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Abstract

Neuroticism is a heritable personality trait associated with negative emotionality;

however, we know little regarding the association between the microscale and

macroscale neurobiological substrates of human neuroticism. Cross-scale correlation

analysis may provide such information. In this study, voxel-wise neuroimaging–

neuroticism correlation analyses consistently showed a positive correlation between

neuroticism and functional connectivity density (FCD) in the ventral striatum in

274 young Chinese adults. Partial least squares regression analysis showed that the

FCD-neuroticism correlation map was significantly spatially correlated with gene

expression profiles in each of six donated human brains. Neuroticism-related genes

derived from the six donors consistently showed significant enrichment in the

chemical synaptic transmission, circadian entrainment, long-term potentiation,

inflammatory mediator regulation of transient receptor potential channels, and

amphetamine addiction pathways. The protein–protein interaction analysis revealed

four hub genes involved in the above pathways, including G protein subunit gamma

10, 5-hydroxytryptamine receptor 2C, prodynorphin, and calcium/calmodulin-

dependent protein kinase II alpha. By combining multiscale correlation analyses and

functional annotations, this study advances our understanding of the genetic and

neural substrates of human neuroticism and emphasizes the importance of striatal

functional properties in human neuroticism.
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1 | INTRODUCTION

Neuroticism is a heritable personality trait reflecting an individual's

negative emotional reactivity and has been frequently related to

mood disorders (Mincic, 2015). An investigation of the neurobiological

substrates of human neuroticism may shed light on the neurobiologi-

cal predispositions for neuroticism-related mood disorders. The

neurobiological substrates of human neuroticism have been explored

from two aspects. First, candidate gene studies and hypothesis-free

genome-wide association studies (GWAS) (microscale-personality)

have identified hundreds of neuroticism-related genes and genetic

variants. Early candidate genetic association studies have identified

several genes and genetic variants associated with neuroticism, such

as serotonin transporter polymorphism, brain-derived neurotrophic

factor, and catechol-o-methyltransferase (Sanchez-Roige, Gray, MacKillop,
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Gelernter, 2005). More recent GWAS and meta-analyses of neuroticism

have found more consistent significant loci on chromosomes 1, 8, 9, 11,

15, 17, 18, and 22 and in neurodevelopmental process and neurotrans-

mitter pathways (Nagel, Jansen, et al., 2018). Second, neuroimaging–

neuroticism association studies (macroscale-personality) have revealed

significant correlations between neuroticism and structural and func-

tional properties of the human brain mainly in brain regions involving

emotional processing, including limbic regions (amygdala and hippocam-

pus) and neocortical regions (temporal, parietal, and occipital brain areas)

(Canli et al., 2001; Servaas et al., 2013; Wright et al., 2006). However,

we know little regarding the association between the microscale and

macroscale neurobiological substrates of human neuroticism, which is

critically important to create neurobiological pathways of microscale–

macroscale-neuroticism.

At least two strategies can be used in transcription-neuroimaging

association studies. One is to investigate the consistency of inter-

individual variations between transcription and neuroimaging profiles

and the other is to study the consistency of interbrain region

variations between them (spatial correlation across brain regions). The

former requires a very large sample of subjects with both transcrip-

tional and neuroimaging data, but no such data are available. The

latter can be performed in a single individual (such as any one of the

Allen Human Brain Atlas [AHBA] donors) who has both neuroimaging

and gene expression data with enough spatial coverage. Based on the

fact that some genes show high consistency in cortical regional

expression patterns across donors in the Allen microarray data

(Fu et al., 2020; Hawrylycz et al., 2015), the spatial expression

patterns of these genes in any human brain can be approximately

represented by those in AHBA donated brains (Liu et al., 2019). At

least for these conserved genes, we can investigate the spatial corre-

lation between gene expression from the AHBA donors and neuroim-

aging metrics from other individuals. In this study, we used a measure

of spatial expression stability (SES) to identify genes with conserved

transcriptional profiles and performed leave-one-donor-out cross-

validation analysis to validate the transcription-neuroimaging associa-

tion results. Although our method may miss genes with great inter-

individual variation but that are associated with neuroticism-related

neuroimaging phenotypes, our analyses can still provide insights into

how spatial patterns of gene expression relate to regional variations

of neuroimaging phenotypes to bridge the gap between macroscale

neuroimaging measures and microscale transcriptional profiles in

terms of neuroticism. By investigating sample-wise spatial correlations

between gene expression in the postmortem human brains from the

AHBA and neuroticism-related neuroimaging statistical map from a

different imaging dataset, one can identify genes whose transcrip-

tional profiles are associated with neuroticism-related macroscale

neuroimaging properties.

In this study, we performed comprehensive analyses to investi-

gate the neurobiological substrates of human neuroticism. We first

performed voxel-wise neuroimaging–neuroticism correlation analyses

to investigate the associations of FCD and gray matter volume (GMV)

with neuroticism scores in 274 healthy Chinese Han young adults.

FCD mapping was selected because it is ultrafast, comprehensive, and

hypothesis-free method for quantitatively assessing functional con-

nectivity at a voxel-wise level. Then, we performed genome-wide SES

analysis to identify genes with highly consistent transcriptional pat-

terns across brain regions in six AHBA brains. Third, a multivariate

partial least squares (PLS) regression analysis was used to investigate

the consistent transcription-neuroimaging associations to identify

genes whose transcriptional profiles were significantly associated with

neuroticism-related neuroimaging properties. Finally, we performed a

series of gene enrichment analyses to further characterize the biologi-

cal functions of the significant PLS genes. We expected to identify

new biological pathways and hub genes associated with human neu-

roticism and to provide new insights on the neurobiological substrates

of human neuroticism.

2 | METHODS

2.1 | Subjects

We recruited 323 healthy Chinese Han young adults with strong

right-handedness (157 males and 166 females; age: 22.7 ± 2.5 years,

range: 18–31 years) under the approval of the Medical Research

Ethics Committee of Tianjin Medical University General Hospital. All

recruited subjects signed an informed consent form and were strongly

right-handed assessed as the revised Chinese edition of the Edinburgh

Handedness Inventory (Oldfield, 1971). The final imaging analysis

included 274 subjects (126 males and 148 females; age:

22.8 ± 2.4 years; years of education: 15.6 ± 2.1 years) after excluding

49 subjects who did not fill out a personality assessment form (n = 23)

or had bad image quality, including metal artifacts (n = 8), brain abnor-

malities (n = 2), or excessive head motion (n = 16). Other exclusion

criteria included histories of psychiatric or neurological illness, drug or

alcohol abuse, and contraindications for MRI examinations.

2.2 | Personality assessments

Negative emotionality traits (Mincic, 2015), including neuroticism,

trait anxiety, harm avoidance and depression were assessed by the

Eysenck Personality Questionnaire (EPQ) (Eysenck, 1991), the

State–Trait Anxiety Inventory (Spielberger & Gorsuch, 1983), the

Tridimensional Personality Questionnaire (Cloninger, Przybeck, & Svrakic,

1991), and Beck Depression Inventory-II (Beck, Steer, & Brown, 1996),

respectively. We included the assessments of trait anxiety, harm avoid-

ance, and depression to reduce the influence of these traits on

neuroticism-related analysis because of the presence of strong correla-

tions between neuroticism and these traits (Mincic, 2015). Another

personality trait-extraversion, which is thought to be an independent per-

sonality dimension according to Eysenck's personality theory, was also

assessed by the EPQ.

We transformed the raw neuroticism score into a T score (T = 50

+ 10 × (raw score-mean)/SD) according to the Chinese population

norm of the EPQ (Qian, Wu, Zhu, & Zhang, 2000). The T scores of
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neuroticism were used in the following neuroimaging-personality

association analyses.

2.3 | MRI data acquisition

All subjects were scanned using a 3.0-Tesla MR system (Signa HDx,

General Electric, Milwaukee, WI). Resting-state functional images

were acquired with a single-shot gradient echo planar imaging sequence.

The parameters were as follows: repetition time (TR) = 2,000 ms; echo

time (TE) = 30 ms; field of view (FOV) = 240 mm × 240 mm; matrix =

64 × 64; flip angle = 90�; slice thickness = 4 mm, no gap; 40 interleaved

transverse slices; and 180 volumes. Sagittal 3D T1-weighted images were

collected using a brain volume sequence with the following scan parame-

ters: TR/TE = 8.1/3.1 ms; inversion time = 450 ms; flip angle = 13�;

FOV = 256 mm × 256 mm; matrix = 256 × 256; slice thickness = 1 mm,

no gap; and 176 sagittal slices. All participants were instructed to move as

little as possible, keep their eyes closed, think of nothing, and refrain from

sleeping during the fMRI scans. After scanning, a questionnaire was used to

assess their waking state during the fMRI scans. If the participant was not

awake, the fMRI data were discarded, and the participant was scanned

again.

2.4 | fMRI data preprocessing

The resting-state fMRI data were preprocessed using SPM12 (www.

fil.ion.ucl.ac.uk/spm) with the following steps. The first 10 volumes of

each functional time series were removed to allow the signal to reach

equilibrium and the participants to adapt to the scanning noise. Acqui-

sition time delays were corrected between slices for the remaining

170 volumes, and then these volumes were realigned to the first vol-

ume to correct head motions. We further excluded subjects with

translational or rotational motion more than 2 mm or 2�, respectively.

Moreover, we calculated the frame-wise displacement (FD), an index

indicating volume-to-volume changes in head position (Power, Barnes,

Snyder, Schlaggar, & Petersen, 2012). We obtained the FD from the

derivatives of the rigid body realignment estimates from the realign-

ment of head motion (Power et al., 2012; Power, Barnes, Snyder,

Schlaggar, & Petersen, 2013). These functional images were spatially

normalized to the Montreal Neurological Institute (MNI) standard

space using two-step normalization. We first coregistered individual

structural images (high-resolution T1-weighted images) to the mean

motion-corrected functional image by linear transformation. The cor-

egistered structural images were then segmented into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF), and the GM

was nonlinearly coregistered to the MNI space. Finally, the motion-

corrected functional volumes were normalized to the MNI standard

space by using the parameters estimated during the nonlinear cor-

egistration of the structural images. Subsequently, we resampled the

normalized functional volumes into a voxel size of 3 × 3 × 3 mm3. At

last, functional images were band-pass filtered with a frequency range

of 0.01–0.1 Hz and several nuisance covariates (including six

parameters of head motion and the average BOLD signals of the CSF

and WM) were regressed out.

2.5 | FCD calculation and analysis

The FCD value of each voxel was calculated using an in-house script

according to a method described previously (Tomasi & Volkow, 2011).

Functional connections were calculated using Pearson's linear correla-

tion, a functional connection was identified if the correlation coeffi-

cient between any two voxels was greater than 0.6 (Tomasi &

Volkow, 2012). The FCD of a specific voxel x0 was defined as the total

number of functional connections between x0 and all other voxels. To

minimize unwanted effects from susceptibility-related signal-loss arti-

facts, we applied a GM mask to restrict the calculation of the FCD to

voxels only in the GM regions with a signal-to-noise ratio >50

(Tomasi & Volkow, 2012). To improve the normality of the distribu-

tion, the grand mean scaling of FCD was obtained by dividing by the

mean FCD value of the qualified voxels in the whole brain. Finally, the

normalized FCD maps were spatially smoothed with a 6 × 6 × 6 mm3

full-width-at-half-maximum (FWHM) Gaussian kernel. In our study, to

keep the results reliable, we also used threshold r-values = .5 and .7 to

calculate the FCD.

2.6 | GMV calculation and analysis

All structural images were carefully checked slice by slice to ensure

image quality and exclude gross anatomical abnormalities. The struc-

tural MR images were segmented into GM, WM, and CSF using

SPM12, which is thought to reveal the density or concentration of

GM, WM, and CSF (Ashburner & Friston, 2000). Following segmentation,

a GM template was generated from the entire image dataset using

diffeomorphic anatomical registration through the exponentiated Lie

algebra technique (Ashburner, 2007). After initial affine registration of

the GM template to the tissue probability map in the MNI space, the

GM images were nonlinearly warped to the GM template in the MNI

space with a resolution of 1.5 mm3. The nonlinear components derived

during spatial normalization were used to modulate the GM value of

each voxel. According to the manual of the VBM8 toolbox (http://

www.neuro.uni-jena.de/vbm/segmentation/modulation/), GMV is

defined as the modulated output of the GM value of each voxel

corrected for intracranial volume. Finally, to compensate for residual

between-subject anatomical differences, the GMV images were

smoothed using a Gaussian kernel of 4 × 4 × 4 mm3 FWHM. Then,

the preprocessed GMV maps were used for further analysis.

2.7 | Personality-imaging (FCD and GMV)
association analysis

With SPM12 software, multiple regression analysis was used to inves-

tigate voxel-wise correlations between the FCD values in the whole
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brain GM and personality scores (neuroticism and extroversion,

respectively) at a connection threshold of r = .6 while controlling for

the effects of mean FD, age, sex, educational years, trait anxiety, harm

avoidance, and depression. To make the results reliable, we used the

same model of multiple regression analysis between personality

scores and FCD for two additional connection thresholds: r = .5 and

.7. Because trait anxiety and harm avoidance are most likely highly

correlated with neuroticism, to test whether removing these parts of

the variance would bias the results, we performed spatial correlation

between the uncorrected voxel-wise FCD-neuroticism correlation

map after controlling for trait anxiety and harm avoidance and the

uncorrected voxel-wise FCD-neuroticism correlation map without

controlling for trait anxiety and harm avoidance. In addition, we vali-

dated the FCD-neuroticism regression analysis by using Human

Connectome Project (HCP) data from the WU-Minn HCP Consortium.

Detailed information on data acquisition and preprocessing can be

found in the supplementary materials.

For personality score-FCD correlation analysis, we obtained the

significant clusters related to personality scores. Then, we used con-

nection probability maps to show the functional connectivity patterns

of these significant clusters. The connection probability maps were

generated individually for each voxel in the significant clusters and

then calculated to generate probability maps at the group level. Spe-

cifically, all the preprocessing steps were the same as those for the

FCD calculation. Then, at the individual level, for a significant cluster

in the FCD-personality analysis, we generated a functional connection

map for each voxel in this cluster for each subject and binarized each

connection of each voxel using the same connection threshold as that

used for the FCD calculation. Then, at the group level, we calculated

the number of connections of each voxel at the same connection

threshold and divided by the number of all subjects to generate a con-

nection probability map of each voxel in this cluster for this connec-

tion threshold. The connection probability maps could provide

information on which functional connections may contribute to the

FCD-personality correlation.

In addition, we also performed voxel-wise regression analysis to

determine the association between GMV and personality scores while

controlling for the effects of age, gender, years of education, trait anx-

iety, depression, and harm avoidance. Nonstationary cluster extent

correction was utilized to correct inhomogeneities of local smooth-

ness which might result in misestimating cluster size, producing false-

positive results (Kurth, Gaser, & Luders, 2015). Multiple comparisons

were corrected using the same method and threshold as in the FCD

analysis (i.e., voxel-level uncorrected p < .001 and cluster-level

corrected p < .05).

2.8 | Brain gene expression dataset

The Allen Institute for Brain Science provides the normalized microar-

ray expression data for six donated human brains (five males and one

female) with an average age of 42.5 years (https://human.brain-map.

org/). A total of 3,702 tissue samples were collected from the cortex,

subcortex, cerebellum, and brainstem in the six brains and only cere-

bral samples (cortex and subcortex) were included in our analysis.

Each tissue sample was measured using a custom Agilent 8 × 60 K

array chip, containing 58,692 probes for more than 20,000 genes.

More importantly, each postmortem brain underwent structural MRI

scanning prior to dissection to determine anatomical structures, which

was registered to the MNI standard coordinate space, and thus we

could obtain MNI coordinates for each sample, providing an opportu-

nity to bridge the gene expression dataset and imaging dataset.

Although the AHBA did not include resting-state fMRI data and per-

sonality assessments, we were able to investigate sample-wise spatial

correlation between gene expression data from the AHBA and

personality-related imaging metrics from our imaging dataset. Details

of the data normalization, probe filtration, annotations from probes to

genes are provided in the supplementary methods.

2.9 | SES calculation

Differential stability has been proposed as a correlation-based metric

for measuring the reliability of the expression patterns of the differen-

tially expressed genes across brain structures in the six donated brains

(Hawrylycz et al., 2015). Using the same line of thinking, we proposed

SES to measure the reliability of the spatial expression patterns of the

genes of interest across brain structures in the six donated brains. For

a certain gene, we calculated the Pearson correlation coefficient of

gene expression across common brain regions between each pair of

donated brains; and then defined the SES of this gene as the average

Pearson correlation coefficient over all 15 donated brain pairs. The

bootstrapped 95% confidence interval (CI) of SES was used to esti-

mate the probability of the true mean. The common brain structure

was defined by using an automatic anatomical labeling (AAL) template

(Tzourio-Mazoyer et al., 2002); we matched tissue samples to AAL

regions by their MNI coordinates, and averaged the gene expression

values of the samples in the same AAL region. Then we ranked the

genes by their SES values from high to low and used the top half of

the high-SES genes to perform the following PLS regression analysis.

In the initial analysis, we used SES = 0.6 to obtain the genes with

stable spatial expression across the six donors, and then we used two

different SES cutoff thresholds (0.5 and 0.7) to ensure that our initial

results were reliable. Last, we performed leave-one-donor-out cross-

validation analysis to validate the SES calculation and the following

analysis. Details of the validation of the SES calculation are provided

in the supplementary methods.

2.10 | Transcription-imaging association using PLS
regression analysis

PLS regression, a multivariate regression analysis that can predict a

set of dependent variables from a set of independent variables, was

used to investigate the association between the gene expression of

high-SES genes and personality-related imaging metrics. PLS
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regression analysis is best applied when the number of predictors

obviously exceeds the number of observations. However other multi-

variate methods, such as canonical correlation analysis (CCA) and mul-

tiset CCA (MCCA), require that the number of predictors cannot

exceed the number of observations, because CCA can obtain weight

vectors that are not uniquely defined, leading to overfitting issues

(Grellmann et al., 2015). Moreover, PLS regression is also applied for

highly interdependent or multicollinear independent variables

(Krishnan, Williams, McIntosh, & Abdi, 2011). Here, we used the SIM-

PLS algorithm (De Jong, 1993) to investigate the predictor matrix and

response vector, which was also utilized by a previous study (Romero-

Garcia, Warrier, Bullmore, Baron-Cohen, & Bethlehem, 2019). PLS

regression was used to identify significant genes contributing to the

personality-related imaging metrics. Generally, the main steps of PLS

regression analysis include constructing predictor matrix and response

variable vectors, regression analysis, and statistical significance assess-

ment of the PLS components. Below we take the neuroticism-FCD

correlation T map as an example to describe the steps of the analysis.

First, the matrix of the sample-wise high-SES gene expression

in the AHBA dataset (number of samples in each donor with gene

expression data × number of high-SES genes) were defined as the

independent variables, and the vector of sample-wise T values of

the FCD-neuroticism correlation map in our imaging dataset (num-

ber of samples in each donor with gene expression data × one

neuroticism-FCD T map) was designated the dependent variable.

There is only one voxel-wise FCD-neuroticism correlation map gen-

erated by regression analysis between FCD and neuroticism in the

274 subjects. In this map, each voxel has a statistical t-value

reflecting the correlation strength between the FCD values of this

voxel and the neuroticism scores in the 274 subjects. For each

donated brain, each tissue sample has an MNI coordinate in stan-

dard space. We then drew a spherical region of interest

(radius = 6 mm) centered at the MNI coordinate of this tissue

sample on the voxel-wise FCD-neuroticism correlation map. The

t-values of voxels within the sphere were averaged to represent

the t-value of this tissue sample, by which a sample-wise FCD-

neuroticism correlation matrix was obtained for this donor. By

repeating these steps, we can obtain sample-wise FCD-neuroticism

correlation matrices for other five donors. In this case, the sample-

wise gene expression matrix (n × p1) comprised the predictor

variables, and the sample-wise FCD-neuroticism correlation T map

vector comprised the response variables (n × p2), where p1

indicates the number of high SES genes (p1 = 1,751 when the SES

cutoff = 0.6) used in main analysis, p2 indicates the number of

imaging measures (here, the neuroticism-related FCD T map) used in

the main analysis, and n indicates the number of brain samples with gene

expression data used in our main analysis. Specifically, in the PLS regres-

sion of Donor 1, the size of the predictor matrix was (246 × 1,751) and

the size of the response vector was (246 × 1). In the PLS regression of

Donor 2, the size of the predictor matrix was (328 × 1,751) and the size

of the response vector was (328 × 1). In the PLS regression of Donor

3, the size of the predictor matrix was (296 × 1,751) and the size of the

response vector was (296 × 1). In the PLS regression of Donor 4, the size

of the predictor matrix was (325 × 1,751) and the size of the response

vector was (325 × 1). In the PLS regression of Donor 5, the size of the

predictor matrix was (641 × 1,751) and size of the response vector was

(641 × 1). In the PLS regression of Donor 6, the size of the predictor

matrix was (549 × 1,751) and the size of the response vector

was (549 × 1).

Second, the PLS identified components from the gene expression

matrix that had maximum covariance with the response variables in

the FCD-neuroticism correlation T map vector. The PLS components

were ranked by the covariance between the gene expression matrix

and FCD-neuroticism correlation T map vector, so the first several

PLS components will transform the covariance between the high-

dimensional data matrices into the best low-dimensional representa-

tion. In our case, we first conducted individual PLS regressions on the

high-SES gene expression matrix in each of the six donated brain

expression datasets to find linear combinations of genes with signifi-

cant predictive ability for the response variables (six sample-wise

FCD-neuroticism correlation T-maps).

Third, we subsequently used the bootstrapping resampling

method (resampling with replacement of the sample label in each

donor) to test the goodness of fit of the estimated PLS component by

repeating the analysis 1,000 times after shuffling the sample labels

assigned to the FCD-neuroticism correlation T-map. The error in the

PLS weights for each gene was also estimated using bootstrapping

and then we ranked the genes according to their contributions to each

PLS component calculated as the ratio of the weight of each gene to

its bootstrapped SE. Furthermore, we used significant genes with both

negative and positive weights in the following functional annotation

analysis as suggested by (Romero-Garcia, Warrier, Bullmore, Baron-

Cohen, & Bethlehem, 2018). Overlapping genes among the six PLS

regressions that significantly contributed to the corresponding PLS

component for all six donors were used for subsequent functional

annotation analysis.

2.11 | Functional annotations

With the Enrichr online toolset (http://amp.pharm.mssm.edu/Enrichr/),

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was

used to identify biological pathways of surviving genes in the signifi-

cant PLS components; and gene ontology (GO) gene sets were used

to find biological processes in the GO of these genes. Cell-type spe-

cific expression analysis (CSEA) (http://genetics.wustl.edu/jdlab/csea-

tool-2/) was used to disclose the cell-type enrichment of these genes

under a particular specificity index threshold (Xu, Wells, O'Brien,

Nehorai, & Dougherty, 2014). We then performed enrichment analy-

sis with Fisher's exact test for surviving genes in the significant PLS

components using the 275 neuroticism-related GWAS significant

genes (Nagel, Watanabe, Stringer, Posthuma, & van der Sluis, 2018)

and the 8 eQTL significant genes in brain tissue from GTEx database

(Nagel, Jansen, et al., 2018). Protein–protein interaction (PPI) hub pro-

tein analysis was performed by STRING v11.0 (https://string-db.org/)

to identify the hub genes in the significant PLS components. Hub
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genes were defined by the top half of the node degree in the PPI net-

work at a medium confidence interaction score and consistently

showed reliability for different SES thresholds. Finally, spatiotemporal

gene expression analysis was used to characterize the gene expres-

sion trajectory of hub genes by using the Human Brain Transcriptome

database (http://hbatlas.org/).

A schematic diagram of the analysis step is provided in Figure 1.

2.12 | Statistical analyses

Demographic and behavioral data were analyzed using the Statistical

Package for the Social Sciences (SPSS 20.0, Chicago, IL). Descriptive

data are shown in the mean ± SD and data range.

For all voxel-wise statistical analyses, multiple comparisons were

corrected using family-wise error (FWE) cluster-level correction with

a corrected threshold at p < .05 and an initial voxel-level p < .001.

The significance of the explained variance of each PLS compo-

nent was assessed by the permutation test (p < .05). To correct win-

ners curse bias, a false discovery rate (FDR) inverse quantile

transformation correction was used to obtain genes that survived

after FDR correction of p < .05 (Bigdeli et al., 2016). All these enrich-

ment analyses were considered significant after Benjamini–Hochberg

FDR correction (p < .05).

3 | RESULTS

3.1 | Initial findings

3.1.1 | Personality assessment

Personality assessment is shown as follows as the mean ± SD and

range: neuroticism raw score (10.81 ± 5.38, range: 1–24); neuroticism

T score (50.04 ± 10.03, range: 31.77–74.52); trait anxiety (36.96 ±

8.45, range: 20–75); harm avoidance (14.79 ± 6.42, range: 1–32); and

depression (7.79 ± 6.87, range: 0–52).

3.1.2 | Neuroimaging–neuroticism correlations

In 274 healthy young adults, we used the GMV as a structural imaging

measure and the FCD as a functional imaging measure to investigate

the voxel-wise correlations between neuroimaging measures and

F IGURE 1 Schematic diagram of the methodology. (a) The SES of
one certain gene is defined as the average Pearson correlation
coefficient over 15 pairs of 6 donated brains (b) Sample-wise FCD-
neuroticism correlation matrices are obtained via extracting the average
T value of one voxel-wise FCD-neuroticism correlated T map within
each spherical region of interest (ROI, radius = 6 mm) in each of six
donated brains respectively. Different colored spheres indicate samples
in six donated brains. (c) Six individual PLS regressions are conducted on
high SES gene expression matrix in each of six donated brain expression
datasets to find the linear combinations of genes with the significant
predictive ability for the response variables (six sample-wise FCD-
neuroticism correlation T-maps). (d) Overlapped significant genes among
six PLS regressions that contributed to one certain PLS component
would be used for following (e) functional annotation analysis (GO,
KEGG, cell-type specific enrichment analysis, PPI and spatiotemporal
expression analysis). (f) The reliability and specificity analysis includes
reliability of FCD-neuroticism correlations, validation of SES calculation,
validation of PLS regression and gene enrichment analysis, specificity
analysis of neuroticism-imaging correlation analysis, specificity analysis of
neuroticism-related transcription-neuroimaging associations. FCD,

functional connectivity density; GO, gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PLS, partial least squares; PPI,
Protein–protein interaction; SES, spatial expression stability
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neuroticism scores (p < .05, FWE cluster level corrected, voxel

p < .001). Although there was no significant correlation between

neuroticism and the GMV, we found a significant positive correlation

between neuroticism and the FCD in the ventral striatum (peak MNI

coordinate: x = −6, y = 6, z = −6, peak T(1,265) = 4.53, cluster size = 130

voxels, Figure 2a). The connection probability map showed that this

significant cluster was functionally connected with brain regions in the

anterior cingulate cortex (ACC)–striatum–thalamus circuit (Figure 2b).

3.1.3 | Genome-wide SES

We used SES to measure the reliability of the expression patterns of

the 20,737 genes across brain structures in the six donated brains.

The high SES genes represent those with highly consistent expres-

sion patterns across the brains. Based on these genes, we identified

canonical genes that were associated with the neuroticism-related

FCD statistical map (T-map). Using a dichotomous cutoff value of

SES = 0.6, 1,751 genes were obtained from 20,737 genes with higher

SES values (Figure 2a), which were then used in the PLS regression

analysis.

3.1.4 | Gene expression associated with
neuroticism-related FCD map

With gene expression data from AHBA brains and the neuroticism-

FCD correlation T-maps from the 274 healthy young adults, we

explored the sample-wise spatial correlations between gene expression

and the neuroticism-related FCD T-maps. Here, PLS regression analysis

was performed between the gene expression of each donated brain

and the neuroticism-related FCD T-map separately to discover consis-

tent findings across the six AHBA brains. The top two PLS components

significantly explained the variances (PLS1: 27.84–34.29%, PLS2:

5.75–11.10%) of the neuroticism-related FCD T-map after a permuta-

tion test (p < .05). Although the PLS1 scores calculated from each

donated brain were positively correlated with the neuroticism-related

FCD T-map (Figure S1), the observed associations could be mainly

explained by the gene expression differences between cortical and sub-

cortical samples (Hawrylycz et al., 2012). Therefore, the PLS2 scores

calculated from each donated brain may truly represent the positive

association with the neuroticism-related FCD T-map (r = .28–.42,

Figure 3b). Specifically, brain regions with higher PLS2 scores also have

dense connections between neuroticism and FCD (Figure 3b). Using

FDR correction (p < .05), 161 overlapping genes that significantly con-

tributed to the PLS2 component for all six donors were used for subse-

quent functional annotation analysis. Each PLS2 gene weight and its

bootstrapped standard error for each donor at a threshold SES = 0.6

are shown in Supplementary file S1.

3.1.5 | Functional annotations

The PLS2 genes were enriched in 17 pathways in the KEGG database

in the initial findings. However, only seven pathways were consis-

tently significant in validation analysis (p < .05, FDR correction, Figure 4).

F IGURE 2 Correlations between neuroticism and FCD and connectivity pattern of significant clusters. (a) Brain region with a correlation
between neuroticism and FCD at connection threshold of r = .6. (b) Functional connection probability map of significant cluster (ventral striatum)
at connection threshold of r = .6 in 274 participants. FCD, functional connectivity density
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Enriched pathways included serotonergic synapse, cholinergic synapse,

dopaminergic synapse, circadian entrainment, long-term potentiation,

inflammatory mediator regulation of transient receptor potential (TRP)

channels, and amphetamine addiction. In the GO database of biological

processes, the PLS2 genes showed significant enrichment in the biological

process of chemical synaptic transmission. The cell-type specific analysis

showed that the PLS2 genes exhibited a significant enrichment in neu-

rons (p < .05, FDR correction, Figure 4), but not in any other cell types

including astrocytes, oligodendrocytes and immune cells (p > .01, FDR

correction). We identified the PLS2 genes that were enriched for

neuroticism-related GWAS significant genes (p = .025, FDR correction)

and neuroticism related eQTL significant genes in the brain tissue from

the GTEx database (p = .046, FDR correction). To further identify the hub

genes in the enriched pathways and biological processes, we performed

PPI analysis and found that PLS2 gene-coded proteins formed a PPI

network (Figure 5) with four hub genes, including G protein subunit

gamma 10 (GNG10), 5-hydroxytryptamine receptor 2C (HTR2C),

prodynorphin (PDYN), and calcium/calmodulin-dependent protein kinase

II alpha (CAMK2A). These four genes were involved in the enriched path-

ways and biological processes and consistently ranked in the top half in

terms of node degree. In spatiotemporal gene expression analysis, HTR2C

and PDYN were highly expressed in the striatum, hippocampus, and

amygdala, and the temporal expression curves of CAMK2A and HTR2C

exhibited a gradual increase from the embryo stage and reached a plateau

between the child and young adult stage. However, GNG10 is not avail-

able in the Human Brain Transcriptome database.

3.2 | Reliability and specificity analyses

3.2.1 | Reliability of FCD-neuroticism correlations

To ensure that the results of the FCD-neuroticism correlations

derived from the connection threshold of 0.6 were reliable, we

repeated the voxel-wise correlation analysis using connection thresh-

olds of 0.5 and 0.7. Similar to the main findings, we found that neurot-

icism was only positively correlated with FCD in the ventral striatum

under connectivity thresholds of 0.5 (peak MNI coordinate: x = −6,

y = 6, z = −6, peak T(1,265) = 4.54, cluster size = 107 voxels,

Figure S2a) and 0.7 (peak MNI coordinate: x = −9, y = 6, z = −6, peak

T(1,265) = 3.94, cluster size = 107 voxels, Figure S2b). We found a

highly significant spatial correlation (r = .91, p < .001) between the

F IGURE 3 Relationship between significant genes in PLS2 and neuroticism-related FCD map. (a) Gene ranks according to SES and number of
genes at different SES threshold. Then, 1,751 genes at threshold SES = 0.6, 3,236 genes at threshold SES = 0.5, 740 genes at threshold = 0.7.
(b) Positive correlations between PLS2 scores and T values of neuroticism-related FCD map in each donor at threshold SES = 0.6. (c) Positive
correlations between PLS2 scores and T values of neuroticism-related FCD map in each donor at threshold SES = 0.5. (d) Positive correlations
between PLS2 scores and T values of neuroticism-related FCD map in each donor at threshold SES = 0.7. Pearson correlation coefficients, 95%
confidence interval (in parentheses) and p values are provided in the bottom of the respective panels. Amy, amygdala; BF, basal forebrain; CgG,
cingulate gyrus; Cl, claustrum; dStriatum, dorsal striatum; dThalamus, dorsal thalamus; Epi, epithalamus; FC, frontal cortex; FCD, functional
connectivity density; GP, globus pallidus; Hippo, hippocampus; Hypo, hypothalamus; Ins, insula; OC, occipital cortex; PC, parietal cortex; PG,
parahippocampal gyrus; PiC, piriform cortex; PLS, partial least squares; SES, spatial expression stability; sThalamus, subthalamus; TC, temporal
cortex; vStriatum, ventral striatum; vThalamus, ventral thalamus
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uncorrected voxel-wise FCD-neuroticism correlation map with and with-

out controlling for trait anxiety and harm avoidance (Figure S3), indicat-

ing that removing the variance from trait anxiety and harm avoidance

may not obviously bias our results. With HCP Caucasian data, we found

a significant positive correlation between neuroticism and FCD in the

ventral striatum after FWE correction (p < .001, peak MNI coordinate:

x = −12, y = 10, z = −22, peak T(1, 55) = 5.18, cluster size = 258 voxels).

The statistical T map of the Chinese data was overlaid with the T map of

HCP data with initial voxel-level p < .001 (Figure S4).

3.2.2 | Validation of SES calculation

The SES calculated after leaving each donor out showed high correla-

tion with the SES calculated for all six donors (rleave-donor1-out = .9805,

95% CI (0.9800–0.9811), p < .001; rleave-donor2-out = .9760, 95%

CI (0.9754–0.9767), p < .001; rleave-donor3-out = .9837, 95% CI

(0.9833–0.9842), p < .001; rleave-donor4-out = .9861, 95% CI (0.9857–

0.9865), p < .001; rleave-donor5-out = .9814, 95% CI (0.9809–0.9819),

p < .001; rleave-donor6-out = .9866, 95% CI (0.9862–0.9869), p < .001). We

also found PLS2 could significantly explain the variance (5.29–11.07%) of

the neuroticism-related FCD T-map after the permutation test (p < .05)

(Figure S5). Functional annotation analysis revealed similarly consistent

enriched pathways, in the PPI network (Figure S6).

The performance of average Kendall tau was closely related to

average the Pearson correlation (r = .9312, 95% CI [0.9293–0.9329],

p < .001). We also provided the CI of the SES value of each gene with

a high SES at the 0.6 threshold in Supplementary file S2.

3.2.3 | Validation of PLS regression and gene
enrichment analysis

We used two different SES cutoff values (0.5 and 0.7) to perform genome-

wide SES analysis and obtained consistent expressed genes across the six

donors (3,236 genes for SES = 0.5 and 740 genes for SES = 0.7). Then,

these genes were also used in the subsequent PLS regression separately.

The procedures of the PLS regression using different SES thresholds were

the same as our initial analysis in the calculation of variance explained by

the PLS components and correlation analysis between PLS scores and the

neuroticism-related neuroimaging map. We also found that only PLS2 truly

displayed a positive association with the neuroticism-related FCD T-map

(Figure 3c,d). In the gene enrichment analysis, PLS2 genes also had a signifi-

cant enrichment for similar GO terms, pathways, cell-types, GWAS signifi-

cant genes, eQTL significant genes in the brain tissue of the GTEx database

(except for PLS2 genes at an SES threshold 0.5, p = .071, FDR correction),

and PPI analysis with initial enrichment analysis (Figures 4 and 5).

3.2.4 | Specificity analysis of neuroticism-imaging
correlation analysis

We performed similar voxel-wise correlation analysis between FCD

and extroversion, which is one of the two independent personality

traits initially proposed by Eysenck (Bech, Lunde, & Moller, 2012).

Using the same statistical threshold of p < .05, FWE cluster level

corrected, voxel p < .001 as in FCD-neuroticism correlations, we did

not find any significant correlation between FCD and extroversion. To

F IGURE 4 Enrichment
analysis for PLS2 genes. KEGG
pathway, GO, GWAS, eQTL, cell
types enrichment analyses for
significant genes in PLS2
associated with neuroticism-
related FCD map. The same color
of a bar graph in each panel
indicates the same enriched class.

BP, biological process; eQTL,
expression quantitative trait loci;
FCD, functional connectivity
density; GO, gene ontology;
GWAS, genome-wide association
analysis; KEGG, Kyoto
Encyclopedia of Genes and
Genomes; PLS, partial least
squares; TRP, transient receptor
potential
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compare the distribution differences in brain regions whose FCD

values correlated with neuroticism and extroversion, we used a

lenient threshold (voxel-wise p < .01, uncorrected, cluster size = 10)

to depict the correlation maps between FCD and neuroticism and

extroversion. We found completely different distributions between

brain regions whose FCD values were correlated with extroversion

and those correlated with neuroticism (Figure S7).

3.2.5 | Specificity analysis of neuroticism-related
transcription-neuroimaging associations

The PLS2 identified in the transcription-neuroimaging correlations for

neuroticism was used to investigate whether there was also a signifi-

cant correlation between PLS2 scores and the extroversion-FCD

correlation T-map. However, we only found much weaker correlations

in three donors using the one-tailed Fisher-z test (r = −.12 to .11;

pdonor1 < 1 × 10−4, Zdonor1 = 6.26; pdonor2 = 6 × 10−4, Zdonor2 = 3.23;

pdonor3 = 3 × 10−4, Zdonor3 = 3.41; pdonor4 = 5 × 10−4, Zdonor4 = 3.27;

pdonor5 < 1 × 10−4, Zdonor5 = 3.95; pdonor6 = 2 × 10−4, Zdonor6 = 3.61)

(Figure S8).

4 | DISCUSSION

To our knowledge, this is the first study that combines cross-scale

correlation analyses and up-to-date functional annotations to investi-

gate the neurobiological correlates of human neuroticism. We found

that the functional connectivity of the ventral striatum was most

strongly associated with human neuroticism and the neuroticism-

related functional connectivity was related to the expression of the

GNG10, HTR2C, PDYN, and CAMK2A hub genes of the chemical syn-

aptic transmission, circadian entrainment, long-term potentiation,

inflammatory mediator regulation of TRP channels, and amphetamine

addiction pathways in cortical and striatal neurons.

There was no significant neuroticism-GMV correlation, although

one previous study showed a negative association between the GMV

of the left superior frontal gyrus and neuroticism (Lu et al., 2014).

One of the probable reasons is that the striatum is closely related to

human neuroticism and striatal functional connectivity could better

account for the individual differences in neuroticism than striatal

volume. Another important reason is that the multiple comparison

correction method used in a previous study is insufficient for reducing

false-positive rates (Silver, Montana, Nichols,, & Alzheimer's Disease

F IGURE 5 Hub genes in the PLS2 component. Protein–protein interaction network visualization (a) and spatiotemporal expression curves of
the HTR2C, CAMK2A, and PDYN (b). The description of Period 1–15 in spatiotemporal expression curves was provided in http://hbatlas.org/.

AMY, amygdala; CBC, cerebellar cortex; HET, heterozygotes; HIP, hippocampus; MD, mediodorsal nucleus of the thalamus; NCX, neocortex; STR,
striatum
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Neuroimaging, 2011). However, we found that individuals with high

neuroticism scores had high FCD values in the ventral striatum, which

was reliable across different connection thresholds. In the original

Eysenck's personality theory (Bech et al., 2012), extraversion and

neuroticism were identified as two possible personality traits with dis-

tinct neural and genetic substrates. To prove neuroimaging findings

specific to neuroticism, we performed a voxel-wise extraversion-FCD

correlation analysis and found that brain regions with extraversion-

FCD correlations were completely different from those with

neuroticism-FCD correlations, which is in agreement with previous find-

ings of the differences between the neuroticism- and extraversion-

related functional connectivity of the amygdala and brain network

topology (Aghajani et al., 2014). Our findings suggest that the functional

connectivity of the ventral striatum is specifically associated with human

neuroticism, which is also consistent with prior findings reporting that

individuals with high neuroticism scores demonstrate enhanced activity

in the ventral striatum in response to reward stimuli (Schaefer, Knuth, &

Rumpel, 2011), and that neuroticism is positively correlated with

dopamine D2 receptor density in the striatum (Lee et al., 2005). Since

neuroticism has been considered as a risk factor for depressive and anxi-

ety disorders (Griffith et al., 2010), its neural substrate, ventral striatum

functional connectivity may be associated with these disorders, which is

supported by the predictive value of this connectivity for future risk in

adolescents for depressive disorder (Pan et al., 2017). Functional connec-

tivity probability mapping revealed that the ventral striatum was

functionally connected with brain regions of the ACC–striatum–thalamus

circuit, which is responsible for mediating motivated behavior and lesions

of this circuit manifest as apathy (Mayer & Richard, 2001). More impor-

tantly, abnormal connectivity in this circuit can be used to distinguish the

neurophysiological subtypes of depression and deep stimulation of this

circuit can relieve the core symptoms of depression and anxiety

disorders (Drysdale et al., 2017; Figee et al., 2013). These findings

indicate that the functional connectivity of the ventral striatum may be a

neural substrate bridging neuroticism and mood disorders, which

provides a neurobiological explanation for the increased risk of neuroti-

cism in depressive and anxiety disorders (Griffith et al., 2010).

Using PLS regression, we identified a genetic component (PLS2)

for each donor that could significantly explain the variance of the

neuroticism-related FCD map, which showed reliability in gene sets

extracted with different SES cutoff values. To ensure that the

obtained genetic component was specific to the neuroticism-related

FCD map, we also performed sample-wise spatial correlation analysis

between the transcription profiles of PLS2 and the extraversion-

related FCD map and found weaker correlations (r = −.12 to .11) than

those obtained with the neuroticism-related FCD map (r = .28–.42).

These findings suggest that the PLS2 genes are specific to the

neuroticism-related FCD map.

The PLS2 genes were consistently enriched in the serotonergic

synapse, cholinergic synapse, dopaminergic synapse, circadian entrain-

ment, long-term potentiation, inflammatory mediator regulation of

TRP channels, and amphetamine addiction of KEGG pathway and

chemical synaptic transmission of biological process ontology and in

cortical and striatal neurons in cell-type specificity analysis, indicating

that these genes may affect neuroticism-related functional connectivity

by regulating trans-synaptic neurotransmitter transmission, including

serotonin, choline and dopamine. In addition, it may also work on circa-

dian entrainment, long-term potentiation, TRP channels, and the amphet-

amine addiction pathway to influence neuroticism-related FCD.

Interestingly, the serotonergic, dopaminergic synapse, and circadian

entrainment pathways have been previously implicated in neuroticism-

related GWAS and molecular imaging studies (Farde, Plaven-Sigray,

Borg, & Cervenka, 2018; Ferguson et al., 2018; Nagel, Jansen,

et al., 2018). These results were further supported by enrichment

results obtained using neuroticism-related GWAS and eQTL genes.

Although the pathways of cholinergic synapse, long-term potentiation,

TRP channels, and amphetamine addiction have not previously been

directly associated with neuroticism, many studies have shown that these

pathways are involved in several neuropsychiatric disorders, such as anxi-

ety, depression and addiction (Conrad & Winder, 2011; Naziroglu &

Demirdas, 2015; Salo et al., 2011; Scarr, Gibbons, Neo, Udawela, &

Dean, 2013), suggesting that our study may advance the neurobiological

knowledge of neuroticism. In the PPI analysis of the PLS2 genes associated

with neuroticism-related FCD, we consistently observed significant

enrichment of four PPI hub proteins (GNG10, HTR2C, PDYN, and

CAMK2A).

The 5-HT2C receptor encoded by HTR2C is a subtype of 5-HT

receptor that binds the endogenous neurotransmitter serotonin and

regulates dopamine release in the striatum, prefrontal cortex, hippo-

campus, hypothalamus, and amygdala (Alex, Yavanian, McFarlane,

Pluto, & Pehek, 2005). In addition, 5-HT2C receptors have been asso-

ciated with several behaviors and psychological states, including

mood, anxiety, and depressive states (Heisler, Zhou, Bajwa, Hsu, &

Tecott, 2007; Millan, 2005). PDYN is an opioid polypeptide hormone

encoded by PDYN, which is involved in chemical signal transduction

and is highly enriched in the striatum. Moreover, individuals with

mood disorders exhibit a reduction in the mRNA expression of PDYN

in the amygdala (Hurd, 2002). The protein encoded by CAMK2A is a

member of the Ca2+/calmodulin-dependent protein kinase II subfamily

and plays a critical role in hippocampal long-term potentiation

(Lisman, Yasuda, & Raghavachari, 2012) and amphetamine action

(Steinkellner et al., 2015). In addition, the interaction of CAMK2A

function with serotonin receptor 1A during the postnatal period

results in the development of anxiety-related behavior (Lo Iacono &

Gross, 2008). Another hub gene GNG10 encodes a member of the

gamma-subunit of a modulator of the G-protein-coupled receptor

signaling pathways, which has been little investigated except for

melanoma (Cardenas-Navia et al., 2010).

The AHBA provided the only high-resolution gene expression

dataset derived from brain samples; thus, we were able to investigate

the association between macroscale MRI data and microscale gene

expression. However, there are two aspects that should be further

investigated. First, whole genome-wide genotyped data should be

collected in future studies, and we could use polygenic risk scores for

significant genes derived from AHBA gene expression analysis to

study the relationship with behavior and imaging metrics. Fortunately,

the establishment of world's largest sample of the Chinese Han
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imaging genetics cohort, the Chinese Imaging Genetics will provide

opportunity to identify these associations (Xu et al., 2020). Second,

bioinformatic analysis should be expanded to biological validation,

such as behavioral analysis of knockout mice, which could further

identify causal relationships rather than only putative associations.

However, several limitations should be noted. First, we employed

an eye-closed rfMRI paradigm, which may have significantly affected

functional connectivity. Previous studies indicated that the eye-open

paradigm demonstrates significantly greater resting-state activity in

visual and attention networks and significantly lower activity in the

sensorimotor network (Wei et al., 2018). Second, the gene expression

dataset and imaging dataset used in our study came from different

individuals. To reduce the impact of this limitation, we first found

robust neuroticism-related imaging associations in our fMRI dataset

and investigated transcription-imaging associations in each individual

gene expression dataset using consistently expressed genes.

5 | CONCLUSION

In this study, we found that human neuroticism was correlated with

functional connectivity in the ventral striatum and the neuroticism-

FCD correlations could be specifically explained by a major genetic

component implicated in the chemical synaptic transmission, circadian

entrainment, long-term potentiation, inflammatory mediator regula-

tion of TRP channels, and amphetamine addiction pathways in

neurons. In the PPI analysis, we identified several genes (GNG10,

HTR2C, PDYN, and CAMK2A) as hub genes associated with the

neuroticism-related FCD map. These findings may improve our under-

standing of the genetic and neural substrates of human neuroticism.
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