjugation. How-
ever, non-covalent conjugation often leads to weak bonding making it less efficacious. Covalent coupling is commonly
achieved with the conjugations of the following groups (1) hydrazide-aldehyde, (2) carboxylic acid-primary amine,
(3) thiol-thiol, (4) gold-thiol, (5) maleimide and thiol and (6) azide-alkyne. Different types of linkages formed due to
various chemical conjugation reactions are described in Figure 3 [60,61].

Size, shape and surface modification also remain essential to achieve effective tumor targeting (Figure 4). In order
to specifically target the tumor, nanoparticles must first travel in circulation without being engulfed by macrophages
[62]. Nanoparticles having a diameter of ∼5 nm undergo rapid renal clearance, whereas nanoparticles of 50–100 nm
diameter mostly accumulate in the liver. Larger particles >2000 nm in diameter tend to accumulate in the spleen.
It has been found that nanoparticles having a diameter of 100–200 nm can escape filtration by the liver and spleen
(Figure 5) [10]. Researchers observed that nanoparticles of size ranges 30-50 nm diameter showed maximum cel-
lular internalization ability [63]. Studies have also shown that the size of nanoparticles is also dependent on tumor
maturity. Reports suggest that with increasing particle size, the area of permeation within tumors become smaller
[64]. Gold nanoparticles with 15–45 nm diameter have been found to accumulate in tumors of 0.5-1 cm3 volume
or above [65]. Recent findings suggest that the shape of the nanoparticles also determines the cellular uptake [66].
Several nanostructures like 2D polygonal shape, 3D polygonal shape, rod, snowflakes, flowers, thorns, hemispheres,
cones, filaments, etc., have been designed to study their efficacies [62]. Recent studies have revealed that oblate shape
is favoured in circulation [62]. Mitragotri and co-workers have modified a solid polystyrene microparticle into a red
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Figure 5. Biodistribution of nanoparticles

Nanoparticles having different (A) size, (B) shape, (C) surface charge and their biodistribution in different organs. This figure will

guide us for designing organ-specific delivery of nanoparticles (this image was drawn based on the information provided in Blanco

et al. 2015 [10], Figure 5).

blood cell (RBC) shaped particle using layer-by-layer (LbL) self-assembly technique. The nanoparticles were syn-
thesized using PLGA, which can be used as a carrier for drug and imaging agents [67]. Additionally, RBC-derived
cell membrane and a hybrid membrane having membrane from RBC and cancer cell line were used for delivering
chemotherapeutic drugs and such methodologies can be explored for designing personalized nanomedicine [68,69].
Surface charge of the nanoparticles also plays a significant role in nanoparticle internalization (Figure 4). Current
studies have demonstrated that nanoparticles having a size range of 50–100 nm carrying a very slight positive charge
favour the penetration in large tumors [11].

A transient increase in blood pressure during systemic administration also causes increased tumor-specific
nanoscale drug delivery. For in vivo delivery, near the wall margination is favored that interacts with the tumor
vasculature bed. RBCs tend to travel in the middle of the blood flow, creating a “cell-free layer”. Spherical nanoparti-
cles follow the bloodstream whereas, rod-shaped nanoparticles undergo a lateral drift due to variable drag forces and
torques. Nanorods show a 7-fold higher accumulation at the vessel lining than nanospheres. Again, discs marginate
two times higher than rods. Particles are deposited at a higher rate at the site of the vessel bifurcation [62]. Additionally,
the “multivalency” of a nanoparticle can be harnessed to enhance the binding affinity or avidity of ligand to receptor
interaction [7]. It has been found that oblong-shaped nanoparticles are more helpful in forming more multivalent
interactions compared to spherical nanoparticles (Figure 6) [62]. The cellular internalization process also depends
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Figure 6. Multivalent interaction of nanoparticles (having different shapes) with cell surface receptors

(A) Role of the shape of nanoparticles on multivalent interaction with cell surface receptors. Compared with nanospheres, ob-

long-shaped nanoparticles can form more multivalent interactions, which is required for vascular targeting (this image was drawn

on the basis of information provided in Blanco et al., 2015 [10], Figure 3). (B) Role of contact angle of nanoparticles in intracellular

internalization. Rod-shaped nanoparticles tend to internalize faster when it is present perpendicularly on the cell membrane. Due

to the symmetry of the spherical nanoparticles, they do not prefer any specific contact angle (This image was drawn on the basis

of information provided in Toy et al., 2014 [62], Figure 2).

on another factor termed “membrane wrapping time” (Figure 7). Smaller nanoparticles tend to dissociate faster from
receptors before being engulfed by the membrane to achieve receptor-mediated endocytosis. Again, extremely large
nanoparticles limit the process of membrane wrapping. Chan and co-workers suggested that 40–50 nm nanoparticles
remain the critical cut off point for receptor mediated endocytosis [71].

Controlled drug release
An ideal drug delivery platform should possess the ability to target and control the drug release, which facilitates
sustained release of drugs [72]. Drug delivery often renders toxicity and side effects. These hurdles can be overcome
by controlled drug release. This feature also leads to a high therapeutic index for the conjugated drug molecule. The
binding of the drugs to the nanoparticles is achieved by adsorption, absorption, entrapment (the process of incorpo-
ration of a drug into a matrix) and covalent binding. The release of the drug molecules is decided on the basis of their
solubility, desorption, diffusion through nanoparticles matrix, degradation of nanoparticle matrix and combination
of such phenomena [73,74]. In many of such formulations, a phenomenon called “burst release” is often observed. A
large bolus of drug is immediately released before it reaches to a stable profile. Researchers found that low molecu-
lar weight drugs are prone to exhibit burst release profile. Burst release may often lead to local or systemic toxicity,
short half-life of drugs in vivo and shortened release profile [72]. Researchers have often modified the nanoparticles
to get over this difficulty. Le and co-workers have used chitosan to modify PLGA nanoparticles carrying paclitaxel
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Table 3 Receptor targeting peptide sequences

Receptors Cell line Peptide sequence Ref.

Met MDA-MB-231 YLFSVHWPPLKA [42]

HER2/ErbB2 MDA-MB-231 KCCYSL [42]

Transferrin MDA-MB-231, HeLa THRPPMWSPVWP [53]

αvβ3 MDA-MB-231, HUVEC CDCRGDCFC [42]

EGFR MDA-MB-468, MDA-MB-231 YHWYGYTPQNVI [42]

IL-6 receptor B9 LSLITRL [42]

Somatostatin receptor Type 2 (SSTR2) Breast, ovarian and cervical cancer cell
lines

fc[CFwKTC]T(ol) (Octreotide) (f :
DPhenylalanine, w : DTryptophan, c :

cyclic)

[54,55]

Ghrelin receptor (GnRH-R) Breast, lung, ovarian and prostate cancer
cell lines

pGlu-HWSYkLRPG-NH2 (pGlu :
Pyroglutamic acid, k : DLysine)

[54]

Bombesin/Bn receptors Prostate, breast, pancreas and small cell
lung cancer cell line

yQWAV-βAla-HF-Nle-NH2 (y : DTyrosine,
Nle : Norleucine, βAla : β-Alanine)

[54,56]

Vasoactive intestinal peptide receptors
(VIP receptors)

Breast, colon and endocrine cancer
tumor cells HSDAVFTDNYTRLRKQMAVKKYLNSILN-NH2

[54]

Neurotensin receptor 1 (NTSR1) Breast, colon and pancreatic cancer cells RRPYIL [54,57]

CCK2R Liver, thyroid and pancreatic cancer cells eAYGWMDF-NH2 (e : DGlutamic acid) [54]

MC1R Melanoma cells Ac-Nle-DHfRWGK-NH2 (Ac : Acetyl, f :
DPhenylalanine)

[54,58]

Human Y1 receptor (hY1R) Ewing sarcoma and breast cancer cell
lines YPSKPDFPGEDAPAEDLARYYSALRHYINLITRPRY-NH2

[54]

N-cadherin HUVEC SWTLYTPSGQSK [42]

Carbonic anhydrase IX Renal cell carcinoma cell lines YNTNHVPLSPKY [42,59]

Figure 7. Illustration of size (diameter) dependent nanostructure internalization due to membrane wrapping

This figure indicates that 40–50 nm gold nanostructures show optimum cellular uptake activity due to membrane wrapping. Smaller

nanoparticles readily dissociate from receptors before being engulfed by the membrane, whereas extremely large nanoparticles fail

to cause membrane wrapping (this figure was prepared based on the information provided in Jiang et al., 2008 [71], Figure 3A).
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Figure 8. Oncogenic receptor tyrosine kinase pathway with its downstream signaling pathways and small molecule in-

hibitors targeting different proteins of the network

Receptor tyrosine kinase (RTK) plays a significant role in cellular proliferation. MAPK and PI3K-AKT-mTOR pathways are two key

downstream pathways of RTK. Targeting these pathways has remained a successful approach to cause the antitumor effect. Small

molecule inhibitors have been widely used for targeting different components of such pathways. Several small molecule inhibitors

targeting different proteins of RTK signaling pathways are depicted in this diagram.

and monitored the drug release profile. They found that modification of PLGA nanoparticles with chitosan led to re-
duced burst release of drug [75]. Again, designed nanoparticles that are prone to transcytosis (the vesicular transport
of macromolecules from one side of a cell to the other) possess the potential to reach tumor cells and show efficient
anticancer efficacy [76].

Nanotechnology has made advancements in mediating anticancer therapy and imaging at the tumor microenviron-
ment. Several synthetic and natural nanoparticles have been used currently. These include polymeric conjugates and
polymeric nanoparticles ((N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, Poly(lactic co-glycolic acid)
(PLGA) copolymers, etc.; liposomes and micelles; synthetic organic nanoparticles such as dendrimers; carbon-based
nanostructures such as carbon nanotubes (CNTs) and polyhydroxylated/ PEGylated fullerenes; inorganic nanopar-
ticles of gold, silver, and iron oxide; quantum dots (QDs); viral capsids and ferritin, etc [7]. Liposomes are spherical
vesicles comprising of one or more lipid bilayers, especially phospholipids. Liposomes have been widely used as a
drug delivery vehicle. These increase the drug’s efficacy and therapeutic index by protecting the drug from the exter-
nal environment. Dendrimers are radially symmetric branched polymeric nanoparticles. They possess the properties
like poly valency, self-assembly, chemical stability, low toxicity and solubility. Dendrimers have been widely utilized
to deliver anticancer drugs. Polymeric nanoparticles contain random or block co-polymers. These are colloidal par-
ticles having a size range of 1 to 1000 nm. Drug delivery has been widely performed using polymeric nanoparticles,
either by encapsulation or chemical conjugation of drugs [18].

The delivery of chemotherapeutic drugs like cisplatin has been rigorously manipulated with nanotherapy to
overcome their toxicity. Sengupta and co-workers have designed a novel cisplatin nanoparticle by harnessing
PEG-functionalized poly-isobutylene-maleic acid (PEG-PIMA) co-polymer. Cisplatin is released in a pH-dependent
manner and shows improved antitumor efficacy both in vitro and in vivo with limited nephrotoxicity [77]. They
have also engineered another novel polymer glucosamine-functionalized PIMA to complex with platinum at a
unique platinum to polymer ratio. Such nanoparticles also exhibit improved efficacy against breast and lung can-
cer with reduced systemic and nephrotoxicity [78]. Sengupta et al. have also designed cholesterol-tethered platinum
II-based supramolecular nanoparticle with increased efficacy and reduced toxicity [79]. Prolonged use of cisplatin
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Figure 9. Rationale of nanoparticle-mediated combination therapy for cancer

Combination therapy has been divided according to the target of action and mode of delivery. The figure represents the individual

advantages of targeting same and different signaling pathways and the advantages of co-delivery over free drug delivery.

leads to nephrotoxicity. In order to overcome this limitation, other next-generation platinum-based drugs have
been developed. Carboplatin (cis-diamino-(1,1-cyclobutandicarboxylate)platinum(II)) has been used recently, but
it shows a cross-resistance with cisplatin. Oxaliplatin (cis-[(1R,2R)-1,2-cyclohexanediamine-N,N′]-oxalatoplatinum
(II)) does not show such cross-resistance with cisplatin and is also highly soluble in water. Moreover,
trans-1,2-diaminocyclohexane (DACH) ring of oxaliplatin adduct fills the major groove of DNA more efficiently than
cisplatin. Scientists have derivatized the monomeric units of a PIMA copolymer with glucosamine, which chelates
DACH platinum (II) and releases DACH-platinum in a sustained pH-dependent manner with reduced systemic tox-
icity and minimal kidney accumulation [80]. Kulkarni et al. also designed a computational algorithm to develop
nanoscale supramolecular structures for cancer treatment [81].

Nanotechnologies have also been currently used for genetic treatments by nanoparticle-mediated delivery of RNAi
therapeutics [10]. The primary challenge of RNAi-based therapeutics for its successful translation to clinics is the
instability of RNA molecules, their rapid degradation in presence of nuclease and poor cellular uptake because of
its highly anionic nature [82]. Genetic material, such as antisense oligonucleotides, mRNAs and siRNAs, and in the
specific case of plasmid DNA have been used to achieve gene therapy via nanoparticles.

Peptides have been used for targeted delivery of diagnostics and chemotherapeutic agents for anticancer therapy.
Peptides remain advantageous over other nanotherapeutics in terms of their self-assembling property, easy synthe-
sis, structural manipulation to achieve protease stability, functionalization property, conjugation to the cell surface
receptors and maximum therapeutic efficacy of cargo. Peptides show minimal toxicity, improved biodegradability,
rapid renal clearance, and remain stable at physiological conditions. Anticancer agents like paclitaxel/docetaxel, dox-
orubicin, curcumin, fluorouracil have been successfully loaded on to self-assembled peptides and evaluated for their
preclinical and clinical status [83]. Peptides have also been used as a potential molecular transporter based nanosys-
tem to deliver RNAi therapeutics like siRNA [84–86].

Table 4 enlists cancer therapeutics that either have received FDA approval or are currently undergoing clinical
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Table 4 Nanomaterials in clinical use

Nanomaterial Trade name Composition Application Manufacturer Current status Adverse effects

Metallic

Iron oxide NanoTherm Iron oxide NP
conjugate with surface
ligand aminosilane

Prostate cancer MagForce Phase 2b clinical trial Acute urinary retention

Feraheme®; Iron oxide
nanoparticles (coated
with polyglucose
sorbitol
carboxymethylether).

Imaging agent for
triple-negative breast
cancer, head and neck
cancer, nonsmall cell
lung cancer etc.

AMAG
Pharmaceuticals, Inc.

Phase 3 clinical trial Constipation, fluid
retention in the legs,
feet, arms or hands,
headache, nausea

Gold Aurimmune Tumor necrosis factor
(TNF)-gold
nanoparticle

Cancer therapy
(various cancer types)

CytImmune Sciences Phase 1 clinical trial Fever

Aurolase Silica-gold nanoshells
coated with PEG

Thermal ablation of
solid tumors:
head/neck cancer,
primary and/or
metastatic lung tumors

Nanospectra Pilot study Inflammation

Nanoshells Auroshell Gold metal shell and a
non-conducting silica
core

Cancer therapy (head
and neck)

Nanospectra
Biosciences

Phase 1 clinical trial Under investigation

Organic

Protein Abraxane Albumin-bound
Paclitaxel for Injectable
Suspension

Cancer therapy
(breast)

Abraxis Bioscience FDA approved Cytopenia

Liposome Doxil/Caelyx Liposomal Doxorubicin Cancer therapy Ortho Biotech FDA approved Hand-foot syndrome,
stomatitis

Polymer Oncaspar Pegylated form of
L-asparaginase

Cancer therapy (acute
lymphoblastic
leukemia)

Rhône-Poulenc Rorer Phase 2 clinical trial Urticaria, rash

CALAA-01 Formulation of siRNA
that consists of a
CD-polycation,
adamantane
(AD)–PEG (MW of
5000) conjugate and
AD-PEG-transferrin as
the targeting ligand,

Cancer therapy
(various cancer types)

Calando Phase 2 clinical trial Mild renal toxicity

Micelle Genexol-PM Paclitaxel-methoxy
polyethylene glycols
(mPEG)-Poly(D,L-Lactic
Acid) (PDLLA)
conjugate

Cancer therapy
(Various cancer types)

Samyang Phase 4 clinical trial Peripheral sensory
neuropathy, neutropenia

evaluation [87].

Nanoparticle in targeting oncogenic signaling pathways
Signal transduction pathways play a crucial role in cellular functions like survival, growth, differentiation and
metabolism. In the case of cancer, such signaling pathways remain altered, leading to uncontrolled proliferation,
immortality and tumorigenesis. Researchers have focused on identifying the drug targets to inhibit oncogenic sig-
naling pathways [28]. Classically, humanized antibodies and small molecule inhibitors have been used as potential
inhibitors to target such oncogenic pathways. But nanotherapy has helped target cancer cells selectively without caus-
ing toxicity to the healthy cells. The following section mentions key signaling pathways responsible for tumorigenesis
and the approaches taken to target such pathways.

Targeting receptor tyrosine kinase (RTK) pathway for
developing anticancer therapy
Receptor tyrosine kinase (RTK) plays a crucial role in major cellular processes like proliferation. Growth factors bind
to RTKs, resulting in the dimerization and activation of RTKs. The activation of the intracellular kinase domain of
RTKs triggers downstream pathways (Figure 8) [28]. Different types of RTKs have been identified depending on
growth factor ligands (e.g., epidermal growth factor receptor [EGFR], vascular endothelial growth factor receptor
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[VEGFR], fibroblast growth factor receptors [FGFR], platelet-derived growth factor receptor [PDGFR] etc.). In can-
cer, RTKs are aberrantly activated and their mutations lead to various disorders. Therefore, RTKs and their ligands
remain a potential drug target [28]. The inhibitors are mentioned in Figure 8.

Kulkarni et al. found that multi-receptor tyrosine kinase inhibitor (XL184) loaded liposomes mediated nanoscale
medicine improves intratumoral concentration, enhances antitumor efficacy and reduces toxicities [88].

Targeting the downstream signaling pathways also act as an alternative strategy. Mitogen-activated protein kinase
(MAPK) and phosphatidylinositol-3-kinase PI3K-AKT-mTOR (mammalian target of rapamycin) pathways are two
critical downstream pathways [28].

Targeting mitogen-activated protein kinase (MAPK) signaling
for developing anticancer therapy
MAPK pathway comprises a series of proteins like rat sarcoma virus (RAS), rapidly accelerated fibrosarcoma (RAF),
mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase 1/2 (ERK 1/2). This pathway
is up-regulated in most cancer types and responsible for abnormal proliferation leading to tumorigenesis. RAS, RAF
and MEK gained the most attention as therapeutic targets [28]. The progress in the therapeutic strategy targeting
MAPK pathway using small molecule inhibitors is mentioned in Figure 8.

Researchers found that PD98059, a selective MAPK inhibitor, conjugated with hexadentate-poly-D,L-lactic
acid-co-glycolic acid polymer potentiate the anticancer efficacy of cisplatin chemotherapy [89].

Targeting phosphoinositide 3-kinase (PI3K) pathway for
developing anticancer therapy
Phosphoinositide 3-kinase (PI3K) pathway is responsible for cellular processes like proliferation, growth, survival and
apoptosis. This pathway is mutated in 30% of all human tumors. Activated RTKs set off several downstream signaling
cascades, especially protein kinase B (Akt) and mammalian target of rapamycin (mTOR), responsible for various
cellular functions [28]. The small molecule inhibitors targeting this oncogenic signaling pathway are mentioned in
Figure 8.

Utilizing the nanotechnology, Harfouche et al. found that encapsulating LY294002, a PI3 kinase inhibitor into
biodegradable PLGA nanoparticle causes successful inhibition of Akt phosphorylation resulting in the inhibition of
proliferation [90]. Sengupta and co-workers have rationally conjugated PI3K inhibitors (PI103 and PI828) using a
cholesterol-based derivative, enabling supramolecular nano assembly with L-α-phosphatidylcholine and DSPE-PEG
[1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polythylene glycol)] to achieve increased antitumor
efficacy [91]. They have also suggested that a rational combination of cis-platinum nanoparticles and a PI3K-targeted
therapeutic remains a potential therapy for breast cancer [92]. Free nanoparticles or nanoparticles carrying different
therapeutic agents like oligonucleotides, cytotoxic drugs, antibodies, etc., have been used to target different oncogenic
pathways (Table 5).

Another approach to target oncogenic signaling pathways is mediated by siRNA delivery, a component of gene ther-
apy. Peptides have also been used as a molecular transporter-based nano-system to deliver siRNA targeting signaling
pathways [86,105,106,107]. This is discussed in the later section of this review.

Nanoparticle in tumor angiogenesis
Angiogenesis is a phenomenon of the formation of the new blood capillaries out of pre-existing blood vessels. This
phenomenon is essential for wound healing [108–111]. Cancer metastasis is also positively correlated with angio-
genesis [112]. Therefore, blocking angiogenesis is a practical approach to inhibit cancer progression. Commonly
available anti-angiogenic therapy harbors any of these two strategies: (1) damaging the existing blood vessels or (2)
preventing the formation of new blood capillaries [113]. Anti-angiogenic therapy is different from commonly used
tumor-targeted chemotherapy. It selectively targets the tumor-associated vasculature instead of the tumor cells, shows
increased bioavailability for systemically administered drugs compared with tumor-targeted therapy and requires a
low administration dose, leading to lesser systemic toxicity [113,114].

In spite of these advantages, chemotherapy-mediated anti-angiogenic therapy suffers from certain limitations.
The tumor vasculature remains unreachable to most of the anti-angiogenic inhibitors. Nanotechnology has be-
come an advanced and effective method to address this problem. Nanoparticle-mediated delivery of therapeutics
has been achieved following both passive and active targeting [113]. Researchers have shown that conjugating cy-
totoxic drugs or angiogenic inhibitors with nanoparticles prefer to home at the tumor site following the EPR effect
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Table 5 Nanoparticles used to target signaling pathways

Nanocarriers Materials/drugs
Cell line/animal
model Effects Ref.

Gelatin nanoparticles (D-NPs: gelatin
nanoparticles loaded with NF-kB
inhibiting decoy
oligodeoxynucleotides)

NF-kB inhibiting decoy
oligodeoxynucleotides
(Decoy oligonucleotides (decoy
ONs) epitomize an ideal
pharmacological tool to selectively
block NF-κB activation.)

Kupffer cells Inhibition of NF-κB activation by D-NPs in
kupffer cells (KC) D-NPs inhibit the
nuclear translocation of p65, a common
subunit of NF-kB. Improve survival and
reduction in liver damage

[93]

Folate-linked lipid-based
nanoparticles

NF-kB decoy RAW264.7 The NF-κB decoy shows an inhibitory
effect in cytoplasm (inhibition of NF-kB
translocation into nucleus of
LPS-activated macrophages)
Inhibit particular matter (size ≤2.5μm)
(PM2.5) induced neuroinflammation

[94]

Fisetin nanoparticles (FN)
(Fisetin, a natural flavonoid)

No cargo C57BL/6 mice primary
astrocytes

Restrict PM2.5 exposure-induced NF-κB
signaling activation.
Decrease PM2.5-induced astrocytes
activation.
Reduce pro-inflammatory cytokines IL-1β
and TNF-α

[95]

mPEG-PLGA nanoparticles Benzoylaconitine RBCs, RAW264.7 cells Inhibit the expression of NF-κB p65
Inhibition of NF-κB signaling to reduce
inflammation

[96]

Silica nanoparticles
(MSN-mesoporous silica
nanoparticles)

NF-κB p65 antibody (p65, also
known as RelA)

Balb/c mice Translocation and cell signaling
transduction (the nanoparticle binds to
p65, forming a complex, thereby
inhibiting the entry of p65 into nucleus)

[97]

Nano-Selenium (Nano-Se) No cargo Albino wistar rats Exhibit negative NF-κB immune
expression.
Reduces pancreatic injury and improves
pancreatic functions

[98]

Astragalus polysaccharide
nanoparticles
(Astragalus polysaccharide (APS) is
a water-soluble
heteropolysaccharide with bioactive
effects, A. Membranaceus stems or
dried roots derivative)

No cargo H9c2 cells/ C57BL/6
mice

Inhibition of TLR4/ NF-κB pathway
activation
Decrease the secretion of
proinflammatory cytokine

[99]

Niosome nanoparticle (vesicles
composed of biodegradable
non-ionic surfactants, which is an
alternative to liposomes)

Curcumin Human glioblastoma
stem-like cells (GSCs)

Reduce the mRNA expressions of NF-κB
and IL-6 and increase the expression of
Bcl2
Induce cell cycle arrest, ROS generation
and apoptosis
Anti-tumor effect

[100]

ABI-009 (albumin-bound-rapamycin
nanoparticle)

Rapamycin Gastroenteropancreatic
or lung neuroendocrine
tumors patients

mTOR
pathway inhibitor targeting cells with
TSC1/TSC2 genes mutations

[101]

Mesoporous silica nanoparticles γ-secretase inhibitors (GSIs) FVB/N adult mice MSNPs carrying GSIs used block Notch
signaling

[102]

Gold nanoparticles (AuNPs) No cargo C3H/HeN mice,
NOD-SCID mice

AuNPs could deactivate TGF-
β1(cys-rich protein) by directly binding to
the cysteine buried inside the protein
through covalent bonds (S–Au bonds ≈
40 kcal mol-1), disrupting the disulfide
bond in the protein, thus destroying the
structure and unfolding the protein.

[103]

Anthothecol-encapsulated
PLGA-nanoparticles (Antho-NPs)

Anthothecol (Anthothecol, is a
limonoid isolated from a plant
named Khaya anthotheca
(Meliaceae), which acts as an
antimalarial compound)

AsPC-1,PANC-1 and
Mia-Paca-2 cell

Antho-NPs are found to actively inhibit
the expression of Gli, Patched1, Bcl-2
and CyclinD1 in pancreatic CSCs.
Antho-NPs suppresses cell motility,
migration and invasion by up-regulating
E-cadherin and inhibiting N-cadherin and
Zeb1

[104]
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Table 6 Nanoparticles used for anti-angiogenic therapy

Nanoparticle Cargo Used against Comments Ref.

Polymer

HPMA TNP-470 (Caplostatin) Human melanoma, lung
carcinoma

Prevents crossing of
blood–brain barrier (BBB),
limiting neurotoxicity

[117]

Aminobisphosphonate drug
alendronate (Fosamax) and
paclitaxel/TNP-470

Osteosarcoma Inhibits bone metastasis [118]

Radionuclidelabeled, cyclized RGD
peptide

Solid tumors Used for diagnosis and
therapeutic application

[119]

PLGA LY294002 (PI3K pathway inhibitor) Zebrafish melanoma,
breast adenocarcinoma

Shows anti-angiogenic
effect

[90]

PLGA nanoparticle encapsulated within PEG
linked lipid envelop

Doxorubicin (covalently attached to
inner PLGA core) and anti-angiogenic
agent (combretastatin)

Melanoma Termed as “nanocell,”
shows an improved
therapeutic index with
reduced toxicity

[115]

PEGylated polyethyleneimine (PEI) consisting
RGD peptide PEGylated polyethyleneimine (PEI)
consisting RGD peptide

sFlt-1 gene Colon carcinoma Blocks VEGF binding to
membrane-bound Flt-1
receptor and inhibits
proliferation

[120]

VEGFR-2 targeting siRNA Mouse neuroblastoma Inhibits angiogenesis [121]

Polysaccharides and dendrimers

Chitosan coated poly-isohexylcyanoacrylate
nanoparticle

Anti-RhoA siRNA Breast cancer mouse
xenograft model

Inhibits tumor growth and
metastasis

[122]

Boronated polyamidoamine dendrimer VEGF121 Colon carcinoma in mice Shows anti-angiogenic
effect

[123]

Lipid-based nanoparticles (liposome and micelle)

Monomethoxy-polyethyleneglycolpolylactic acid
copolymer

TNP-470 Mouse melanoma Forms a micelle termed
“Lodamine” Inhibits
angiogenesis

[124]

Poly(ε-caprolactone)-polyethyleneglycol
(PCL-PEG)

Cyclic RGD pentapeptide (conjugated)
and Doxorubicin (loaded)

Kaposi’s sarcoma Forms a nanopolymeric
micelle Shows antitumor
activity

[125]

Ala-Pro-Arg-Pro-Gly (APRPG) peptide (for active
targeting), PEG and hydrophobic anchor
distearoylphosphatidylethanolamine (DSPE)

Adriamycin Colon carcinoma Shows antiangiogenic
effect

[126]

Neutral liposome Protein activated receptor-1 (PAR-1)
siRNA

Mouse melanoma Inhibits metastasis [127]

Carbon nanostructures

Fullerenols Doxorubicin Mouse melanoma Shows anti-angiogenic
effect

119

Inorganic nanoparticles

Dextran coated iron oxide nanoparticles Radiolabeled anti-VEGF monoclonal
antibody

Liver cancer in mice Destruction of tumor with
increased imaging
resolution

[128]

Folate receptor targeted superparamagnetic iron
oxide nanoparticle

Doxorubicin Liver cancer Does not show systemic
toxicity

[129]

PEGylated gold nanoparticle Doxorubicin Liver cancer in mice Shows antitumor activity [130]

[115,116]. Active targeting has also been effective in targeting angiogenesis. Anti-angiogenic therapy harbors target-
ing VEGFR, αvβ3 integrins and other angiogenic factors. Synthetic peptides having the recognition site for integrins
(cyclic Arginine-Glycine-Aspartic acid [cRGD]) have been widely used for targeted nanotherapy [113]. A plethora of
nano-vectors have been reported by researchers for nanotechnology-based anti-angiogenic therapy, including poly-
meric nanoparticles, liposomes and micelles, dendrimers, carbon nanostructures, inorganic nanoparticles (e.g., gold,
silver and iron oxide), etc. Recent nanotechnology-based anti-angiogenic therapies also use a gene silencing-based
approach using therapeutic genes or siRNA [113].

A few reports on nanotechnology-based anti-angiogenic therapy are provided in Table 6.

Nanoparticle-mediated gene therapy for cancer
Gene therapy is the modulation of gene expression towards treating a disease by cellular delivery of therapeutic nucleic
acid. It holds unique promise in alteration of specific tumor genes functioning via gene addition, gene correction or
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gene knockdown [16]. Several approaches of cancer gene therapy include (1) suicide gene therapy: introduction of
an enzyme expressing transgene into the cell that converts inactive prodrug into cytotoxic metabolite for host cells,
(2) gene silencing: suppression of gene expression by RNAi techniques like siRNA, shRNA, antisense oligonucleotide,
miRNA, etc., and (3) DNA vaccine: introduction of specific antigen encoding plasmid DNA into the cell to induce
immune response.

Gene therapy shows the potential to deal undruggable targets to treat cancer as compared with conventional treat-
ment by targeting cancer associated genes. Gene therapy can provide a solution to low bioavailability, reducing im-
mune system based recognition and delivery of the gene regulators [131]. The fundamental challenge in the engi-
neering of gene therapy is the development of clinically safe and effective delivery vectors. In clinics, both viral and
non-viral mode of delivery is being used for systemic gene delivery [132]. The viral delivery systems are associated
with various safety concerns as well as limited payload capacity and difficulty in large-scale production [16]. These
factors led to the development of interest toward non-viral synthetic vectors for gene therapy. The non-viral vectors
are advantageous in providing higher safety profile, low cost, large scale manufacturing potential, stability and higher
payload [132]. Nanoparticle and nanoscale gene delivery vectors have emerged as efficient candidates for intracellular
or systemic gene delivery.

Nanoparticle exploitation for gene delivery can be categorized into four groups : (1) lipid-based nanoparticles, (2)
polymer-based nanoparticle, (3) peptide-based nanoscale material and (4) inorganic nanoparticles.

Lipid-based nanoparticles
Lipid-based nanoparticles are the most widely used non-viral gene delivery vehicle [132, 133]. Cationic liposomes are
amphiphilic molecules which are made up of cationic polar head group, a hydrophobic domain and a linker connect-
ing the polar head group with the non-polar tail. This cationic liposomes are routinely used for gene delivery [134].
Incorporation of longer lipidic chain (having around 18 methylene group, which can span the whole membrane)
having unsaturation and small polar head facilitates the formation of conical shaped lipid in anionic membrane envi-
ronment, which promotes the hexagonal phase transition of the lipid bilayer from the lamellar phase [135]. Hexagonal
phase of the lipid bilayer is more fusogenic than lamellar phase. This transition of lamellar phase to hexagonal phase
of lipid bilayer leads to cellular internalization and endosomal release of the internalized lipid-based nanoparticle
[135]. Lipid nanoparticle containing ionizable lipids are designed in a way that it gets protonated at endosomal pH
range (4.5–6.5). The protonated cationic lipid interacts with the anionic lipid of the endosomal membrane, leading to
the transition of the lamellar phase to the hexagonal phase of lipid bilayer. Several liposomal nanoformulations have
been in clinical development like DOTAP-cholesterol, GAP-DMORIE-DPyPE, etc. The FDA approval of Alnylam’s
patisiran in 2018, is the first ever drug to successfully harness RNA interference to silence disease associated gene
expression was a key milestone. Further, FDA approved lipid based nanoparticles like givosiran, lumasiran estab-
lished a benchmark for lipid nanoparticle based drugs. Hou et al. have discussed in detail about the use of lipid based
nanoparticles for gene delivery, their drawback and engineering principles for engineering next-generation improved
lipid based nanoparticles [136].

Polymer-based nanoparticles
The chemical diversity and functionalization potential of cationic polymer based nanoparticle makes it an attrac-
tive class of non-viral gene delivery vehicle. Polymers are considered as inert but certain modification by biologically
active agents and counterions like spermidine or cell penetrating peptides improves the surface functionalization, nu-
cleic acid loading and particle transfection [16] PLGA nanoparticle is capable of delivering nucleic acid with minimal
toxicity but exhibit low transfection efficiency [16]. PLGA nanoparticles are surface functionalization with cell target-
ing or cell penetrating peptides to improve nucleic acid loading and cell penetrability. The condensation of negative
phosphate bonds of nucleic acid with the cationic polymers into polyplexes protects nucleic acid from degradation
during circulation [16].

Polyethylenimine (PEI) and its variants are among the most studied polymeric materials for gene delivery. The pres-
ence of nitrogen at every third position of the polymer increases the charge density and reduces the pH [132,137].
Various polymer-based nanoparticles such as dendrimers, polyion complex micelles (PICs), cyclodextrin, etc., have
also been explored greatly in gene therapy. The polymeric nanoparticle system owing to their facile synthesis and
flexible properties proves to be a new promising material for developing non-viral gene delivery system. The cationic
polymer can be conjugated with the negatively charged genetic material via electrostatic attraction at physiological
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pH and facilitating gene delivery. Ekladious et al. have discussed in detail about the rational designing, physicochem-
ical characteristics and advancements in different classes of polymer based delivery vehicle and their application in
different fields including gene therapy [138].

Peptide-based nanoscale material
Cell penetrating peptides (CPP) are a class of peptides facilitating the cellular internalization of nucleic acid based
therapeutics either by covalent or non-covalent conjugation. The cellular uptake of the CPP peptide depends upon
their sequence, structure, concentration and cell lines used for study [139]. The cellular internalization of cell pene-
trating peptides follow either by one or by the combination of the following mechanisms: (1) creating a transient pore
in cell membrane, (2) endocytic uptake and (3) receptor mediated uptake. Depending upon the sequence, the CPP
can be of cationic CPP or amphiphilic CPP.

The cationic CPPs are arginine or lysine rich short peptides. Arginine rich sequences are found to show enhanced
cellular uptake. The arginine can form a more efficient bidentate hydrogen bond than the monodentate hydrogen
bond formed by lysine with the anionic moieties like phosphate (PO4

3−), carbonate (CO3
2−) and sulfate (SO4

2−) on
the cell surface [140]. These interactions facilitate the cellular internalization of the arginine or lysine residue enriched
cationic peptides.

Amphiphilic peptides show enhanced cellular uptake by the formation of lipid rafts in the cell membrane. The
cationic part of the CPP interacts with the negatively charged therapeutic nucleic acid and the hydrophobic part
facilitates the cellular internalization of the peptide by interacting with the lipid bilayer [141,142].

N-Methylpurine DNA Glycosylase or MPG (GALFLGFLGAAGSTMGAWSQPKKKRKV) peptide is a great ex-
ample of amphiphilic CPP. The hydrophobic stretch of this amphiphilic CPP (underlined) adopts a transient β-sheet
structure creating a temporary channel in the cell membrane allowing the peptide–nucleic acid complex to internal-
ize [143,144]. Amphiphilic α-helical peptide like penetratin (RQIKIWFQNRRMKWKK) generally remains unstruc-
tured in an aqueous solution but tends to adopt anα-helical conformation while interacting with cell membrane [84].
Majority of CPP internalizes via endosomal pathway and are accumulated inside endosome. Two strategies employed
for endosomal escapes are use of (1) conformation changing fusogenic peptides and (2) proton buffering peptides
[84]. The conformation changing fusogenic peptides in endosomal pH (4.5–6.5) undergoes a conformational change
and ruptures the endosomal membrane by forming an amphiphilic helix [84]. These peptides are rich in histidine
and glutamic acid and are sensitive to pH change. pH sensitivity arises due to imidazole group of histidine side chain
having pKa value of ∼ 6.0 and glutamic acid side chain with pKa ∼ 4.3 allowing easy protonation and de-protonation
of these amino acids in endosomal environment.

Proton buffering peptides escape the endosomal entrapment by accumulation of proton absorbing peptides inside
endosome and disrupting the endosomal membrane by proton sponge effect. Imidazole ring of histidine having a
pKa value of nearly 6.0 shows high buffering effect by acting as a weak base inside endosome. This causes influx of
protons into the endosome and osmotic swelling causing endosomal rupture. Peptides provide advantage as a delivery
vehicle due to their biocompatibility, biodegradability and sheer limitless combinations and modifications of amino
acid residues inducing the assembly of modular, multiplexed systems [145]. Tarvirdipour et al. have discussed in
detail the designing principles and attractive features of peptide based nanoscale materials for gene therapy [145].

Inorganic nanoparticles
This includes carbon nanotubes, magnetic nanoparticles, calcium phosphate nanoparticles, gold nanoparticles and
quantum dots that are commonly used for gene delivery vehicles. The inorganic nanoparticles are resistant to micro-
bial attacks and provide good storage stability [146]. The functionalized single-walled nanotubes are reported to enter
premyelocytic leukemia and T-cell very easily, this ability is exploited to deliver nucleic acid into mammalian cells
[147]. Water soluble allotrope of carbon (C60) fullerenes modified to aminofullerenes has positive charge on them.
This aminofullerenes are reported to have high transfection efficacy of DNA into mammalian cells [148]. Inorganic
nanoparticles are reported to have great gene delivery efficacy on surface modification. Chen et al. have discussed
in great detail about the use of inorganic nanoparticle as a drug codelivery nanosystem [149]. Table 7 lists out some
of the important nanoparticle based gene therapeutic approaches. Advancement in clinical studies of engineered
siRNA-loaded nanoparticles has been discussed in Table 8 [150,151].
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Table 7 Nanoparticle-mediated gene therapy for cancer treatment

Type of gene therapy Drug Nanoparticles used Cancer type/cell line Effects Ref.

Suicide gene therapy Plasmid DNA encoding
saporin gene

U11 peptide functionalized
lipid-protamine-DNA
nanoparticle

Triple negative breast
cancer (MDA-MB-231)

Tumor size was found to
be significantly reduced in
in vivo mice model

[152]

Suicide gene therapy Plasmid DNA encoding
Herpes simplex virus
thymidine kinase (HSVtk)
gene

Poly(beta-amino ester)
nanoparticles

Pediatric brain tumors Increased median survival
in in vivo mice model

[153]

siRNA-based therapy c-Myc siRNA Gold-PEG nanoparticles Adenocarcinoma Reduction in tumor size by
80% in vivo

[154]

siRNA-based therapy Akt1 siRNA Polyethylenimine based
nanoparticle

Mouse colon cancer Reduced tumor growth [155]

siRNA-based therapy Polo-like kinase-1 siRNA
(siPLK1)

Hyaluronan containing
lipid-based (cholesterol,
DSPC, Dlin-MC3-DMA,
DMG-PEG and DSPE-PEG
amine) nanoparticle

Glioblastoma Increased gene silencing
efficiency and higher
survival in mice

[156]

siRNA based therapy Cell division
cycle-associated protein 1
(CDCA1) siRNA

Lipid (PEG lipids,
PEG-C-DMA lipids,
D-Lin-DMA lipids, DSPC
and PEG) nanoparticles

Hepatocellular carcinoma Significant anticancer
efficacy

[157]

siRNA-based therapy Cyclin targeting siRNA Peptide
MPG
(ac-GALFLGFLGAAGS
TMGAWSQPKKKRKV-Cya)
(Cya : Cysteamide)

HS68 fibroblasts, HeLa,
PC3, MCF-7 and
SCK3-Her2

Block cancer cell
proliferation by efficient
down-regulation of cyclin
B1 levels

[105]

siRNA-based therapy ERK1/2 silencing siRNA Peptide
c[-Arg-DHis-Arg-
DHis-Arg-Lys
(Lys(linoleyl)2)-Arg-
DHis-Arg-D

His-Arg-Glu-]-Lys(FAM)-NH2

Breast cancer
(MDA-MB-231)

Down-regulation of Erk1/2
gene level in TNBC cell line
MDA-MB-231

[86]

siRNA-based therapy Raf-1 siRNA Peptide based
Modified block
copolymers-poly(ethylene
glycol)-
poly(ε-caprolactone)-Tat
(GRKKRRQRRRG)
(MPEG-PCL-Tat)

C6 cells Cell death in rat glioma
cells

[106,158]

siRNA-based therapy VEGF siRNA Peptide
KALA (WEAKLAKAL
AKALAKHLAKALAK
ALKACEA)

PC-3 cells EGF sequence-specific
gene inhibition in prostate
carcinoma in vitro

[107]

siRNA-based therapy Polo like kinase-1 siRNA Multi-walled carbon
nanotubes with amino
functionalization

Human lung carcinoma Significant regression of
tumor volume

[159]

siRNA-based therapy Cyclin B1 siRNA and
survivin siRNA

Calcium phosphate
nanoparticles

Non-small cell lung cancer Significant gene silencing,
reduction in cell growth
and induction of apoptosis

[160]

miRNA-based therapy Tumor suppressor miR-31
and oncogenic miR-1323

Cysteamine functionalized
gold nanoparticle

Neuroblastoma and
ovarian cancer

Increased payload, efficient
cellular uptake and
reduced toxicity

[161]

miRNA-based therapy AntimiR-21 and
antimiR-10b

uPA peptide conjugated
PLGA-b-PEG
nanoparticles

Triple negative breast
cancer

Reduction in tumor growth
by 40%

[162]

shRNA-based therapy Doxorubicin encapsulated
PLGA nanoparticle and
Bcl-xL shRNA

Alkyl modified
polyethylenimine

Breast cancer cell line
MCF-7

Increased apoptosis of
tumor cells and enhanced
synergistic effect in
comparison with only
doxorubicin encapsulated
PLGA nanoparticle
treatment

[163]

shRNA-based therapy Akt1 shRNA Folate and chitosan
grafted polyethylenimine
copolymer

Human lung carcinoma Enhanced cell transfection
and reduced tumorigenesis

[164]

DNA vaccine Plasmid encoding prostate
stem cell antigen

Cationic RALA
peptide/pDNA
nanoparticles

Prostate cancer Showed anticancer activity
in vivo

[165]

Continued over
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Table 7 Nanoparticle-mediated gene therapy for cancer treatment (Continued)

Type of gene therapy Drug Nanoparticles used Cancer type/cell line Effects Ref.

mRNA vaccine mRNA encoding tumor
associated antigen gp100
and TRP-2

Lipid based (DOTAP,
DODAP, C12-200,
cKK-E12, DOPE, DSPC,
POPE, DMPC, DOPS,
cholesterol, PEG,
arachidonic acid, oleic
acid, myristic acid)
nanoparticle

Melanoma (B16F10) Promoted enhanced
cytotoxic T-cell response
and reduced rate of tumor
growth

[166]

Table 8 Nanocarrier-mediated siRNA delivery systems in clinical trials

Drug Disease Target Nanoparticle Company Status

Phase I

CALAA-01 Solid tumors RRM 2 (RNA recognition
motif domain of the Rbfox
family protein)

Cyclodextrin/PEG,
transferrin

Calando Pharm Terminated

ALN-VSP02 Solid tumors with liver
lesion

VEGF, KSP (kinesin spindle
protein)

SNALP (stable nucleic
acid-lipid particles)

Alnylam Pharm. Completed

siRNA–EphA2–DOPC Advanced cancer EphA2 (tyrosine kinase)(a
key effector of the
MEK/ERK/RSK pathway)

Liposome M.D. Anderson Cancer
Center

Not completed yet

Phase II

FANG Ovarian tumors FURIN (a protease enzyme) Liposome Gradalis, Inc. Active

Atu027 Advanced or metastatic
solid tumors

PKN3 (protein kinase N3) Liposome Silence Therapeutics Completed

siG12D LODER Pancreatic ductal
adenocarcinoma

KRASG12D Polymer matrix Silenseed Ltd. Ongoing

TKM- 080301 or
TKM-PLK1

Solid tumors PLK1 SNALP Tekmira Pharma Completed

DCR-MYC Hepatocellular carcinoma,
solid tumors,
non-Hodgkins lymphoma,
multiple myeloma,
pancreatic neuroendocrine
tumors

MYC Systemic/IV infusion Dicerna Pharmaceuticals Terminated

Nanoparticle-mediated combination therapy against cancer
Combination therapy, a treatment modality involving combination of two or more therapeutic agents, has now be-
come the cornerstone of cancer therapy since single drug based monotherapy failed to provide a considerable ther-
apeutic response. Enhanced therapeutic potential, reduced toxicity and prevention of drug resistance mediated by
combination therapy have hugely increased the therapeutic response of cancer patients. Combination therapy can be
designed in two different ways. First, targeting of different molecular pathways by multiple drugs can lead to delayed
cellular adaptation and oncogenic mutations. Second, targeting the same pathway could be helpful in the develop-
ment of synergistic interaction of multiple drugs with higher efficacy and target selectivity. Synergistic interaction is
best described by the Chou-Talalay method where combination index (CI) is less than 1 [167,168]. Boshuizen et al.
suggested that a synergistic drug interaction in a combination therapy can be rationally designed by invoking several
principles: (1) multiple targeting of a signaling pathway, (2) maximal driver pathway inhibition, (3) targeting agents
responsible for signal reactivation, (4) enhanced synthetic lethality, (5) targeting heterogeneous and drug resistant cell
populations in a tumor, (6) targeting immune cell function and tumor microenvironment modulation and (7) neoad-
juvant therapies [169]. Combination therapy also employs repurposing of drugs that were initially used for diseases
other than cancer. This approach saves the high cost and time required for granting FDA approval as the repurposed
drug is generally an FDA approved drug, thus cutting the cost of the treatment [170]. The synergistic agents involved
in modern combination therapies should ideally have a different pharmacological mechanism of action, exhibit no
cross-resistance or overlapping toxicities and target tumor heterogeneity [171]. By integrating the knowledge and
progress made in the field of mechanisms responsible for tumorigenesis, tumor microenvironment, therapy response
and cancer heterogeneity, an effective treatment can be designed [169].
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Nanoparticles have emerged itself as a potent tool to be used in combination therapy as they provide longer circu-
lation time of biologically active drug, reduced toxicity, improved drug solubility, controlled release and has specific
target potential [172]. Gurunathan and co-workers have elaborately described different types of nanoparticles medi-
ated combination therapies [173]. The rationale for designing nanoparticle-mediated combination therapy for cancer
treatment is provided in Figure 9. In Table 9, we have enlisted examples of nanoparticle-mediated combination ther-
apy for treating different types of cancer and their advantages over monotherapy.

In recent years, there has been an increase in the number of reports of multifunctional nanoparticle mediated
combination therapy aided with peptides. Some of the advantages of peptide-mediated combination nanotherapeu-
tics are tumor targeted delivery, presentation of tumor antigens for elicited immune response, sensitization of drug
resistant cells and reduced side effects [187]. Mehrotra et al. and Mallick et al. have elaborately enlisted different types
of peptide-based combination nanotherapeutics [187,188]. We have enlisted some of them in Table 10.

However, the current combination therapy treatment in cancer, especially in the case of metastatic breast cancer,
is still loaded with flaws having moderate efficacy but additive toxicity [18]. Drugs, when administered separately
without any modification, tend to not only cause an additive anticancer effect but also result in augmented adverse
effects of each drug as well. For achieving synergistic interactions, a definite ratio of the two free drugs needs to be
maintained. This ratio is generally determined in in vitro studies, and it is crucial that this ratio is to be maintained
at tumor site. The problem arises because in in vivo model it becomes virtually impossible to deliver the determined
ratio of free drugs in the tumor site. This is mainly due to the different pharmacokinetic properties, elimination and
metabolism rates of individual drugs. Delivery of non-fixed ratio of drugs can give rise to antagonistic interactions
and drug resistance in cancer cells [257]. For example, irinotecan and cisplatin (both cytotoxic drugs) show synergistic
interaction at 4:1 ratio but strong antagonistic interaction at 1:1 ratio and in the case of many anticancer drugs, when
the effective dose is below its optimum dose, it may give rise to drug resistant cells in tumor [257]. Another complica-
tion arises when the free drugs need to be administered by different routes and at different schedules. HER2 targeted
combination therapy with Trastuzumab (TRZ, a monoclonal antibody binding to HER2 receptor) and lapatinib (a
tyrosine kinase inhibitor blocking HER2 and EGFR pathways) have two different routes of administration. Lapatinib
is administered daily as an oral formulation, while TRZ is given weekly as an intravenous drug. This difference in
schedules and ways of administration of these two drugs makes the management of pharmacokinetic and pharmaco-
dynamic profiles more challenging and virtually impossible to achieve uniform temporal and spatial co-delivery [18].
Most standard chemotherapy guidelines prefer sequential delivery of free drugs over concurrent delivery due to tox-
icity issues. This also prevents the right temporal delivery of drugs with dissimilar pharmacokinetic properties [258].
To address these issues, nanoparticle-mediated co-delivery of those drugs may ensure the desired spatio-temporal
delivery and controlled release of drugs while maintaining the synergistic fixed ratio (Figure 10) [258]. Nanocar-
rier mediated co-encapsulated drugs having physically different properties show similar pharmacokinetic profiles,
extended drug half-life, solubility, tumor accumulation and synergistic drug interactions when compared with free
drugs administered sequentially or concurrently [18,257]. Cytrabine (an antimetabolite chemotherapeutic drug) and
danorubicin (a cytotoxic chemotherapeutic drug) has distinct pharmacokinetic properties as free drugs but when
co-encapsulated in liposomal nanocarrier as Vyxeos® exhibit similar pharmacokinetic profile [257]. Nanocarrier
mediated co-delivery of drugs enables targeting multiple signaling pathways, overcoming drug resistance and im-
munosuppression by cancer [257].

Various delivery systems widely used for co-delivery of two drugs include liposomes, dendrimers, polymeric
nanoparticles and water-soluble polymer conjugates. Lee et al. and Gurunathan et al. have elaborately reviewed
nanoparticle-mediated co-delivery of two or more drugs for cancer therapy as described in Table 11 [18,173].

In some instances, co-delivery of drugs in a single nanoparticle suffers from drug leakage and poor loading efficacy
[259]. To overcome this problem, researchers have conjugated two anticancer drugs via suitable covalent linkages
and then subsequently encapsulated the conjugate in a nanoparticle. For example, Aryal et al. have used ester linkage
for conjugating paclitaxel and gemcitabine and loaded the drug conjugate into a PLGA nanoparticle. Hydrolysis of
this ester linkage at mildly acidic pH (pH 6) of endosomal environment resulted in two separate functional drug
fragments [260]. Matlapudi et al. have conjugated Imatinib mesylate (abbreviated as IM, a tyrosine kinase inhibitor)
and 5-fluorouracil (abbreviated as FU, an antimetabolite) by hydrolysable succinyl linker (abbreviated as Su) which
forms amide linkage with each drug. This drug conjugate IM-Su-FU was incorporated in a human serum albumin
(HSA) nanoparticle. This HSA encapsulated drug conjugate (IM-Su-FU) nanoparticle exhibited higher anticancer
efficacy in in vivo lung cancer model compared to free drugs and only IM-Su-FU conjugate. Pharmacokinetic analysis
of this nanoparticle exhibited improved elimination rate, half-life and mean residence time (MRT) than free drug and
only IM-Su-FU conjugate [261].
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Table 9 Nanoparticle-mediated combination therapy with small molecules and nucleotide-based anticancer drugs

Drug 1
Mode of action
of drug 1 Drug 2

Mode of action
of drug 2 Indication

Comments on
combination Ref.

Sterically stabilized
liposomal DOX

Cytotoxic Liposome containing
Bcl-2 antisense
oligodeoxynucleotide,
G3139

Gene silencing In vivo melanoma
model

Combination showed
delayed tumor growth
and increased
accumulation of DOX
in tumor site than
monotherapy

[174]

Liposomal
daunorubicin

Antitumor antibiotic Cytarabine Antineoplastic
anti-metabolite

Patients having
refractory or recurring
acute myeloid
leukemia

The combination has
significant
antileukemia activity
with low toxicity.
Liposomal
encapsulation of
daunorubicin changes
the pharmacology
profile to decrease
toxicity and increase
delivery to tumor sites

[175]

Liposome-entrapped,
ends-modified raf
antisense
oligonucleotide
(LErafAON)

Gene silencing Cisplatin/epirubicin/
mitoxantrone/docetaxel/
gemcitabine

Chemotherapeutic
agents

In vivo pancreas or
pancreatic cancer
model

Increased tumor
growth inhibition as
compared with single
agents

[176]

aGD2-SIL(DOX)
Sterically stabilized
immunoliposomes(SIL)
encapsulated with
DOX, targeted to the
disialoganglioside
receptor GD2

Cytotoxic NGR-SL(DOX)
Sterically stabilized
immunoliposomes
(SIL) encapsulated
with DOX, targeted to
angiogenic endothelial
cell marker
aminopeptidase N by
peptide NGR

Cytotoxic In vivo neuroblastoma
model

Considerable
reduction of the
angiogenic potential
of various
neuroblastoma
xenografts

[177]

Non-pegylated
liposomal Doxorubicin

Cytotoxic Cyclophosphamide/
docetaxel

Cytotoxic Patients with
metastatic breast
cancer

Use of non-pegylated
liposomal Doxorubicin
in combination with
other drugs can be
used for the first-line
therapy against
metastatic breast
cancer

[178]

RGD SSL-DOX
(RGD-SSL-
RGD-modified
sterically stabilized
liposomes)

Cytotoxic RGD-lipo-siRNA
silencing
P-glycoprotein

Gene silencing In vivo mouse model
of drug-resistant
MCF7/A breast
cancer tumor

Combination
exhibited higher in
vitro toxicity and
greater inhibition of
tumor growth

[179]

VEGF siRNA in
polycation
liposome-encapsulated
calcium phosphate
nanoparticles

Gene silencing Doxorubicin Cytotoxic In vivo mouse model
of breast cancer

Combination showed
significant tumor
growth and
angiogenesis
inhibition

[180]

Polymeric
nanoparticle-
encapsulated curcumin

Cytotoxic Gemcitabine Cytotoxic In vivo mouse model
of human pancreatic
cancer

Enhanced tumor
growth inhibition
compared to single
agents.

[181]

VOR-POEOMA
Vorinostat
encapsulated into
poly(ethylene glycol)
monomethacrylate
(POEOMA)-based
disulfide cross-linked
nanogels.

Histone deacetylase
inhibitor

ETOP-POEOMA
Etopside encapsulated
into poly(ethylene
glycol)
monomethacrylate
(POEOMA)-based
disulfide cross-linked
nanogels.

Topoisomerase II
inhibitor

Human cervical HeLa
cancer cells

Combination showed
enhanced synergistic
cell killing efficiency

[182]

C60 fullerene Cytotoxic Doxorubicin Cytotoxic In vivo mouse model
of lung cancer

Combination resulted
in increased
apoptosis in tumor
cells and tumor
growth inhibition

[183]

Continued over
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Table 9 Nanoparticle-mediated combination therapy with small molecules and nucleotide-based anticancer drugs
(Continued)

Drug 1
Mode of action
of drug 1 Drug 2

Mode of action
of drug 2 Indication

Comments on
combination Ref.

Anti Bcl-2 siRNA
loaded
polyethylenimine
(PEI)-conjugated
graphene oxide
(PEI-GO)

Gene silencing DOX loaded
polyethylenimine
(PEI)-conjugated
graphene oxide
(PEI-GO)

Cytotoxic Human cervical HeLa
cancer cells

Sequential delivery
exhibited synergistic
effect. Codelivery
showed no significant
synergistic effect on
killing cancer cells

[184]

Palladium
nanoparticles (PdNPs)

Cytotoxic Trichostatin A (TSA) Histone deacetylase
inhibitor

Human cervical HeLa
cancer cells

Combination
exhibited synergistic
interaction and also
had an increased
effect on cytotoxicity,
oxidative stress and
caspase-3/9 activity

[185]

Palladium
nanoparticles (PdNPs)

Cytotoxic Tubastatin A (TUB-A) Histone deacetylase
inhibitor

TNBC cell line
MDA-MB-231

Combination had a
more pronounced
effect on the inhibition
of HDAC activity and
enhanced apoptosis
of cells

[186]

Figure 10. Schematic representation of nanoparticle-mediated ratiometric delivery of drug combination

The scheme represents the pharmacokinetics and biodistribution of ratiometric drug combination. Drug combination de-

livered sequentially or concurrently either by similar or different route of administration show a non-fixed ratio in biodis-

tribution of both the drugs. Nanoparticle mediated delivery of dual drugs maintain a fixed ratio of biodistribution of

drug combinations resulting in higher therapeutic efficacy (This image was drawn based on the information provided

in Zhang et al. 2016 [258], Figure 4). Adapted from “Body (female, teen)”, by BioRender.com (2021). Retrieved from

https://app.biorender.com/illustrations/61d7dc25883c8d00a22cf5c8.
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Table 10 Nanoparticle-mediated combination therapy having peptide-based anticancer drug

Peptide + Combination
drug Drug details Indications Comments Ref.

dPPA peptide + paclitaxel
prodrug + pheophorbide A

dPPA-1 peptide
–NYSKPTDRQYHF (anti-PD-L1)
paclitaxel- cytotoxic
pheophorbide A- photosensitier

In vivo, breast cancer and lung
metastasis

Increased NK cell and T-cell
activation causing inhibition of
complete lung metastasis and at
least 10% decrease in primary
tumor volume as compared with
either alone or combination of
paclitaxel and pheophorbideA

[189]

NuBCP-9 (Bcl-2 inhibitor)
peptide + paclitaxel

NuBCP-9
-Ac-FSRSLHSLLGC-NH2

paclitaxel-cytotoxic

In vivo, breast cancer Combination leads to reduced
IC50 value (100-fold) in paclitaxel
resistant cells and shows
complete tumor inhibition in
syngeneic mice model as
compared with only paclitaxel

[190,191]

Acetylated rapeseed protein
isolate derived peptides + DOX

From hydrolyzed ARPI peptides
3 bioactive peptides were
screened. Sequences are AGS,
PAS and YT. DOX- cytotoxic

In vivo, breast cancer Enhanced cellular uptake and
nuclear transport in comparison
with free DOX. Increase in tumor
inhibition and diminished
DOX-associated cardiotoxicity.

[192]

PMI + BIM (Bcl-2 inhibitor)
peptide + iNGR

PMI- p53 activating) peptide-
TSFAEYWNLLSP BIM- Bcl-2
inhibitor)
peptide-MRPEIWIAQELRRIGDEFNAYYARRV
iNGR- CD-13) targeting peptide
cyclic CRNGRGPDC

In vivo, colorectal cancer Increased tumor inhibition (15%)
with significant improvement in
biosafety and reduced body
weight loss compared with only
DOX.

[193,194]

aFLT1 peptide + DOX aFLT1 peptide- binds VEGFR1
isoform- GNQWFI-NH2

DOX-cytotoxic

In vivo, breast cancer Two-fold increase in tumor
inhibition

[195]

KLA + DOX KLA - mitochondrial membrane
disruptor) peptide
KLAKLAKKLAKLAK
DOX-cytotoxic

In vivo, colorectal cancer Marked increase in tumor
inhibition and mean survival time
as compared with only DOX

[196]

R8 modified AVPI peptide with
p53DNA+DOX

R8 modified AVPI peptide- cell
penetrating apoptotic peptide-
AVPIR8 p53 DNA- induces
apoptosis DOX-cytotoxic

In vivo, resistant breast cancer
model

4.4- and 2-fold increase in tumor
inhibition in drug resistant mouse
model as compared with equal
and high free DOX dose,
respectively

[197]

KLA peptide + chlorin e6 KLA peptide- membrane lysis
peptide-D-(KLAKLAK)2 chlorin
e6- generates singlet oxygen
causing membrane disruption

In vitro, cervical carcinoma Tenfold reduced IC50 value
compared to only peptide

[198]

Wilms tumor gene (WT1)
peptide-based
vaccine+gemcitabine

WT1 peptide- target antigens for
cancer immunotherapy
CYTWNQMNL Gemcitabine-
cytotoxic

Patients with advanced
pancreatic cancer

Combination was found to be
more effective than gemcitabine
alone and combination therapy
was well tolerated

[188,199]

Cep55/c10orf3 193+
Cep55/c10orf3 402 +
Cep55/c10orf3 283

VYVKGLLAKI + EFAITEPLVTF +
LYSQRRADVQHL antigenic
peptides

Patients with colorectal
carcinoma

Vaccination involving peptide
mixture could be more
efficacious compared with single
peptide to treat colorectal
carcinoma patients

[188,200]

“Peptide cocktail” RNF43–721: NSQPVWLCL
TOMM34–299: KLRQEVKQNL
KOC1(IMP-3)-508 (KTVNELQNL)
3 peptides derived from
oncoantigens
VEGFR1–1084: SYGVLLWEI
VEGFR2–169: RFVPDGNRI
2 peptides derived from
angiogenesis factors

Patients with advanced
colorectal cancer

Treatment with multiple peptides
was well tolerated without
systemic adverse effects. The
median overall survival time was
13.5 months

[188,201]

7-peptide cocktail vaccine RNF43: NSQPVWLCL
TOMM34: KLRQEVKQNL
FOXM1: IYTWIEDHF
MELK: EYCPGGNLF
HJURP: KWLISPVKI
5 tumor antigen-derived
peptides
VEGFR1: SYGVLLWEI
VEGFR2: RFVPDGNRI
2 vascular endothelial growth
factor receptor-derived peptides

Patients with metastatic
colorectal cancer

Patients exhibiting positive
cytotoxic T lymphocyte
responses to all seven peptides
had longer overall survival
compared with other patients
and this therapy is
recommended for further trials

[188,202]

Continued over
© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

23



Bioscience Reports (2022) 42 BSR20212051
https://doi.org/10.1042/BSR20212051

Table 10 Nanoparticle-mediated combination therapy having peptide-based anticancer drug (Continued)

Peptide + Combination
drug Drug details Indications Comments Ref.

KIF20A-derived peptide +
gemcitabine

KIF20A-peptide for trafficking of
molecules and organelles during
the growth of pancreatic cancer-
KVYLRVRPLL
Gemcitabine- cytotoxic

Patients with advanced
pancreatic cancer

The disease control rate was
44%. The median survival time
after first vaccination was 173
days and 1-year survival rate
was 11.1%. No severe adverse
effects of grade 3 or higher were
observed

[188,203]

GV1001 + gemcitabine GV1001 - telomerase peptide-
EARPALLTSRLRFIPK
Gemcitabine- cytotoxic

Patients with advanced
pancreatic cancer

This combination appears to be
safer with transient and weak
immune responses

[188,204]

E75 + GM-CSF E75- immunogenic peptide
derived from the HER2 protein.
KIFGSLAFL
GM-CSF =
granulocyte-macrophage
colony-stimulating factor

Patients with node-positive or
high-risk node-negative breast
cancer

Therapy considered safe with a
suggestion of clinical benefit.
Has been licensed for
commercial development

[188,205]

FNIII14+ Ara C FNIII14-peptide derived from
fibronectin-
TEATITGLEPGTEYTIYVIAL
Ara C – anti metabolic agent
cytarabine/arabinosylcytosine

In vivo minimum residual disease
(MRD) mice model

In mouse with MRD in bone
marrow, 100% survival was
achieved with this combination,
whereas Ara C alone prolonged
survival only slightly

[188,206,207]

D-K6L 9 + IL-12 D-K6L9 - induces necrosis in
cancer cells-Ac[D(K6L9)]-NH2

IL-12- pro-inflammatory
cytokine-interleukin 12

In vivo murine melanoma model This combination showed
long-term tumor growth
inhibitory effect

[188,208]

VEGFR2–169 + S-1 + cisplatin VEGFR2–169-RFVPDGNRI
S-1 - combination drug
tegafur/gimeracil/oteracil
cisplatin - cytotoxic

Patients with advanced gastric
cancer

The combination therapy was
highly effective and well tolerated
in advanced or recurrent gastric
cancer

[188,209]

LD8 + DOX LD8 – gramicidin A inspired
peptide
Boc-LA-DV-LL-DA-LV-DA-LL-DW-
OMe
DOX- cytotoxic

In vitro TNBC cell line
MDA-MB-231

LD8-DOX-NP induces G2 phase
cell cycle arrest and apoptosis of
MDA-MB-231

[210]

Challenges and future prospect of nanoparticle-mediated
combination therapy
Nanoparticle-mediated combination therapy has shown great potential in treating metastatic and drug resistant
cancer [262]. Combination therapies involving cytotoxic drugs, signal transduction inhibitors, immunotherapeutic
drugs, epigenetic agents and priming with apoptotic drugs have shown promising possibilities for cancer therapeutics
[258]. The success of nanoparticle mediated combination owes to its “3R” delivery principle, i.e., right place, right
dose and right time. To gain the benefits of nanocarrier mediated combination therapy, different databases and drug
development platforms are developed. EMBASE® and Ovid MEDLINE® are databases used for the co-delivery of
drugs. The drug combination development platform CombiPlex screens dual drugs and makes nanoscale formulation
for nanocarrier mediated co-delivery of drugs. CombiPlex platform first determines the synergistic ratio of free drugs
and then chooses a suitable nanocarrier to coordinate the pharmacokinetics of the free drugs and ensures the drugs
reach the tumor site in the desired ratiometric manner. CPX-351, developed from CombiPlex platform is an FDA
approved drug used for treating AML in adults. CPX-351 comprises cytarabine and daunorubicin in a synergistic
ratio encapsulated in a liposomal carrier [257].

Although nanoparticle-mediated combination therapy has immense potential, but the regime of
nanoparticle-based combination therapy is far from being able to cure metastatic cancers. 0.7% is the median
efficiency of delivery of the injected nanoparticle to the desired tumor site [24]. Additionally, the five-year survival
rates of most malignant cancer are still quite low and most combination approaches still depend on cytotoxic
approaches instead of molecularly targeted anticancer agents or nanoparticle mediated combination approach [263].
Saptura et al. has shown antagonistic drugs interactions used in combination can suppress the clonal expression of
singly-resistant cells in in silico model [264]. So antagonistic drug interactions should also be investigated and not
completely discarded. Although around five thousand clinical trials are ongoing worldwide for the development of
new combination therapy, Palmer and Sorger, 2017 claims that most of the combination therapy used follows the
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Table 11 Nanoparticle mediated co-delivery of drugs for cancer therapy

Carrier composition Therapeutics Indication Status Targeting Ref.

Liposome based co-delivery of drugs against cancer

PEG-Liposome Topotecan + Vincristine Brain cancer In vivo Passive [18,211]

Polymer-caged nanobins
(PCN); liposome
surrounded by
cholesterol-terminated
poly(acrylic acid)

Cisplatin + Doxorubicin Various cancers In vitro Passive [18]

Liposome Cytarabine + Daunorubicin Acute myeloid leukemia Phase II Passive [18,212]

Liposome Irinotecan + Floxuridine Colorectal cancer Phase II Passive [18,213,214]

The mixture of two
Liposomes

Irinotecan + Cisplatin Small-cell lung cancer In vivo Passive [18,214]

PEG-Liposome Quercetin + Vincristine Hormone- and TRZ
insensitive breast cancer

In vivo Passive [18,215]

Cationic, anionic PEG
Liposome

VEGF/ c-myc siRNA + Dox-
orubicin

MDR-breast cancer In vivo Passive [18,216]

Liposome 6-Mercaptopurine +
Daunorubicin

Acute myeloid leukemia In vitro Passive [18,217]

Dendrimer based co-delivery of drugs against cancer

G5 PAMAM dendrimer
(G5-Generation 5,
PAMAM-poly(amidoamine))

Antisense-miRNA21
+5-fluorouracil

Glioblastoma In vitro Active; miRNA
overexpression

[18,218]

Aptamer-G4 PAMAM
dendrimer conjugates
(G4-Generation 4)

Unmethylated
CpG-oligonucleotides+
Doxorubicin

Prostate cancer In vivo Active; a single-strand
DNA-A9 prostate-specific
membrane antigen, RNA
aptamer hybrid

[18,219]

Dendritic PEG
H2N–PEG–dendrimer–
(COOH)4

Paclitaxel + alendronate Cancer bone metastasis In vivo Both passive and active
Active by alendronate
molecule

[18,220]

RGDfK-G3 Poly-lysine
dendrimer (G3-Generation
3)

Doxorubicin + siRNA Glioblastoma In vitro Active; αvβ3 integrin [18,221]

Folate-G5 poly
-propyleneimine dendrimer
with ethylenediamine core
(G5-Generation 5)

Methotrexate +
all-trans-retinoic acid

Leukemia In vitro Active; folate receptor [18,222]

Polymer based co-delivery of drugs against cancer

PEG-PLGA Lonidamine + Paclitaxel Multiple drug resistant
(MDR) breast cancer

In vitro Active; EGFR [18,223]

Methoxy PEG-PLGA Doxorubicin+ paclitaxel Various cancers In vitro Passive [18,223]

PEG-PLA (PLA-poly(d,l,
lactic acid))

Paclitaxel, Etoposide, or
Docetaxel + 17-AAG

Various cancers In vitro Active; HSP90 [18,224]

PEG-PLA Combretastatin A4 + Dox-
orubicin

Various cancers In vitro Active; angiogenesis [18,225]

PDMAEMA-PCL-
PDMAEMA
poly(N,N-dimethylamino-2-
ethyl methacrylate)-
polycaprolactone-poly
(N,N-dimethylamino-
2-ethyl methacrylate)

Paclitaxel + VEGF siRNA Prostate cancer In vitro Active; VEGF [18,226]

PEG-DSPE/PLGA Combretastatin + Doxoru-
bicin

Lung carcinoma In vitro Passive [18,115]

PEG-PLA and
PEG-DSPE/TPGS (TPGS-
tocopheryl polyethylene
glycol)

Paclitaxel +
17-AAG(HSP90 inhibitor)

Ovarian cancer In vitro Active; HSP90 [18,227]

P(MDS-co-CES) poly
(N-methyldietheneamine
sebacate)- co-[(cholesteryl
oxocarbonylamido ethyl)
methyl bis(ethylene)
ammonium bromide]

Paclitaxel + Interleukin-12
or Bcl-2 siRNA

Breast cancer In vivo Active; Bcl-2 [18,228]

PEG-b-PHSA
PEG-block-poly(N-hexyl
stearate l-aspartamide)

Doxorubicin + Wortmannin Breast cancer In vitro Passive [18,229]

Continued over
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Table 11 Nanoparticle mediated co-delivery of drugs for cancer therapy (Continued)

Carrier composition Therapeutics Indication Status Targeting Ref.

PLN formulation ((DG)n)
(Polymer lipid hybrid
nanoparticles (NP)
co-loaded with DOX and
GG918)

Doxorubicin + GG918 Breast cancer In vitro Passive [230]

PLGA Vincristine + Verapamil Hepatocellular carcinoma In vitro Passive [18,231]

PLGA Paclitaxel + Tariquidar Breast cancer In vivo Active; functionalized with
biotin

[173,232]

PLGA Rapamycin + piperine Breast cancer In vitro Passive [173,233]

PACA
polyalkylcyanoacrylate

Doxorubicin + Cy-
closporine A

Various cancers In vitro Passive [18,234]

PEG outer shell, middle
PCL and inner CPCL core
(PCL- polycaprolactone;
CPCL- carboxylic
functionalized PCL)

Doxorubicin +Cisplatin Breast cancer In vitro Passive [173,235]

Bradykinin-potentiating
peptide decorated
chitosan nanoparticle

Bradykinin-potentiating
peptide + bioreductively
sensitive platinum (IV)
compound which becomes
cisplatin in intracellular
reductive environment

Hepatocellular carcinoma In vivo Passive [188,236]

Polymeric micelles based co-delivery of drugs against cancer

MPEG-b-P(LA-co-MCC)
(MPEG-b-P(LA-co-MCC)) -
methoxy poly(ethylene
glycol)-block-poly(1-lactide
-co-2-methyl-2-
carboxyl-propylene
carbonate)

Paclitaxel +Cisplatin Cervical cancer In vivo Passive [173,237]

PEG–PLL–PLLeu
poly(ethylene glycol)-
b-poly(L-lysine)-b-
poly(L-leucine)

Docetaxel + Bcl-2 siRNA Breast cancer In vivo Passive [173,238]

PCL-b-P(OEGMA-co-
AzPMA
POEGMA- poly(OEGMA);
OEGMA- oligo(ethylene
glycol) ethyl methacrylate;
co- copolymer;
AzPMA- 3-azidopropyl
methacrylate

Doxorubicin+ platinum(IV) Cervical cancer and
melanoma

In vitro Passive [173,239]

DA3 (deoxycholic
acid-conjugated PEI)

Paclitaxel + XIAP siRNA Colorectal cancer In vivo Passive [173,240]

Self-assembled polymeric
micelles

Paclitaxel + survivin siRNA Ovarian cancer In vivo Passive [173,241]

P–H/M (methoxy
poly(ethylene glycol)–
poly(caprolactone)
micelles)

Paclitaxel + Honokiol Breast cancer In vivo Passive [173,242]

Crosslinked
PEG-b-pAsp-b-pTyr

Docetaxel +lonidamine Breast cancer In vivo Passive [173,243]

Water-soluble polymer conjugate-based co-delivery of drugs against cancer

HPMA copolymer Doxorubicin+ dexametha-
sone

General cancer In vivo Passive [18,244]

HPMA copolymer TNP-470 + Alendronate Bone metastasis In vivo Active; bone [18,245]

HPMA copolymer Paclitaxel + Alendronate Bone metastasis In vivo Active; bone [18,118]

Branched PEG Epirubicin + Nitric oxide Colon cancer In vivo Passive [18,246–248]

Branched PEG Camptothecin + BH3 do-
main peptide

Ovarian primary tumor and
metastatic malignant
ascites

In vivo Active; luteinizing
hormone-releasing
hormone

[18,249]

HPMA copolymer Trastuzumab + PKI166 HER2 overexpressed
breast cancer

In vitro Active; HER2 [18,250]

HPMA copolymer 6.4 wt% gemcitabine + 5.7
wt% of Doxorubicin + 1.0
mol% tyrosinamide

Prostate cancer In vivo Passive [173,251]

Continued over
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Table 11 Nanoparticle mediated co-delivery of drugs for cancer therapy (Continued)

Carrier composition Therapeutics Indication Status Targeting Ref.

Microsphere-based co-delivery of drugs against cancer

Double-walled
microspheres,PLGA core
surrounded by PLLA shell
(PLLA- poly(L-lactic acid))

Doxorubicin+ Chitosan p53
DNA

Hepatocellular carcinoma In vitro Passive [173,252]

Carbon nanoparticle and carbon-based nanosystem based co-delivery of drugs against cancer

Nanodiamond Paclitaxel + Cetuximab Colorectal cancer In vivo Active, epidermal growth
factor receptor positive
cells

[173,253]

PEGylated lipid
bilayer-wrapped
nano-graphene oxide
(GOLDR)

Doxorubicin + Rapamycin Breast cancer In vitro Passive [173,254]

Metallic nanoparticle-based co-delivery of drugs against cancer

Silver nanoparticles
(SN-AK-DOX) (SNs- silver
nanoparticles; AK-
sanazole)

Sanazole + Doxorubicin Lymphoma In vivo Active, hypoxic cells [173,255]

Gold nanoparticles Doxorubicin+ Cisplatin,
+Capecitabine

Hepatocellular carcinoma In vitro Passive [173,256]

independent action model and provide therapeutic benefit due to patient-to-patient variability rather than additive
or synergistic drug interactions [265,266].

One of the key challenges in developing nanoparticle-based targeted therapy is the issue of toxicity of treatment
combinations. Seemingly rationally developed and assumed to be safe combination therapy in preclinical model may
fail in clinical trials due to toxicity, especially in the case of synergistic drugs which can lead to synergistic toxicity
as well due to similar mechanism of action or due to auto immune response of healthy tissue [169]. Mathematical
modeling has been helpful in predicting toxicity in pre-clinical trials and can be used as an efficient tool for predicting
the toxicity of drug combinations in a patient-specific manner [169]. Toxicity of the drug nanocarrier also needs to
be considered. Another hurdle in the success of combinatorial nanotherapeutics to be translated into clinics is the
lack of patients who are interested in participating in clinical trials. Approximately 40% of cancer trials fail due to the
scarcity of patients [169]. Cancer is a highly heterogeneous disease and cell type population in a particular type of
malignant tumor varies from patient to patient. For clinical trials to have higher success rates, efficient biomarkers
need to be identified first. Additionally, clinical trials should be performed on patients with a similar level of biomarker
expression. But due to the lack of patients enrolled in a clinical trial, such arrangements are not possible. Due to
the insufficiency of suitable patients for performing clinical trials, precise preclinical models need to be developed.
Researchers need to look beyond immune-competent mice model and use patient-derived xenograft in vivo models,
humanized mouse models and patient-derived organoids for a greater chance of success in clinical trials and such
models can also be used as an efficient tool for predicting the toxicity of drug combinations in a patient specific
manner [169].

Nanomedicine and combination nanomedicine for cancer
immunotherapy
Immunotherapy is a monumental breakthrough recently included in the existing therapeutic armamentarium against
cancer. It utilizes body’s own immune system to fight cancer. William Coley, known as the father of immunotherapy,
first attempted to treat cancer utilizing the immune system. However, this field got attention when James P. Alli-
son and Tasuku Honjo got the Nobel prize for cancer immunotherapy in the year 2018. Judy Perkins having stage
IV metastatic breast cancer, was the first lady to be cured successfully by immunotherapy [267]. Current cancer
immunotherapy comprises cytokine therapy, antibody-based therapy and adoptive cell therapy. However, complex
tumor microenvironment limits the efficacy of immunotherapy. In the tumor microenvironment, tumor cells can
polarize tumor associated macrophages (TAM) toward pro-tumorigenic M2 macrophages while decreasing antitu-
morigenic M1 macrophages to facilitate tumor progression. Moreover, cancer cells help to activate immune check-
points leaving the T cells in a state of anergy (lack of responsiveness to an antigen). Cancer immunotherapy inhibits
immune checkpoints to overcome the T-cell anergy, thereby its activation against cancer. Ipilimumab inhibits the
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cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) checkpoint in T cells leading to its activation. Similarly, pro-
grammed cell death protein 1 (PD-1) in T cells is inhibited by FDA-approved anti PD-1 antibody pembrolizumab
and nivolumab. Cancer cells overexpress the immune checkpoint protein programmed death-ligand 1 (PD-L1). The
PD-L1 inhibiting antibodies atezolizumab, avelumab, durvalumab are also approved by FDA [268]. These antibodies
block the inhibitory signal induced by interaction of PD-1 of T cell to PD-L1 of the cancer cell. Multiple colony stimu-
lating factor receptor 1 (CSF-1R) inhibitors are currently in clinical trials for their ability to polarize tumor associated
macrophages to anti-tumorigenic M1 phenotype [13].

Peptide-based drugs/vaccines can hugely advance cancer immunotherapy. Peptides can be designed in a more ra-
tionalized manner to target desired molecule of tumor or the tumor microenvironment. Yin et al. have designed a
peptide (IQIREYKRCGQDEERVRRECKERGERQNCHYVIHKEGNCYVCGIICL) mimicking the native structure
of the PD-1 molecule, which inhibited the interaction between PD-L1 of cancer cells and PD-1 of immune cells.
This peptide was developed as a potent drug for cancer immunotherapy [269]. Hazama et al. also developed a
peptide-based macrocyclic peptide (c[Ac-DYRYSAVYSIHPSWC]G) inhibiting the interaction between cluster of dif-
ferentiation 47 (CD47) of cancer cell and signal regulatory protein α (SIRPα) of macrophages and showed its in
vivo efficacy [270]. Peptide-based cancer vaccines can specifically stimulate cancer specific T cell response [271].
Peptide-based (9 amino acid residues) vaccine GP2 (IISAVVGIL) is currently in phase 2 clinical trial against breast
cancer [272]. Several other examples of peptide vaccines combined with other drugs are highlighted in Table 10.

Researchers have reported a number of combinatorial approaches where immunotherapeutic drugs are combined
with the conventional cancer therapeutics such as chemotherapy, RNAi therapy, photothermal, photodynamic and
radiotherapy as described in Tables 12-14 and Figure 11.

Chemotherapy with immunotherapy
Combination chemotherapy with cancer immunotherapy is a wide area of interest. In phase III clinical trial, albu-
min nanoparticle bound chemotherapeutic drug paclitaxel (Abraxane®) combined with atezolizumab (Tecentriq®;
FDA approved antibody of PD-L1) has recently demonstrated its efficacy in patients with advanced triple-negative
breast cancer (TNBC) [22,298]. However, some patients showed grade 3 (moderate to severe) or grade 4 (life
threatening symptoms) immune related adverse events [298]. Hence, combination of nanoparticle-mediated
chemo-immunotherapy may facilitate targeted and localized delivery to increase the therapeutic index, reduce
off-target toxicity and incidences of immune related adverse events. Tables 12 shows some examples of preclinical
studies on combination of nanoparticle mediated chemotherapy and immunotherapy.

RNAi therapy with immunotherapy
RNA interference (RNAi) therapy with siRNA, microRNA (miRNA) and short hairpin RNA (shRNA) is utilized
to silence genes of specific signaling molecules, cytokines and chemokines. However, this therapy possesses certain
limitations like rapid degradation of RNA-based drugs in circulation due to presence of nucleases, renal clearance,
poor cellular uptake because of anionic nature, etc [299]. Therefore, nanoparticles have been used to circumvent such
barriers. Gene therapy has been utilized in targeting immune checkpoints like PD-1-PD-L1 pathway [300]. Also, these
can be used with other cancer treatment modalities to induce immune stimulation against cancer. Few examples are
given in Table 13 where combination nanomedicine having immunotherapeutic drugs showed enhanced efficacy.

Photothermal, photodynamic and radiotherapy with
immunotherapy
Photothermal, photodynamic and radiotherapies are also used in combination with immunotherapy. In photother-
mal therapy, cancer cells can be destroyed and eliminated from the tumor tissues at 40–44◦C temperature due to
DNA damage, protein denaturation and disruption of cellular membrane [20]. However, it requires high temper-
ature for complete cell death, thus large tumors are prone to relapse. Thus combining photothermal therapy with
immune-stimulating agents and nanoparticles can synergistically induce anti-tumor efficacy for the treatment of
large established tumors and distant metastases.

Photodynamic therapy comprising combination of light with photosensitizers leads to the generation of reactive
oxygen species (ROS) and subsequently damage of subcellular organelles [301]. However, as a monotherapy, it does
not efficiently regress the tumor in an immunosuppressive tumor microenvironment [20]. It induces immunosup-
pression by the release of immunosuppressive cytokines. It provokes damage to the normal cells by releasing the
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Table 12 Combination nanomedicine having immunotherapeutic drugs with chemotherapeutic drugs

Chemotherapeutic
drugs Immunotherapeutic drugs

Nanoparticle delivery
system Cancer Type Outcome Ref.

Doxorubicin Anti–PD-1 antibody Synthetic high-density lipoprotein
(sHDL) like nanodiscs loaded
with DOX

CT26 and MC38 mouse
colon carcinoma

Induced strong anticancer
immunity and sensitized
tumors to immune
checkpoint blockade

[273]

Doxorubicin Cytosine–phosphate–guanosine
oligonucleotides (CpG-ONT)
(Immune-stimulating agent)

An RNA aptamer (recognizing a
prostate-specific membrane
antigen (PSMA)) bioconjugated
with a dendrimer attached with
CpG-ONTs loaded with DOX

In vivo and in vitro models
of prostate cancer
(22RV1)

Showed excellent
antitumor efficacy,
immune stimulation and
target specificity

[219]

Paclitaxel Toll-like receptor-7 (TLR-7)
agonist-imiquimod

Poly (γ-glutamic acid) (γ-PGA)
micro-dispersion system of drugs

In vitro and in vivo mouse
melanoma (B16-F10)

Showed robust
immunogenic tumor cell
death followed by
inhibition of secondary
tumors also

[274]

Paclitaxel TLR-4 agonist bacterial
endotoxin Lipopolysaccharide
(LPS)

Co-encapsulation by
PLGA-based nanoparticle

In vitro and in vivo murine
melanoma model
(B16-F10)

Tumor volume was found
40% less and immune
activation was observed

[275]

Paclitaxel Cytosine–phosphate–guanosine
oligodeoxynucleotides (CpG
ODNs) and IL-10 siRNA
(Immune-stimulating agents)

PLGA-based nanoparticles Murine melanoma model
(B16-F10)

Efficiently inhibited tumor
growth and increased the
animal survival rate

[276]

Cisplatin Cytosine–phosphate–guanosine
(CpG) (Immune-stimulating
agent)

Liposome Murine melanoma model
(B16-F10)

Strong synergistic effect
which increased apoptosis
and reduced tumor growth

[277]

Mitoxantrone treated
CT26 cancer cells
decorated with Cytosine–
phosphate–
guanosine (CpG) (a potent
TLR9 agonist) loaded
nanoparticle

Anti-PD-1 antibody Hyaluronic acid-cationic lipid
nanoparticle was loaded with
CpG

Murine model of
melanoma and colon
carcinoma (B16-F10-OVA
and CT26)

Complete tumor
regression in almost 78%
of CT26 tumor-bearing
mice and long-term
immunity against tumor
recurrence

[278]

Doxorubicin and immune
stimulating agent
CpG-loaded
microparticles

Immune checkpoint inhibitor
antibodies anti-CTLA-4 and
anti-OX40

PLGA-based microparticles Mouse lymphoma (EL4,
E20) and mouse
melanoma (B16-fLUC)
models

Generated systemic
immune responses that
suppressed injected and
distant tumors in a murine
B lymphoma model,
leading to tumor-free mice
Reduced tumor burdens

[279]

Doxorubicin Immunotherapeutic agent
interferon-γ (IFN-γ)

PLGA-based thermosensitive
nanoparticle

Murine melanoma model
(B16-F10)

Prolonged circulation time,
sustained drug release,
excellent synergistic
antitumor efficiency
against B16F10 tumor
bearing mice

[280]

Paclitaxel Interleukin-2 Hydroxypropyl-β- cyclodextrin
acrylate and two opposite
charged chitosan derivatives
based nanogels coated by RBC
membrane

Murine melanoma model
(B16-F10)

Enhanced antitumor
activity with improved drug
penetration and increased
antitumor immunity

[281]

Doxorubicin (DOX),
all-trans retinoic acid
(ATRA),

Interleukin-2 Lipid-coated biodegradable
hollow mesoporous silica
nanoparticle (dHMLB)

Murine melanoma model
(B16-F10)

Significant tumor growth
and metastasis inhibition

[282]

self-antigens [302]. Thus, to balance the immunosuppressive effects of mono-photodynamic therapy, immunother-
apy needs to be combined with it.

In radiotherapy, high energy ionizing radiation such as X-rays are utilized to cause free radical generation mediated
DNA and cellular damage leading to cellular death [303]. However, radiation therapy helps to develop anticancer
therapy, its solo use promotes immunosuppressive environment around tumor by recruiting immunosuppressive Treg
cells [304]. It causes increased production of immune-inhibitory molecules such as PD-L1 and transforming growth
factor-β (TGFβ) [305]. Thus, to overcome these problems of radio-monotherapy, combination of radiotherapy with
immunotherapy is implicated. Some examples are given in Table 14.
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Table 13 Combination nanomedicine having immunotherapeutic drugs with siRNA

Gene therapy
Immunotherapeutic
drugs

Nanoparticle delivery
system Cancer Outcome Ref.

Signal transducer and
activator of transcription-3
(STAT3) silencing siRNA

TLR-7 agonist imiquimod,
R837 (immune response
modifier)

PLGA NPs Murine T-cell lymphoma
model (EG7-OVA)

Inhibited tumor growth
efficiently

[283]

IL10-silencing siRNA CpG ODN Cationic PLGA-PEI
microparticles

Murine model of B cell
lymphoma (A20)

Better immune protection
of an idiotype DNA vaccine

[284]

TGF-β silencing siRNA A mannose-modified
lipid-calcium-phosphate
Nanoparticle based
vaccine containing tumor
antigen (Trp 2 peptide) and
adjuvant (CpG
oligonucleotide)

Liposome-protamine-
hyaluronic acid (LPH) NP

Murine melanoma model
(B16F10)

Boosted the vaccine
efficacy and inhibited
tumor growth by 52%

[285]

IL-6 silencing siRNA Radiofrequency thermal
ablation

Micelle like nanoparticle Mouse breast
adenocarcinoma (R3230
and MATBIII)

Reduced tumor growth [286]

PD-L1 silencing siRNA Photodynamic therapy Acid-activatable cationic
micelle

Murine melanoma model
(B16F10)

Significantly enhanced
efficacy for inhibiting tumor
growth and distant
metastasis

[287]

Next-generation combination nanomedicine for
immunotherapy
Immune checkpoint inhibitors were initially used in combination with other conventional chemotherapeutic drugs
or radiotherapy (Tables 12-14) to potentiate the tumor regression. At present, nanomedicines for immunotherapy
combines mechanistically inspired drug which can demonstrate a synergistic effect. Sengupta and co-workers have
designed a supramolecular bifunctional nanomedicine comprising amphiphiles which inhibits interaction of CD47
of cancer cell and SIRPα of macrophages and simultaneously the interaction of macrophage colony stimulating factor
(MCSF) and colony stimulating factor 1 receptor (CSF-1R). This nanomedicine increases the M2 to M1 repolarization
within the tumor microenvironment and improves the anticancer and antimetastatic efficacy in melanoma and breast
cancer model [306]. Mitragotri and co-workers designed a class of phagocytosis-resistant discoidal particles contain-
ing interferon-γ (IFN-γ). These particles showed efficient adherence to macrophages and directed their polarization
toward anti-tumor M1 phenotype in murine breast cancer model [307]. Other such combinations are described in
the next section.

Combination immunotherapy with signaling pathways
inhibitors
Next-generation cancer immunotherapy needs to be patient-specific to enhance its antitumor efficacy. Immunother-
apeutic drugs can be combined with signaling pathway inhibitors for better synergistic outcomes and to amplify the
efficacy of personalized medicine [308]. MEK inhibitors are used in combination with PD-L1 antibodies as MEK in-
hibition causes up-regulation of PD-L1 in cancer cells. In cancer, the dysregulated PI3K-AKT pathway also regulates
the PD-L1 expression [309]. Kulkarni et al. designed a nanomedicine combining PD1-PDL1 immune checkpoint in-
hibitor with kinase (MEK and PI3K) inhibitors for enhanced anti-tumor efficacy [81]. It has also been reported that
second generation anti-histaminic drugs like cetirizine, etc., in combination with immunotherapy, have improved the
anticancer efficacy [310].

Combination immunotherapy with GPCR inhibitor
Combination of G-protein-coupled receptor (GPCR) inhibitors and immune checkpoint inhibitors can amplify an-
titumor efficacy. CXCR4, a GPCR, is overexpressed in cancer cells which mediates cell proliferation, tumor growth,
metastasis and tumor relapse [311]. CXCL12, the chemokine binding to the CXCR4, is secreted from fibroblast cells in
the tumor microenvironment. CXCL12/CXCR4 axis is another molecular target for cancer treatment as this axis leads
to an immunosuppressive tumor microenvironment. Thus, combining plerixafore (AMD3100; CXCR4 inhibitor)
with immune checkpoint inhibitor anti-PDL1 antibody showed decreased tumor volume [312].
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Table 14 Combination nanomedicine of immunotherapeutic drugs with photothermal, photodynamic and radiotherapy

Photothermal/
photodynamic/
radiotherapy

Immunotherapeutic
drugs

Nanoparticle delivery
system Cancer Outcome Ref.

Combination of immunotherapeutic drugs with photothermal therapy

Photothermal ablation
(near infrared light)

Immunoadjuvants
oligodeoxynucleotides
containing the
cytosineguanine (CpG)
motifs

Chitosan coated hollow
Copper Sulfide
nanoparticles

Murine breast cancer
model (EMT6-OVA, EMT6)

Combined photothermal
immunotherapy is more
effective than
immunotherapy/
photothermal therapy
alone in mouse breast
cancer model

[288]

Photothermal ablation
(near infrared laser)

Adoptive T cell therapy Gold nanoshell Murine melanoma
(B16-F10)

Prevents primary tumor
recurrence post-ablation,
inhibited tumor growth at
distant sites, and
abrogated the outgrowth
of lung metastases

[289]

Photothermal ablation Anti-CTLA-4 antibody Single-walled carbon
nanotube

Murine model of breast
cancer (4T1)

Tumor metastasis
prevented

[290]

Photothermal ablation Gold nanostar Anti-PDL1 antibody Mouse bladder cancer
(MB49)

Both primary and distant
tumors were safely
eradicated

[291]

Combination immunotherapeutic drugs with photodynamic therapy

Photosensitizer
pyropheophorbide-lipid
conjugate (pyrolipid) in the
shell and oxaliplatin in the
core

Anti PD-L1 antibody Nanoscale coordination
polymer (NCP) core-shell
nanoparticles

Murine colorectal tumor
(CT26 and MC38)

This combination causes
regression of both primary
and distant tumors via
induction of strong cancer
specific immune response

[292]

Photosensitizer pyrolipid
(ZnP@pyro)

Anti PD-L1 antibody Zn-pyrophosphate (ZnP)
nanoparticles

Murine breast cancer
model (4T1)

Complete eradication of
primary and distant tumors
via systemic cancer
specific cytotoxic T-cell
response

[293]

Chlorin e6 (Ce6), a
photosensitizer and
imiquimod (R837), a
Toll-like-receptor-7 agonist

Anti-CTLA-4 antibody Upconversion
nanoparticles (UCNPs)

Murine colon carcinoma
(CT26)

Eliminates NIR laser
exposed tumors but
causes strong anticancer
immunity to inhibit distant
tumors also

[294]

TBC-Hf (derived fromn
tetra(pbenzoato)chlorin
and Hf) enabled
photodynamic therapy

Small-molecule inhibitor of
indoleamine
2,3-dioxygenase (IDO)

Chlorin-based nanoscale
metal−organic framework
(nMOF)

Murine colorectal models
(CT26 and MC38)

Effective local and distant
tumor rejection in
colorectal cancer models

[295]

Combination immunotherapeutic drugs with radiotherapy

Radiation therapy Cowpea-mosaic virus Cowpea-mosaic virus
nanoparticle

Murine ovarian cancer
(ID8- Defb29/Vegf-A-Luc
cells)

Resulted in improved
tumor growth delay and an
increase in tumor infiltrating
lymphocytes (TILs)

[296]

Radiotherapy Small molecule based
indoleamine
2,3-dioxygenase (IDO)
inhibitor

Hafnium (Hf)-based
nanoparticle

Mouse models of breast
and colorectal cancer

Eradication of local and
distal tumors in in vivo
models

[297]

Combination immunotherapy with epigenetic drugs
Epigenetic drugs can potentiate combination immunotherapy [313]. DNA hypomethylating agent
5-aza-2′-deoxycytidine (5-AZA-CdR) (a DNA methyltransferase inhibitor, DNMTi) combined with an anti-CTLA-4
monoclonal antibody showed enhanced antitumor efficacy in murine model of breast cancer [314]. In Phase Ib
clinical trial, the epigenetic drug guadecitabine was combined with ipilimumab (anti-CTLA-4 antibody) for patients
having stage III/IV melanoma. The DNA hypomethylating drugs cause upregulation of genes CD274, PDCD1LG2,
and CTLA-4 in the patients where resistance has developed. Currently, a PEG-based nanoparticle system was utilized
to deliver plasmid-encoding shPD-L1 (this plasmid down-regulated expresion of PD-L1 protein of cancer cells) in
combination with Zebularine (a DNMTi, causing overexpression of major histocompatibility complex I [MHC-I]
expression). This combination can effectively initiate anticancer immunity and prevent tumor relapse by a strong
anticancer memory [315].
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Figure 11. Next-generation combination nanomedicine for immunotherapy

(A) CD47 (cluster of differentiation 47; a transmembrane protein) is overexpressed on cancer cells and binds to SIRPα (signal regu-

latory protein α; a regulatory membrane glycoprotein) on immune cells to inactivate immune cells and escape immune surveillance.

Similarly, MCSF (macrophage colony stimulating factor; a secretory protein) released from cancer cells which binds to CSF-1R

(colony stimulating factor 1 receptor; a transmembrane protein) on immune cells and inactivates immune cells. A supramolecu-

lar nanoparticle, comprising anti-SIRPα antibody with a small molecule inhibitor (BLZ-945) of CSF-1R inhibits both the signaling

axes simultaneously and shows anti-tumor immune response. (B) Nanoparticle having immune checkpoint inhibitor and a small

molecule-based kinase inhibitor causes targeted disruption of kinase signaling only in cancer cells while keeping the PI3K and

MAPK pathways of immune cells untouched. This strategy enables inhibition of kinase signaling. (C) Chemokine CXCL12 (C-X-C

motif chemokine ligand 12), secreted from fibroblast cells binds to CXCR4 (C-X-C chemokine receptor 4), a G-protein-coupled re-

ceptor from cancer cells and promotes immunosuppressive tumor microenvironment. Combination immunotherapy with inhibitors

of CXCR4/CXCL12 axis can amplify the antitumor efficacy. (D) combination of epigenetic inhibitor (Zebularine, a DNMTi) with im-

mune checkpoint inhibitor of PD-L1 can potentiate combination immunotherapy.

Limitations and future prospect of nanoparticle-mediated
combination immunotherapy
Currently, immunotherapy is the latest approach that has emerged in finding a cure for cancer. However, only im-
munotherapy is insufficient to eradicate tumors due to : (1) lack of specificity and systemic toxicity, (2) low patient
response rate, (3) variable immune contexture of patients, etc., (4) impaired immune function and antibody activity
due to the acidic tumor microenvironment (Warburg effect), (5) divergent immune pattern of different organs, (6)
development of resistance against immunotherapy, (7) autoimmune adverse effect generation by immune checkpoint
blockade, (8) increased immune suppression with aging and (9) huge cost [316–318].

To advance the area of cancer immunotherapy in near future, toxicity issues associated with immunotherapy need
to be addressed. Since cancer is a highly heterogeneous disease, nanocarrier encapsulated precision combinatorial
immunotherapy will hold a great prospect in future cancer therapy. Tumor heterogeneity can be explored by the
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determination of biomarkers via genomic analysis of circulating cancer cells. Next-generation sequencing can be de-
ployed to explore immunogenicity of mutated genes. These data along with resources like cBioPortal, Project Genie
can be utilized in designing patient-specific immunotherapy in an effective and safer manner. Immunotherapy can
be further boosted by utilizing combinatorial approaches. This would require identification of optimal dosing and
delivering the same dose to the tumor site. This can be achieved by ratiometric dosing as described earlier. Mono
anti-PD-1 therapy often causes compensatory activation of other checkpoints (e.g., CTLA-4), leading to immuno-
suppression [319]. Thus, simultaneous blocking of inter-related checkpoints is necessary to design effective combi-
natorial immunotherapy. The gut microbiome or blood supply to the tumor site can also alter responses to cancer
immunotherapy by indirectly modifying tumor microenvironment [320]. Hence modulating these factors can help
combating resistance to immunotherapy. Furthermore, antagonizing low pH of tumor microenvironment by acidity
modulating drugs (proton-pump inhibitors) might act as a possible choice to overcome tumor resistance, potentiating
the existing immunotherapy [318]. Thus, optimizing the current immunotherapy with personalized combinatorial
nanomedicines can advance the development of next-generation cancer nano-immunotherapy.

Conclusion and future direction
The challenges of next-generation nanoparticle mediated multicomponent combination therapy and combination
immunotherapy need to amplify the therapeutic potential by providing the enhanced stability of cancer drugs in
biologically active form, reducing toxicity related issues, overcoming immunosuppression and preferentially accu-
mulating at the tumor site. Due to lack of fenestered or discontinuous endothelium, effective delivery of clinically
safe nanomedicine to less accessible tissues remains a considerable challenge. To achieve clinically potential, opti-
mized nanoparticle designing, innovation in designing the mechanistically inspired nanoparticle, targeting specific
metastatic foci, their delivery process and in vivo biodistribution based on structure and activity need detailed un-
derstanding. Integrating cancer biology and anti-metastatic nanotechnology, new strategies need to be engineered
considering the biological mechanisms of various stages of metastasis. Tumor microenvironment specific targeted
therapeutic intervention is desirable to improve the outcome. New guidelines need to be developed about engineering
multicomponent combination therapy and it requires extensive studies on various classes of drug combinations, our
understanding about inter-drug interactions for such cases, spatio-temporal release of anticancer drugs, nonspecific
activation of the immune system by such multicomponent combination nanomedicine, diversity of metastatic foci,
diversity of organ environment and delivery of biologically active multicomponent nanomedicine at the epicentre of
solid tumor. Such therapeutics need to be developed by integrating clinical trials with an adequate number of patients
having similar biomarker expression and the development of better pre-clinical models. Next-generation multifunc-
tional cancer nanomedicine and nanoparticle mediated combination immunotherapy having mechanistically ratio-
nal therapeutic combinations need to promote “multi-targeted therapy” by disrupting the adaptive chemoresistance
and potentiating the effect of therapeutic combinations. Integrating proteomics data of patient samples, combination
nanotherapy and immune-oncology, one may develop highly effective precision nanomedicine.
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