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T cells modified with synthetic chimeric
antigen receptors (CARs) have been enor-
mously successful in treating hematological
malignancies, and multiple products are now
approved for use in patients with relapsed/re-
fractory leukemia, lymphoma, and myeloma.
However, on-demand manufacturing of an
autologous engineered T cell product creates
considerablefinancial, logistical, and availabil-
ity challenges to the widespread implementa-
tion of the therapy. To complicatematters, pa-
tients with aggressive disease may require
bridging therapy while the T cell product un-
dergoes manufacturing and release testing,
and the quality and function of the CAR
T cells may be variable between patients
following multiple courses of therapy. For
these reasons, off-the-shelf strategies using
alternative allogeneic cell sources for ex vivo
engineering including healthy donor T cells,
pluripotent stemcell-derived T cells1, andnat-
ural killer (NK) cells2, and direct in vivo CAR
T cell engineering3 are being explored pre-
clinically and clinically.

Using therapeutic allogeneic abT cells creates
two challenges: (1) the native T cell receptor
(TCR) can cause graft versus host disease
(GVHD), and conversely, (2) alloreactive
host T cells and NK cells can quickly reject
the cells. To address the former, components
of the TCR complex such as the TCR a con-
stant (TRAC) gene have been disrupted by
clustered regularly interspaced short palin-
dromic repeats (CRISPR) or transcription
activator-like effector nucleases (TALENs),
or the locus repurposed to express the
CAR.4 To address the latter problem of
the mismatched human leukocyte antigen
(HLA), deletion of the b2 microglobulin
(B2M) and class II-transactivator (CIITA)
genes creates stealth T cells that fail to express
HLA class I and II respectively.5 Since HLA-
negative cells can be targeted by NK cells,
overexpression of the minimally polymorphic
This is an open access ar
HLA-E molecules that engage the NKG2A
inhibitory receptor on NK cells can compen-
sate for this problem.6 An alternative strategy
involves targeting alloreactive host T cells
by either deleting CD52 in the therapeutic
T cells and concurrently treating with the
anti-CD52 antibody alemtuzumab7 or by ex-
pressing an alloimmune defense receptor in
therapeutic T cells that recognizes the activa-
tion marker 4-1BB.8 These approaches can
deplete host T cells globally or with some
selectively (Figure 1 left).

In a recent issue of Molecular Therapy
Oncology, Quach et al. have astutely leveraged
the biology of CD30 (also known as
TNFRSF8), combined with the expansion of
TCR antigen-specific T cells, to bypass the
multiplexed genetic modifications required
to prevent rejection and GVHD associated
with allogeneic T cell therapies.9 Using
Epstein-Barr virus (EBV)-specific T cells
(EBVSTs) expanded in vitro with peptides
representing latent and lytic genes (EBNA1,
LMP1, LMP2, and BZLF1) simultaneously re-
duces the risk of GVHD and enables targeting
of EBV-positive cells through the native TCR.
CD30 is expressed not only onReed-Sternberg
cells in Hodgkin lymphoma and anaplastic
large cell lymphomas but also subsets of acti-
vated T cells, B cells, and NK cells,10 and
they demonstrated multi-specificity toward
EBV-positive and CD30-positive targets
through the TCR and the CAR. Instead of
genetically engineering hypoimmunogenic
T cells, they exploited the expression of
CD30 on activated T and NK cells. In mixed
lymphocyte reactions (MLRs), they demon-
strated that CD30 CAR EBVSTs inhibited
the expansion of alloreactive T cells and thus
resisted their killing. Given that CD30 is also
upregulated on CAR T cells upon antigen
recognition, it was surprising that the trans-
duced cells did not undergo fratricide.Howev-
er, the authors showed that the CAR binds to
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CD30 in cis, masking the epitope from sur-
rounding CAR T cells (Figure 1 right).

The effectiveness of the approachwill be borne
out in an ongoing phase 1 clinical trial
where CD30 CAR EBVSTs are manufactured
from healthy EBV-seropositive donors
(NCT04288726). The study has already re-
ported early positive outcomes, including a
tolerable safety profile, and, of seven evaluable
patients, two complete responses and three
partial responses.11 The efficacy of the CD30
virus-specific T cell strategy will likely be
further improved by combination with vac-
cines12 or following viral reactivation.13 Of
note, the CD30 CAR EBVSTs were detected
in the peripheral blood of patients, but there
was no evidence of T cell expansion.11

Although in vitro MLR cultures suggest that
alloreactive T cells are eliminated, the lack of
expansion of the CAR T cells in patients sug-
gests that further insight is required into the
levels and kinetics of CD30 expression in vivo
across subsets of activated T cells andNK cells
that contribute to rejection.

When aCART cell expresses high levels of the
target antigen, it can be subject to fratricide by
other CAR-expressing T cells, for example as
described with CD7.14 What physical proper-
ties of a CAR allow for good cis binding and
protection from fratricide? The location of
the scFv epitope and the length and source
of the hinge domain may determine whether
the CAR molecule has enough flexibility to
bind in the cis conformation. Itwould be inter-
esting to test whether other CD30 CARs have
similar functionality orwhether it is specific to
the construct used by Quach et al. Protection
from fratricidemayalso be antigendependent.
Binding of the CAR to a surface-expressed an-
tigen in cis could potentially activate signaling
through both the CAR itself and the antigenic
receptor. In this case,CD30 ligation couldpro-
mote signal transduction through MAPK and
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Figure 1. Engineering strategies to avoid GVHD and prevent rejection for allogeneic sources of T cells

(Left) Polyclonal allogeneic ab T cells derived from healthy donor T cells or from pluripotent stem cells are transduced with a CAR and further edited to disrupt the native TCR

and HLA molecules (through beta 2 microglobulin [B2M] and class II-transactivator [CIITA]). To avoid rejection, CD52 can be knocked out (KO), and HLA-E and alloimmune

defense receptors (ADRs) can be co-expressed. Host T cells are depleted by treatment with an anti-CD52 antibody. (Right) Allogeneic ab T cells derived from healthy donor

T cells are expanded for EBV reactivity and transduced with a CD30 CAR. The CD30 CAR can target both malignant cells and activated NK and T cells that contribute to

rejection. The CD30 CAR binds in cis to protect from fratricide.
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NFKB, which could help the cell survive and
proliferate.10 Delineation of these properties
may enable the design of other cis-protective
CAR molecules.
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