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Predicting high-risk endometrioid carcinomas using proteins
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ABSTRACT

Background: The lethality of endometrioid endometrial cancer (EEC) is primarily 
attributable to advanced-stage diseases. We sought to develop a biomarker model 
that predicts EEC surgical stage at the time of clinical diagnosis. 

Results: PSES was significantly correlated with surgical stage in the TCGA cohort 
(P < 0.0001) and in the validation cohort (P = 0.0003). Even among grade 1 or 2 
tumors, PSES was significantly higher in advanced than in early stage tumors in both 
the TCGA (P = 0.005) and MD Anderson Cancer Center (MDACC) (P = 0.006) cohorts. 
Patients with positive PSES score had significantly shorter progression-free survival 
than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 
to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) 
cohorts. The ErbB signaling pathway was most significantly enriched in the PSES 
proteins and downregulated in advanced stage tumors.

Methods: Using reverse-phase protein array expression profiles of 170 antibodies 
for 210 EEC cases from TCGA, we constructed a Protein Scoring of EEC Staging 
(PSES) scheme comprising 6 proteins (3 of them phosphorylated) for surgical stage 
prediction. We validated and evaluated its diagnostic potential in an independent 
cohort of 184 EEC cases obtained at MDACC using receiver operating characteristic 
curve analyses. Kaplan-Meier survival analysis was used to examine the association 
of PSES score with patient outcome, and Ingenuity pathway analysis was used to 
identify relevant signaling pathways. Two-sided statistical tests were used.

Conclusions: PSES may provide clinically useful prediction of high-risk tumors 
and offer new insights into tumor biology in EEC. 
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INTRODUCTION

Endometrial carcinoma is the most common 
gynecologic malignancy; over 10,470 deaths from uterine 
corpus cancer were expected in the United States in 2016 
[1], an approximately three-fold increase over the past 
25 years. The lethality of endometrial cancer is primarily 

correlated with stage III or IV (hereafter referred to as 
advanced stage) disease [2]. Typically, a five-year survival 
rate of 83%–97% is achieved for localized disease (stage I/
II, hereafter referred to as early stage), in contrast to 43%-
67% for stage III disease and only 13%–25% for stage IV 
disease [3]. Patients with advanced stage disease are at an 
increased risk of recurrence and are typically treated with 
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postoperative radiotherapy and/or chemotherapy; however, 
this is rarely curable [4]. Therefore, early stratification of 
endometrial carcinomas into surgical staging categories 
from tissue biopsies will help gynecologic oncologists more 
accurately choose which women should have extensive 
surgical staging procedures or receive systemic adjuvant 
therapy, and thus represents a key to reducing the morbidity 
and mortality associated with endometrial cancer. 

Non-endometrioid carcinoma is known a priori 
to be clinically aggressive and can be readily segregated 
from its endometrioid counterpart at the time of diagnosis 
[5] because these two entities exhibit striking difference 
in histopathological (microscopic) appearance and 
molecular characteristics such as TP53 mutation, [6] 
CTNNB1 mutation [7], protein levels of estrogen receptor/
progesterone receptor (ER/PR) [8], and gene expression 
profiling [9]. Endometrioid-type endometrial cancer (EEC), 
accounting for approximately 70 to 80% of endometrial 
cancer cases, is the focus of the current study. EEC is 
pathologically staged with the International Federation of 
Gynecology and Obstetrics (FIGO) system [2]. However, 
molecular characteristics have not been validated to help 
predict operative staging of EEC patients at the time of 
clinical diagnosis [10, 11]. Since molecular abnormalities 
predispose the manifestation of microscopic appearance 
and drive tumor progression, molecular biomarkers not only 
provide an opportunity for early detection but also offer the 
ability to direct therapeutic strategies; both are distinctive 
from the current microscopic analysis.

Cellular proteins are responsible for functional 
diversity because a vast array of regulatory or metabolic 
processes occur at the protein level; these cannot be 
adequately predicted from DNA or RNA data. The reverse-
phase protein array (RPPA) platform allows identification 
of proteins for use as therapeutic intervention or as 
markers for the classification of cancer [12–14]. In this 
study, we analyzed the protein expression profiles of over 
200 EEC cases with clinicopathologic characteristics 
obtained from The Cancer Genome Atlas (TCGA) and 
developed a Protein Scoring of EEC Staging (PSES) 
scheme that we further validated in an independent MD 
Anderson Cancer Center (MDACC) cohort comprising 
an additional 184 EEC cases. Prognostic and biological 
significance of PSES was further investigated. Our work 
demonstrates the potential of clinical stratification and 
novel therapeutic targets.

RESULTS

Patient characteristics

Clinicopathologic characteristics of patients 
included in the TCGA and MDACC cohorts are described 
and compared in Table 1. All patients were endometrial 
cancer with endometrioid histology. The two cohorts 
had a comparable percentage of advanced stage disease 

(TCGA, 21.4%; MDACC, 26.1%), but there were 
significantly more grade 3 tumors in the TCGA cohort 
than in the MDACC cohort (39.0% versus 19.3%,  
P < 0.0001, Fisher’s exact test). No statistical difference 
was observed between these two cohorts for patient age, 
death or recurrence events, or patient outcome, including 
overall survival (OS) and progression-free survival (PFS) 
(Supplementary Figure 1). 

Generation of PSES

Using the random partitioning method and an 
average P value cutoff of 0.05 (see Methods for details), 
we identified four proteins or phosphoproteins that were 
significantly associated with advanced stage disease: 
one upregulated protein (Dvl3) and three downregulated 
phosphoproteins, Shc-pY317, JNK-pT183-pT185, and 
HER3-pY1298 (hereafter referred to as pSHC, pJNK, 
and pHER3, respectively) (Figure 1A). The relative 
expression levels of these four proteins for each individual 
across the entire TCGA cohort were also depicted 
(Figure 1B). Consistent with the results rendered by the 
random approach, the four proteins were significantly 
differentially expressed between early and advanced 
stage tumors in the entire TCGA cohort. Moreover, the 
advanced stage tumors were significantly associated 
with grade 3 tumors and recurrent events, but not with 
MSI status or patient age (Figure 1B). Given that EEC 
tumors are typically characterized by the expression 
levels of estrogen receptor alpha (ER) and progesterone 
receptor (PR), we included these two proteins in the 
predictive model to account for baseline fluctuation on 
other clinicopathological variables such as age, grade, 
and recurrence status. A similar approach of inclusion 
of endogenous hormone levels in risk prediction models 
for postmenopausal breast cancer was applied previously 
in improving the ability to identify high-risk women 
[15]. Thus, total six proteins were used to compose the 
predictive model, and we termed this predictive protein 
set PSES (Protein Scoring of EEC Staging). The predictive 
model, expressed as PSES score, was defined as a linear 
combination of the six protein expression levels weighted 
by coefficients that were predefined on the basis of ROC 
analysis of the TCGA cohort (see Methods for details).

Association of PSES with surgical stage in 
patients with EEC

We calculated PSES scores for each sample in the 
TCGA cohort. Values ranged from -1.9865 to 1.6682 
across the 210 samples, of which 104 had positive PSES 
scores and 106 had negative scores. PSES scores were 
significantly higher in patients with advanced stage disease 
than in patients with early stage disease (P < 0.0001,  
Mann–Whitney test) (Figure 2A). To examine the impact 
of tumor purities on this result, we carried out two 
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additional analyses. First, we compared tumor purities 
between early-stage and advanced-stage disease and 
found there was no significant difference in these two 
groups of patients (P = 0.4459, Supplementary Figure 
2A). Secondly, we calculated the purity adjusted PSES 
score by dividing the original PSES score by tumor 
purity,  and the purity-adjusted PSES score remained 
significant correlation with patient surgical stage (P = 
0.0002, Supplementary Figure 2B). Note that the statistical 
significance was slightly compromised likely because 
the number of analyzed samples becomes smaller when 
tumor purity data were incorporated into this analysis. 
In addition, we obtained the percentage of stroma, 
lymphocyte, macrophage, and neutrophil cells in the 
EEC tissue specimen and found that PSES score was not 

significantly correlated with these cellular compositions 
(Supplementary Figure 3). Collectively, these data indicate 
that PSES is significantly correlated with surgical stage, 
independent upon tumor purities. We next validated PSES 
in an independent patient cohort and performed RPPA 
profiling on an additional set of 184 EEC cases that were 
not included in the TCGA cohort. PSES score for each 
sample was computed in a similar manner in the validation 
set. Patients with advanced stage disease demonstrated 
significantly higher PSES scores than those with early 
stage disease (P = 0.0003, Mann–Whitney test) (Figure 
2B), which was consistent with the results in the TCGA 
cohort. Because low-grade (Grade 1 or 2) tumors are 
less likely to have advanced stage disease, it is clinically 
of interest to be able to predict advanced stage tumors 

Table 1: Clinicopathologic characteristics of EEC patients in the training (TCGA) and validation (MDACC) cohorts*

TCGA
(n = 210)

MDACC
(n = 184) P †

Age
     Mean, years [SD] 60.3 [11.3] 59.8 [11.6] 0.3934ξ

     Range 30.5–87.5 27.2–84.7
FIGO Stage
     I/II 165 (78.6) 136 (73.9)
     III/IV 45 (21.4) 48 (26.1) 0.2870¶

Histological Grade
     1/2 128 (61.0) 146 (80.7)
     3 82 (39.0) 35 (19.3) < 0.0001¶

     Unknown 0 3
Vital Status 

     Living 190 (90.5) 158 (87.8)
     Deceased 20 (9.5) 22 (12.2) 0.4162¶

     Unknown 0 4
Recurrent Disease 

     No 162 (81.0) 123 (77.8)
     Yes 38 (19.0) 35 (22.2) 0.5079¶

     Unknown 10 26
MSI Status 

     MSI‡ 91 (43.3) NA
     MSS 119 (56.7) NA

Abbreviations: TCGA, The Cancer Genome Atlas; MDACC, MD Anderson Cancer Center; SD, standard deviation; FIGO, 
International Federation of Gynecology and Obstetrics; MSI, microsatellite instability; MSS, microsatellite stable; NA, not 
applicable.
*Values are reported as No. (%). Missing values are excluded from percentage calculation and statistical test.
†Statistical comparison of clinicopathological features between patients in the TCGA cohort and those in the MDACC 
cohort.
ξMann–Whitney test.
¶Fisher’s exact test.
‡Including both MSI-H and MSI-L.
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among patients with low-grade EEC. Prominently, among 
patients with grade 1 or 2 tumors, those with advanced 
stage disease had statistically significantly higher PSES 
scores than did those with early stage disease in both the 
TCGA dataset (P = 0.0046, Mann–Whitney test) (Figure 
2C) and the MDACC dataset (P = 0.0055) (Figure 2D). 
Taken together, these results demonstrated that PSES is 
significantly correlated with tumor surgical stage even 
among patients with low-grade disease, as evidenced by 
an external validation.

To test whether PSES is an independent predictor 
of EEC patients with advanced stage disease, we further 
preformed multivariate logistic regression analyses. Even 
after adjusting for patients’ age, grade, vital status, or 
recurrent disease status, the odds ratios for patients with 
high PSES scores were 4.64 (95% CI = 2.06 to 10.48, P 
= 2.2E-04) in the TCGA cohort and 2.94 (95% CI = 1.23 
to 7.00, P = 0.015) in the MDACC cohort (Table 2). In 
addition, we calculated the sensitivity and specificity for 
each of the individual variables to predict EEC patients 

Figure 1: Identification of protein markers used for construction of PSES. (A) Volcano plot shows the protein expression 
difference (in terms of log2 ratio) and the corresponding statistical tests (in terms of -log10 (P value)) between Stage III/IV tumors 
and Stage I/II tumors. Values were averaged from those calculated from the 500 different subsets randomly selected from the TCGA 
cohort. Four proteins exhibited a statistically significant difference. The dashed pink line indicates the P value cutoff of 0.05. (B) Relative 
expression levels of the four proteins and clinicopathologic characteristics for each individual patient in the entire TCGA cohort (n = 210). 
The P values show the comparison between the early stage patients vs advanced stage patients and are calculated from the entire TCGA 
cohort.
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with advanced stage disease (Supplementary Table 1). 
As compared to the other predictors, PSES improves the 
predictive sensitivity very much. We next correlated the 
PSES score with gene mutations frequently observed in 
endometrial cancer (Supplementary Figure 4). Patients 
with TP53 mutation had significantly higher PSES scores 
than those with TP53 wide-type. No significant correlation 
was observed between PSES scores and PTEN mutation or 
CTNNB1 mutation. 

Association of PSES with patient outcomes

While PSES was generated on the basis of tumor 
stage, we additionally performed Kaplan-Meier survival 
analysis to assess the capacity of PSES to differentiate 
patients by PFS. Patients with positive PSES scores had 
statistically significantly worse PFS in both the TCGA 
cohort (P = 0.04, log-rank test) (Figure 3A) and the 
MDACC cohort (P = 0.0007, log-rank test) (Figure 3B). 

Figure 2: Association of PSES with tumor stage in patients with EEC. (A) Box plots represent PSES scores in EEC samples from 
patients with stage I & II disease (n = 165) and from patients with stage III & IV disease (n = 45) in the TCGA cohort. The central line of 
each box is the median value, and the edges are the 25th and 75th percentiles. The whiskers extend to the 10th and 90th percentiles, and data 
points outside the whiskers are plotted individually as circles or dots. P values were calculated using two-sided Mann–Whitney test. (B) The 
predictive performance of PSES score was validated in an independent MDACC data set. PSES scores were significantly higher in patients 
with stage III & IV disease in the MDACC cohort (P = 0.0003, Mann–Whitney test). Among the low-grade (grade 1 & 2) EEC patients, tumors 
with advanced stage disease had statistically significantly higher PSES scores than did those with early stage disease in both (C) the TCGA 
cohort (n = 128, P = 0.0046, Mann–Whitney test) and (D) the MDACC cohort (n = 146, P = 0.0055, Mann–Whitney test).
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To test whether this result was independent of tumor stage, 
we performed two different types of analyses. First, we 
added both PSES score and tumor stage as covariates to a 
Cox proportional hazards model and estimated the hazard 
ratio statistic.  Although stage remained a strong predictor 
in both cohorts, positive PSES score was significantly 
associated with shorter PFS in the MDACC cohort even 
after adjustment by tumor stage (HR, 2.33, 95% CI = 1.10 
to 4.93, P = 0.026) (Figure 3C). Secondly, we stratified 
patients into either early-stage or advanced-stage group 
and performed Kaplan-Meier survival analysis using 
the PSES scores separately in these two groups. PSES 
score was significantly associated with PFS in either 
group in the MDACC cohort but not in the TCGA cohort 
(Supplementary Figure 5). Taken together, these data 
suggested that PSES score is significantly correlated 
with patient PFS, independent of surgical stage. Although 
patients with higher PSES score appeared to have worse 
overall survival, this trend was not statistically significant 
(Supplementary Figure 6).

Biological Interpretation of PSES

To characterize the biological properties of PSES, 
we used publicly available tools to associate the predictive 
proteins with gene ontology (using the GO database) 
[16] as well as pathway annotation (Ingenuity Pathway 
Analysis, https://www.qiagenbioinformatics.com/products/
ingenuity-pathway-analysis/). The Ingenuity Knowledge 
Base including all proteins was used as a reference set and 
the statistical significance was determined by the Fisher’s 
exact test. We focused the analyses on the four differentially 

expressed proteins/phosphoproteins. Dvl3 is a binding 
protein that controls signal transduction activity in the 
Wnt pathway and that all three phosphorylated proteins 
(pHER3, pSHC, and pJNK) are involved in kinase signaling 
through cell surface receptors (Supplementary Table 2). 
Pathway analysis showed that ErbB signaling is most 
significantly enriched in the PSES proteins (P = 5.1E-05)  
(Figure 4A). This pathway is associated with tumor 
angiogenesis and involves the three phosphorylated proteins 
that were significantly downregulated in advanced stage 
tumors (Supplementary Figure 7). Interestingly, a higher 
frequency of ErbB expression and activation is present 
in ductal carcinoma in situ than in invasive breast cancer. 
Canonically, Shc1, a docking partner of ErbB receptors 
[17], regulates the JNK signaling pathway [18]. Moreover, 
the expression levels of these three phosphoproteins were 
strongly and significantly correlated with one another, 
further suggesting significant inactivation of this signaling 
pathway in advanced stage EEC tumors (Figure 4B). 

DISCUSSION

Using RPPA profiling of nearly 400 EEC samples, 
the largest cohort with protein data yet reported, in this 
study we developed a predictive scheme that successfully 
distinguished patients with advanced stage disease from 
those with early stage disease, independent of patient’s 
age, tumor grade, vital status, or recurrence status. We 
further demonstrated that PSES has both prognostic value 
and biological interest. The clinical stage determined 
at the initial diagnosis is typically based on the results 
of a physical exam, biopsy, and imaging tests before 

Table 2: Multivariate logistic analyses for PSES scores and various diagnostic factors in patients with EEC

Variables† OR (95% CI) P
T

C
G

A

Advanced stage vs early stage tumors

        PSES score 3.96 (1.80 to 8.73) .001
        Age, >60 years vs ≤60 years 0.53 (0.24 to 1.17) .117
        Grade, Gr3 vs Gr1/2 2.33 (1.06 to 5.12) .036
        Vital status, deceased vs living 1.87 (0.50 to 7.02) .355
        Recurrence, yes vs no 4.72 (1.88 to 11.86) .001

M
D

A
C

C

Advanced stage vs early stage tumors

        PSES score 5.37 (1.27 to 22.65) .022
        Age, >60 years vs ≤60 years 1.74 (0.70 to 4.32) .228
        Grade, Gr3 vs Gr1/2 0.92 (0.31 to 2.76) .882
        Vital status, deceased vs living 1.32 (0.30 to 5.92) .712
        Recurrence, yes vs no 10.44 (3.55 to 30.73) <.001

Abbreviations: CI, confidence interval; OR, odds ratio.
†PSES score was treated as a continuous variable and all other covariates were binary: age (0 for an age of 60 years or less 
and 1 for an age of greater than 60 years), grade (0 for a grade of 1 or 2 and 1 for a grade of 3); vital status (0 for living and 
1 for deceased), and recurrence (0 for a tumor with no recurrence and 1 for a tumor with recurrence).



Oncotarget19710www.oncotarget.com

surgery. The pathologic stage is determined much later by 
examining tissue removed during an operation, and thus 
gives the health care team more precise information that 
can be used to predict treatment response and outcome. 
One potential use of the PSES algorithm would be in 
analysis of preoperative EEC tumor biopsies obtained 
during initial diagnosis that could then be used to direct 
the appropriate surgical approach.  Specifically, our 
PSES score could help select for patients who should 
undergo more extensive lymph node dissections at the 
time of hysterectomy [19]. Given its strong correlation 
with pathological stage, the clinical stage information 
should be incorporated into the PSES prediction scheme 
in order to improve the predictive sensitivity and 

specificity. A protein-driven model that can be evaluated 
using immunohistochemistry may be more practical and 
accurate in clinical management [20], while also being 
less susceptible to expression variations of individual 
proteins. Different from other predictors such as histologic 
grade, patient age, or even clinical stage, the PSES 
predictor projects treatment strategies and likely facilitates 
identification of novel targets for therapeutic intervention.

Feature selection based on statistical comparison is 
dependent upon sample size and patient characteristics.  
For example, the gene sets discovered to be associated 
with platinum-based chemotherapy resistance exhibited 
a wide range of 14 to 1,727 genes from several ovarian 
cancer studies (sample sizes of 6 to 119), and only seven 

Figure 3: Association of PSES with tumor prognosis in patients with EEC. (A) The PFS rate in EEC patients with positive 
PSES scores (n = 98) was statistically significantly lower than that for patients with negative PSES scores (n = 102) (P = 0.04, log-rank 
test) in the TCGA cohort. (B) The PFS rate in EEC patients with positive PSES scores (n = 48) was statistically significantly lower than 
that for those with negative PESE scores (n = 106) (P = 0.0007, log-rank test) in the MDACC cohort. Patients with missing survival data 
were excluded from this analysis. The numbers of patients at risk at various time points are shown below each curve. (C) Multivariate Cox 
proportional hazards model analysis of PFS with PSES score and patient tumor stage as covariates in both the TCGA and MDACC cohorts.
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genes were observed as overlapping [21]. To capture these 
factors, we sought to identify informative features that 
exhibited statistically significant differences on average 
in 500 different training sets that were randomly selected 
from the TCGA cohort and which comprised different 
numbers of samples. A predictive model consisting of the 
thus-selected features was robust to tumor heterogeneity 
and sample size, as demonstrated by validation in an 
independent cohort. 

PSES also offers biological insight into 
endometrial tumor progression. Interestingly, the 
differentially expressed proteins are significantly 
enriched in the ErbB signaling pathway, which involves 
the three phosphoproteins (pHER3, pSHC, pJNK) that 
were significantly downregulated in advanced stage 
EEC tumors. Strong expression correlation among these 
phosphoproteins further supported an abnormality in 
this signaling pathway. Dysregulation of these proteins 
or related pathways in the role of tumor suppression or 
in disease with favorable prognosis has previously been 
demonstrated in several other cancers. Activation of 
the JNK signaling pathway was previously reported to 
contribute to apoptosis and growth inhibition in human 

hepatoblastoma [22] and osteosarcoma [23] cells. In 
contrast, JNK deficiency significantly increases tumor 
formation in breast cancer [24]. Compared with other 
molecular subtypes, luminal A/B breast cancer, which 
has a relatively favorable prognosis, exhibits higher 
ERBB3 expression [25]. Likewise, low expression level 
of p66, an isoform of pSHC, was recently reported to 
be significantly correlated with worse survival rate 
in lung cancer [26]. Collectively, these findings are 
biologically consistent with the downregulation of the 
ErbB signaling pathway in advanced stage tumors in the 
setting of EEC. Consistently, higher expression levels of 
the EGFR protein (a member of the ErbB family) and 
p38 MAPK phosphoprotein (a member of the MAPK 
family) were previously reported to be associated with a 
good prognosis in early-stage EEC [27]. 

On the other hand, the disheveled segment polarity 
protein 3 (encoded by DVL3), a key mediator of Wnt/β-
catenin signaling [28], which was significantly upregulated 
in the advanced stage EEC tumors, has been shown to be 
a driver of lung cancer metastases [29, 30]. Tumors with 
a relatively lower level of Dvl3 were correlated with 
improved sensitization to IGF1R inhibition and longer PFS 

Figure 4: Biological interpretation of PSES. (A) Significantly enriched pathways in the four differentially expressed proteins used 
for construction of PSES where cartoon of ErbB signaling pathway involving the three phosphorylated proteins is also shown. The right 
plot on this panel shows the ratio of genes in the PSES proteins to all the genes included in the signaling pathway. (B–D) Expression 
correlation of the three proteins that are involved in the ErbB signaling pathway where (B) pHER3 vs pSHC, (C) pSHC vs pJNK and (D) 
pHER3 vs pJNK.
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in patients treated with IGF1R antibodies [31]. The Wnt/
β-catenin signaling pathway appears to be a predominant 
factor driving tumor progression in endometrial cancer, 
though mediators for the pathway activation are different 
from low-grade to high-grade EEC. The Wnt pathway is 
activated either by β-catenin exon 3 mutations in low-grade 
endometrioid carcinoma [7] or by overexpression of Dvl3 
protein in high-grade endometrioid carcinoma. 

It was previously reported that two randomized 
clinical trials demonstrated different effects of adjuvant 
chemotherapy on PFS [32]. In striking contrast to a lack of 
effect in the MaNGO trial, which recruited over 99% Stage 
IIB-IIIC patients, the NSGO/EORTC trial, which consisted 
of 98% Stage IA-IIA patients, showed a favorable effect 
of chemotherapy on PFS. These results suggest that benefit 
from adjuvant chemotherapy may reside largely within 
the cohort of patients with stage I-II tumors, which could 
be reliably predicted by PSES in this study. Nonetheless, 
the association of PSES with stage should be validated 
in a prospectively acquired EEC cohort before we could 
translate it into routine clinical practice.

In summary, PSES is a useful prognostic factor 
and offers potential targets for therapeutics. The finding 
has clinical implications for risk assessment and early 
intervention for patients with endometrial cancer.

MATERIALS AND METHODS

Patient samples 

Protein expression profiling and clinicopathologic 
annotation for 210 EEC cases were obtained from the TCGA 
data portal [6] on March 1, 2013. Patients underwent surgical 
resection but received no prior treatment for their disease. 
Clinicopathologic diagnoses were made at local tissue source 
sites and further confirmed by TCGA. Cases were reviewed 
and pathologically staged according to the 2009 FIGO 
staging system into 4 major sub-stage divisions (stage I, II, 
III, and IV) [6].  As a validation cohort, an additional 184 
EEC cases were diagnosed at MDACC from 1998 to 2009, 
and the tumor samples were reviewed for grade and stage by 
two independent pathologists. The study was approved by the 
National Cancer Institute (training set) and by the institutional 
review board at MDACC (validation set). Detailed patient 
demographic and clinicopathologic characteristics for both 
cohorts are described and compared in Table 1.

RPPA Profiling 

Reverse-phase protein array (RPPA) is a high-
throughput antibody-based technique for simultaneously 
measuring protein expression levels in a large number of 
biological samples [33].  Quantitative protein expression 
profiles in the training set were obtained from TCGA [6]. 
The 210 TCGA EEC samples included in this study were 
those who had both RPPA data and clinical annotation. 

RPPA profiling of samples in the validation set (MDACC 
cohort) was measured and pre-processed, including 
sample-wise median center and log 2 transformation, 
at the MD Anderson RPPA core facility using standard 
operating procedures and validated antibodies [33]. For the 
purpose of comparison between TCGA (170 antibodies) 
and MDACC (187 antibodies) data sets, a total of 138 
antibodies that were in common across these two cohorts 
were selected for all downstream analyses.

Identification of predictive proteins 

The overall flow chart of the study design shown 
in Supplementary Figure 8 summarizes the procedure 
used to construct and validate the protein-based scoring 
scheme for predicting clinical stage of EEC patients. 
The predictive proteins (features) were first identified 
to be differentially expressed via supervised analysis of 
the advanced versus early stage tumors in the TCGA set. 
Firstly, we randomly selected a subset of patients from the 
TCGA cohort with a set size ranging from 30 to 210. Then, 
we performed supervised analysis to identify differentially 
expressed proteins/phosphoproteins between advanced 
stage versus early stage tumors within this subset and 
calculated expression (fold-change in term of log2 ratio) 
and statistical (P value) differences for all proteins and 
phosphoproteins. We repeated this process 500 times 
(Supplementary Figure 9). For each protein, the fold-
changes and P values varied with subsets (Supplementary 
Figure 10), presumably because different subsets had 
different sample sizes and different patient characteristics. 
We then calculated the arithmetic mean of the fold-changes 
and geometric mean of the P values for each protein from 
all 500 randomly selected subsets. Using an average P 
value cutoff of 0.05, we identified the predictive protein 
to use in developing the prediction algorithm. EEC tumors 
are characterized by expression of estrogen receptor alpha 
(ER) and progesterone receptor (PR); hence, we included 
these two proteins in the predictive model to account for 
baseline fluctuation on other clinicopathological variables 
such as age, grade, and recurrence status. 

Construction of predictive model

The predictive model was constructed using a 
weighted voting algorithm [34, 35]. The protein scoring 
of EEC staging (PSES) of the jth sample is defined as

PSES xj i
i=l

N

ij i= • −( )∑ω µ

where N is the number of predictive proteins (6 in 
this case); j represents samples (j = 1,2,…); i represents 
proteins with non-zero weights (i = 1,2, …,6); ωi is the 
weighting factor associated with the ith protein; xij is the 
expression level of the ith protein for the jth patient; and 
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µi represents the average expression of the ith protein 
across the entire cohort. The weighting factors reflect 
the contribution of proteins to the predictive model and 
are first initialized to their relative expressions (rx) [36] 
between the advanced stage and early stage groups:

ωi
i

i
i=1

N= rx

rx∑

rx =
 

i
i,hi i,lo

i,hi i,lo

µ − µ
σ +σ

where μi,hi, σi,hi (μi,lo, σi,lo ) represent the average 
expression and standard deviation of the ith protein in the 
advanced stage (and early stage) groups, respectively.

To reduce the potential of overfitting [37], the initial 
weighting factors were next subjected to unconstrained 
nonlinear optimization using a derivative-free method [38]. 
The genetic algorithm was employed in Matlab, and refined 
using fminsearch. fminsearch starts at the initial weighting 
vector, x0 = [ω1, ω2,  ω3,  w4,  w5,  w6]  and finds a local 
minimum of the custom-defined function described in Fun(x). 

x̂ = [ ]fminsearch , Fun(x) x0

Fun x ROC( ) ( , )= −1  PSES PSEShi
(x)

lo
(x)

x̂  = [ω̂1, ω̂2, ω̂3, ω̂4, ω̂5, ω̂6]

where PSEShi
(x) and PSESlo

(x) are the PSES scores for 
advanced  and early stage tumors respectively and depend 
upon the weighting factor, x. ROC denotes the ROC curve 
analysis of these two scores; the corresponding value 
of the area under the curve (AUC) for each x was then 
calculated. Minimizing Fun(x) is equivalent to maximizing 
the predictive performance assessed by receiver operating 
characteristics (ROC) curve analysis. The x hat represents 
the optimized weighting factor vector that gives rise to a 
maximum AUC value. The ROC curves evaluated via PSES 
scores were calculated as examples at the initialization and 
at the end of optimization (Supplementary Fgure 11). 

The PSES score was calculated for each of the 210 
TCGA samples as the sum of the protein expression levels 
multiplied by the optimized weighting factors,

PSES =j
i=1

Ν

∑

Specifically, PSES was defined as follows: 0.3597 × 
Dvl3–0.1874 × JNK-pT183_pT185–0.017 × Shc_pY317–
0.1976 × HER3_pY1298–0.06 × ER-alpha–0.0678 × PR, 
where protein expressions were mean centered. A plus or 
minus sign indicates that increased expression is associated 
with tumors with either advanced  or early stage disease.

Statistical analysis 

Mann–Whitney analysis of variance was used to 
evaluate the statistical differences in protein levels and 

PSES scores between early and advanced stage tumors. The 
Spearman correlation test was used to examine expression 
correlation among the three identified phosphorylated 
proteins. The Youden index [39] was used to determine the 
optimal PSES cutoff value in distinguishing patients with 
advanced and early stage disease. A multivariable logistic 
regression model was used to calculate the odds ratios 
(ORs) for clinicopathological variables associated with 
advanced stage tumors according to the PSES scores.

Survival analyses were performed using the Kaplan-
Meier method, and the difference in survival was examined 
with the use of log-rank tests. Overall survival (OS) was 
defined as the interval from the date of initial surgical 
resection to the date of last known contact (censored) or 
death. Progression-free survival (PFS) was defined as the 
interval from the date of initial surgical resection to the 
date of progression, recurrence, or last known contact 
(censored). Statistical significance was defined as P < 
0.05, and all tests were two-sided. Analyses were primarily 
performed using the scientific software Matlab, version 
8.4 (MathWorks, Inc., Natick, MA, USA), SPSS version 
18 (SPSS Inc., Chicago, IL, USA), and GraphPad Prism, 
version 6 (GraphPad Software, Inc., La Jolla, CA, USA).
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