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Thedetection of stenotic plaques strongly depends on the quality of the coronary arterial tree imagedwith coronaryCT angiography
(cCTA). However, it is time consuming for the radiologist to select the best-quality vessels from the multiple-phase cCTA for
interpretation in clinical practice. We are developing an automated method for selection of the best-quality vessels from coronary
arterial trees in multiple-phase cCTA to facilitate radiologist’s reading or computerized analysis. Our automated method consists
of vessel segmentation, vessel registration, corresponding vessel branch matching, vessel quality measure (VQM) estimation, and
automatic selection of best branches based on VQM. For every branch, the VQM was calculated as the average radial gradient. An
observer preference study was conducted to visually compare the quality of the selected vessels. 167 corresponding branch pairs
were evaluated by two radiologists.The agreement between the first radiologist and the automated selection was 76% with kappa of
0.49. The agreement between the second radiologist and the automated selection was also 76% with kappa of 0.45. The agreement
between the two radiologists was 81%with kappa of 0.57.The observer preference study demonstrated the feasibility of the proposed
automated method for the selection of the best-quality vessels from multiple cCTA phases.

1. Introduction

Coronary CT angiography (cCTA) is a useful noninvasive
modality for imaging of the heart and evaluation of the extent
of plaques. However, due to the coordinated motion of the
heart chambers, different arterial segments may be blurred
at different phases of the cardiac cycle [1]. To reduce this
artifact, electrocardiographic (ECG) gating is employed for
the acquisition of cCTA and the cCTA examinations are
reconstructed at multiple cardiac phases. In this way, each
of the coronary arterial segments has a better chance to be
captured in a stationary and good-quality state in at least
one of the phases. However, the search for atherosclerotic
plaques in multiple-phase cCTA volumes is time consuming
for radiologists or a computer-aided detection (CAD) system.

A number of studies reported methods of automatic
selection of the best-quality phase of the entire coronary
arterial tree or motion correction during reconstruction of
cCTA or 3D angiograms. Rasche et al. [2] proposed an

algorithm for automatic selection of the optimal cardiac
phase for image reconstruction in vascular interventional
X-ray imaging using a C-arm system. The algorithm was
based on the analysis of a four-dimensional data set using
an image quality index. The performance of the algorithm
was evaluated in eight porcine models. Hoffmann et al.
[3] evaluated an algorithm for automatic phase selection in
cCTA based on the concept of motion maps. The motion-
map phase selection approach was compared to that with
manual iterative selection in cCTA of 20 patients. A high
level of agreement was found between the two approaches
with better results in patients with low heart rates. Joemai
et al. [4] compared fixed, manual, and automatic phase
selectionmethods in cCTA.The automaticmethod estimated
a motion map from the raw data and reconstructed the
phase with the least motion. The difference in the selections
between the manual and the automatic methods was not
statistically significant. In a different study, Joemai et al.
[5] also compared the manual and the automatic method

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2016, Article ID 1835297, 13 pages
http://dx.doi.org/10.1155/2016/1835297

http://dx.doi.org/10.1155/2016/1835297


2 Computational and Mathematical Methods in Medicine

for optimal phase selection in cCTA for the assessment of
the global left ventricular function. They concluded that the
automated phase selection method was similar to the manual
selection. Ruzsics et al. [6] compared a commercial system for
automatic selection of the cardiac phase with the least motion
for cCTA reconstruction with manual selection. No statisti-
cally significant difference was found between automatic and
manual selections. Rohkohl et al. [7] also developed amethod
in which two motion artifact metrics were used to guide
the automatic adjustment of the motion field parameters
for motion-compensated reconstruction tominimizemotion
artifacts. The image quality improvement of the MAM opti-
mization was visually confirmed in four cCTA patient cases.

The above studies focused on selection of the best-quality
cCTA phase, which inevitably have to make compromise
among the individual arteries because there may not be a
single phase in which all arteries attain their best quality.
Lessick et al. [9] proposed and evaluated a vessel-specific
method which automatically output the minimum motion
phase for each of the three main coronary arteries. The study
demonstrated that multiple phases were required to ensure
optimal image quality for all three coronary arteries and that
a vessel-specific phase selection algorithm achieved superior
results to the standard global approach.We are developing an
alternative novel approach, in which an automated method
will select the best-quality phase for any individual arterial
segment on the coronary arterial trees from the available
phases of a cCTA study during radiologists’ interpretation
or computerized analysis.The selected arterial segments may
be considered to be components of a virtual single best-
quality coronary arterial tree. The selection process will be
carried out in the background, transparent to the radiologist.
When the radiologist reads each individual arterial segment,
the best-quality phase of that segment will be automatically
displayed in any preferred format(s) (straightened or curved
multiplanar reformation, original axial slices) on a clinical
workstation for the radiologist’s interpretation. We have pre-
viously developed the vessel segmentation and registration
methods [10–12]. We have reported initial pilot results based
on the idea of automatic vessel selection in a conference
[13]. In the current paper, we focus on the implementation
framework and the methodologies for the identification of
corresponding vessels frommultiple phases and the selection
of the best-quality vessel in much greater detail using a
larger data set. We also demonstrated the feasibility of
the automated best-quality vessel selection method by an
observer preference study and statistical analysis.

2. Materials and Methods

The multistage framework for automated best-quality vessel
selection in cCTA is shown in Figure 1. The left and right
coronary artery trees (LCA and RCA) are segmented and
tracked from each phase of the reconstructed cCTA volume
[10, 11]. The LCA and RCA trees are separately registered
to their respective trees in the multiple phases [12]. The
corresponding arterial branches from the registered phases
are identified. A vessel quality measure (VQM) is calculated

Multiscale enhancement and 
segmentation of coronary artery trees

Multiple-phase registration of 
coronary artery trees

Identification of corresponding
arterial branches from multiple phases

Estimation of vessel quality measure 
for each branch

Selection of best-quality branch 
among corresponding branches 

from multiple phases 
using vessel quality measure

Figure 1: Multistage framework for selection of the best-quality
phase for individual arterial branches in multiphase cCTA.

from each branch and the branch with the highest VQM
among themultiple phases is considered to be the best-quality
phase of this arterial branch. The steps of the process are
described in the following sections.

2.1. Coronary Arterial Tree Segmentation and Registration.
A cCTA examination acquired with ECG-gating and recon-
structed at 6 cardiac phases (e.g., 80%, 75%, 70%, 50%, 45%,
and 40%) is shown in Figure 2(a). For each phase, a 3D
rendered volume of interest enclosing the heart region in the
cCTA is presented. The coronary arteries are segmented in
each phase, as shown in Figure 2(b) by our multiscale coro-
nary artery response and rolling balloon region growing and
tracking method [10, 11]. The centerlines of the segmented
arterial trees are also determined during rolling balloon vessel
tracking. The arterial trees from the different phases are then
coregistered by a multistep registration method developed in
our laboratory, which uses cubic B-spline with fast localized
optimization (CBSO) and an affine transform with quadratic
terms and nonlinear simplex optimization (AQSO) [12]. A
coregistered left coronary artery tree combining six phases
is shown in Figure 3. Details of the coronary artery tree
segmentation and multiple-phase registration methods and
their performances can be found in our previous publications
[10–12].

2.2. Identification of Coronary Tree Branches and Deter-
mination of Correspondence. To identify the coronary tree
branches, the first stage is the determination of the cor-
responding branching points. The branching points of the
coronary trees in every phase are automatically detected
(Figure 4) as a part of the balloon tracking method. Every
detected branching point in a given phase is then projected
to the registered coronary trees of the other phases. This
procedure is implemented in order to (1) increase the
likelihood of consistent identification of the branching points
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Figure 2: cCTA scans acquired with ECG-gating and reconstructed at multiple cardiac phases: (a) 3D rendered cCTA volumes for 6 acquired
cardiac phases (80%, 75%, 70%, 50%, 45%, and 40%). Left (LCA) and right (RCA) coronary arterial tree in phase 50% are marked by white
arrows. (b) Segmented LCA and RCA tree in each phase (80%, 75%, 70%, 50%, 45%, and 40%) using multiscale enhancement and dynamic
balloon tracking method [10, 11].

Figure 3: LCA trees from Figure 2 which are automatically reg-
istered by using nonlinear CBSO and AQSO methods [12]. The
coronary trees in phases 70% and 80% were registered first (70%-
80%). Then by using the CBSO method the coronary tree in phase
75% was registered to 70%-80% to obtain the 70%-80%-75% tree.
By following the same approach the coronary trees in phases 45%
and 50% were also registered (45%-50%). Again, by using the CBSO
method, the coronary tree in phase 40% was registered to 45%-
50% to obtain the 45%-50%-40% tree. The 45%-50%-40% tree
was then registered to the 70%-80%-75% tree by using the AQSO
method followed by the CBSO method. In the image, the reference
(unwrapped) coronary tree is shown in red, the warped coronary
tree in white, and the overlap between the trees in green.

in every phase because the detection of branching points
on a coronary tree in a low-quality phase is challenging
and branching points may be missed and (2) establish the
correspondence between the branching points from different
phases.

For a branching point in a given phase, the above process
will generate multiple potential branching point candidates
in its proximity, due to inaccuracies in the detection of
branching point locations in the different phases, as well as
the inaccuracies in the coronary tree registration. Therefore,
we developed a method to automatically identify the most
likely branching point in a given phase and then identify the
corresponding branching points in all phases (Figure 4) by
using the combined coregistered tree and distance criteria.
A projected branching point from a different phase will
be kept only if the distance between the point and any

existing branching point in the current phase is larger than
𝑑, where 𝑑 was chosen to be 20 voxels experimentally. If
the distance between the projected branching point and the
closest branching point in the current phase is smaller or
equal to 𝑑, then a correspondence will be established between
the branching point in the current phase and the original
branching point from the different phase that generates the
projected point. This process is applied to all branching
points in all phases. The branching points are used to mark
separate vessel branches and to split the coronary tree in each
phase. The centerlines are also split into centerline branches
following the vessel branch identification (Figure 5).

In the next step, the corresponding branches of the
same vessel appearing in different phases are identified. The
correspondence between the branches is established by using
the following criteria:

(1) For every centerline voxel 𝑐ℎ of a branch 𝑏
𝑖

𝐺
within the

coronary tree 𝐶𝐺 at phase 𝐺, (𝑐ℎ ∈ 𝐶𝐺), the shortest distance
to the centerline of the coronary tree 𝐶𝑈 in another phase 𝑈
after registration is calculated as

𝐷(𝑐ℎ, 𝐶𝑈) = min {𝑑 (𝑐ℎ, 𝑡) : 𝑡 ∈ 𝐶𝑈} , (1)

where the function d is the Euclidean distance. Let 𝑡ℎ,min be
the voxel on CU, at which the shortest distance 𝐷(𝑐ℎ, 𝐶𝑈) is
found in branch 𝑏𝑗

𝑈
and𝐷(𝑐ℎ, 𝐶𝑈(𝑡ℎ,min)) ≤ 𝜃, where 𝜃was set

to be 3 voxels. If the shortest distance voxels, 𝑡ℎ,min, for at least
70% of the centerline voxels 𝑐ℎ within the branch 𝑏𝑖

𝐺
, belong

to the same branch 𝑏𝑗
𝑈
in phase 𝑈 and vice versa, then there

exists a correspondence between the branches 𝑏𝑖
𝐺
and 𝑏𝑗
𝑈
.

(2) Short branches that are subsets of longer branches in
the same phase are ignored.

The process is repeated for all phase pairs to determine
the correspondence of all branches (Figure 5). This process
is applied separately to the left and the right coronary trees.
Each of the branches is then straightened by curved planar
reformation (CPR), where every coronary vessel branch
and a surrounding neighborhood in the cCTA volume is
transformed to a rectangular volume by resampling the
original cCTA volume in planar cross sections perpendicular
to the branch centerline (Figure 6). Our implementation of
the CPR method was described previously [14].

2.3. Vessel Quality Measure (VQM). In this preliminary
study, we defined a simple vessel quality measure (VQM) to
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Figure 4: Automatically detected vessel branching points (in red), which are propagated to all phases.

automatically estimate the vessel quality. First, the gradients
𝐺𝑖 along the radii𝑅𝑖 (𝑖 = 1, . . . , 𝑁𝑐ℎ) of the vessel cross section
perpendicular to the centerline at the centerline voxel 𝑐ℎ of a
given branch 𝑏𝑘

𝐺
are calculated [14]:

𝐺𝑖 = 𝐼in − 𝐼out, (2)

where 𝐼in is the average CT value at half radius from the vessel
center 𝑐ℎ to the vessel wall, 𝐼out is the average CT value from
the vessel wall to a distance of half radius outside the vessel,
and 𝑁𝑐ℎ is the number of the points along the vessel wall of
the vessel cross section at 𝑐ℎ. The radial gradient at each voxel

𝑐ℎ along the centerline of a branch 𝑏
𝑘

𝐺
is calculated as themean

of the gradients𝐺𝑖 along all radii𝑅𝑖 of the vessel cross section:

𝐺𝑐ℎ
=
∑
𝑁𝑐ℎ

𝑖=1
𝐺𝑖

𝑁𝑐ℎ

. (3)

Finally, a VQM is derived as the average of the radial gradient
values over all centerline points of the vessel branch:

VQM
𝑏𝑘
𝐺

=

∑
𝑀

ℎ=1
𝐺𝑐ℎ

𝑀
, (4)

where 𝑀 is the number of voxels 𝑐ℎ along the centerline
of a branch 𝑏𝑘

𝐺
. The VQM is calculated for every branch in
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Figure 5: LCA tree: automatically identified corresponding vessel branches (shown by matching colors) in six phases. Note that some colors
are repeatedly used for different branches because of the limited number of colors available. The different branches of the same color can be
distinguished by locations.

every phase. In Figure 7, the VQM was calculated for the
five corresponding CPR straightened branches in five of the
phases. In one of the phases (80%), the coronary tree missed
many of the arterial segments (Figure 4) and the branch in
Figure 7 was one of the missing ones. The quality of the
corresponding branches among all phases in a cCTA exam
can then be ranked by their VQM values.

The distance between the point inside and the point
outside the vessel in the denominator of the gradient cal-
culation is not explicitly included in (2) because the VQM
is designed to compare the relative vessel wall sharpness of
the same vessel segment at multiple phases and the distance
(i.e., the radius) is the same for all phases. Using the radius
estimated at each angle or each center point of the vessel
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Figure 6: Vessel straightening. Curved planar reformation was used to straighten each of the branches.
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Figure 7: A straightened branch from the LCA tree in Figure 5 in five phases. The VQM was calculated for the corresponding straightened
branches in all available phases. (The branch was missing in the 80% phase.)
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Figure 8: A pair of best- and worst-quality vessel branches selected automatically from the corresponding arterial branches in Figure 7 using
VQM and the radiologists’ preferences. The automated selection and the radiologists’ preferences matched in this case (branch (a)).

segmentwould introducemore variations due to noise so that
a constant distance is assumed for the relative radial gradient
estimation. We used the radial gradient averaged along the
branch because it further reduces noise and is more robust
than a point-by-point comparison.

2.4. Observer Study. We conducted an observer preference
study to visually compare the relative quality of the ves-
sels and compared with the automatic ranking with VQM.
Because of the large number of possible vessel pairs that can
be formed by exhaustive pairing of the corresponding vessel
branches frommultiple phases, to limit the radiologists’ effort
required for reading, we used a single pair of each vessel
branch in our data set for the observer study. First, a pair
of the best- and worst-quality branches among the available
phases for each branch was automatically identified using the
VQM (Figure 8). The pair of vessel branches was displayed
side by side on two DICOM-calibrated high resolution
monitors by a graphic user interface (GUI).The display of the
best- and theworst-quality image as the left or the right image
in a pair was randomized. An observer, blinded to the VQM,
visually compared the pairs of corresponding branches and
selected the image with better quality vessel based on his/her
subjective judgment (Figure 8). The observer recorded
his/her preference using an in-house developed GUI. Two
experienced cardiothoracic radiologists with 10 and 7 years
of experiences evaluating cCTA participated in the study
as observers. Figure 8 shows an example for which the
automated selection matched both radiologists’ preference.

2.5. Data Set. With Institutional Review Board (IRB)
approval, cCTA examinations for seven patients (2 men and

5 women; age range, 31–65 years; mean age, 49.4 years) were
collected retrospectively from the patient files at the Univer-
sity of Michigan Health System and used in this preliminary
study. The cCTA cases were acquired with a clinical protocol
in which an isoosmolar nonionic contrast medium (Visi-
paque; GE Healthcare) was administered using an 18-gauge
cannula in an upper extremity vein. A test bolus of 15 to 20mL
at the rate of 4 to 5mL/s was administered with sequential
scanning every 2 seconds at the level of the leftmain coronary
artery, with a region of interest placed in the aortic root,
to determine the optimum scan delay for each patient. For
the coronary CT angiograms 80mL of contrast medium was
injected (60mL at 5mL/s and 20mL at 3.5mL/s) followed by
a saline chase bolus of 50mL at 5mL/s. The mean and stan-
dard deviation heart rate of the patients were 62.7 ± 5.2 bpm.

The cCTA images were acquired by helical retrospective
gating at 120 kVp and 440–800mA with GE multidetector
CT scanners (GE Healthcare Lightspeed VCT (6 patients)
andDiscovery CT750HD (1 patient)).The cCTA image slices
were reconstructed at 0.625mm slice interval and 0.488mm
in-plane pixel size. The clinical protocol of cCTA in our
department reconstructed 6 phases in a range from 40% to
87%. While more phases can be reconstructed from the data,
6 phases are used in the clinical protocol at our health system
because they are clinically sufficient to cover a broad range
of heart rates. This strategy provides optimal yield and a
balance between diagnostic accuracy and efficiency. Routine
reading of more than 6 phases is clinically impractical and
overly burdens radiologists’ workload. In our study, we tried
to emulate clinical practice, where only select phases are
generated for assessment but our method is applicable to
more or fewer phases.
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Table 1: Corresponding branch image pairs for the 7 cases.

Case # Total LCA RCA
1 31 17 14
2 14 11 3
3 25 12 13
4 38 23 15
5 18 13 5
6 26 16 10
7 15 10 5
Total 167 102 65

The data set therefore contained a total of 42 cCTA
volumes (7 patients with 6 phase cCTA scans each) with 84
coronary arterial trees (42 LCA trees and 42 RCA trees).
After automatic registration and identification, 167 groups of
corresponding branches were established (102 LCA and 65
RCA). The VQM of 833 branches in 6 phases were calculated
(531 LCA branches and 302 RCA branches). Note that not all
vessel branches had a complete set of 6 phases because some
vesselsmight be lost at segmentation and tracking due to poor
image quality. For each group of corresponding branches, two
branches, the branch with the highest VQM and the branch
with the lowest VQM, were selected based on the VQM, as
described in the previous section.This resulted in 167 branch
image pairs (102 pairs from LCAs and 65 pairs from RCAs).
Detailed information for the number of established branch
image pairs for each case is given in Table 1.

2.6. Evaluation Methods. The performance of the automatic
selection using VQM was evaluated by the following two
methods:

(1) Estimation of the percentage of the total number of
vessel pairs for which the automatic selection agreed
with the radiologist’s selection of the higher quality
branch in the pair.

(2) Cohen’s kappa statistics to estimate the agreement
between the automatic selection and the radiologist’s
selection of the higher quality branch in the pair.

For comparison, the agreement between the two radiolo-
gists was also evaluated with the two methods.

3. Results

The overall agreement between radiologist 1 and the auto-
mated selection of the best-quality branches was 76% for the
7 cases (range: 53% to 93%). The overall agreement between
radiologist 2 and the automated selection of the best-quality
brancheswas 76% (range: 47% to 93%).Theoverall agreement
between radiologist 1 and radiologist 2 was 81% (range: 62%
to 94%).The percentages of agreement for the overall and the
individual cases are detailed in Table 2.

The average kappa for the agreement between radiologist
1 and the automated selection was 0.49 (range: 0.04 to 0.87),
which corresponds to a moderate agreement, based on the
commonly used scale [8] (included for reference in Table 4).

Table 2: Agreement between radiologist 1 and the automated selec-
tion using VQM of the best-quality branch in the corresponding
vessel pairs, between radiologist 2 and the automated selection, and
between the two radiologists.

Number of
branches

% agreement
Rad 1-

computer
Rad 2-

computer Rad 1-Rad 2

Case 1 31 90% 90% 94%
Case 2 14 93% 93% 86%
Case 3 25 84% 76% 84%
Case 4 38 79% 74% 82%
Case 5 18 61% 67% 83%
Case 6 26 62% 77% 62%
Case 7 15 53% 47% 80%
Overall 167 76% 76% 81%

Table 3: Cohen’s kappa statistics estimation of the agreement
between radiologist 1 and the automated selection using VQM of
the best-quality branch in the corresponding vessel pairs, between
radiologist 2 and the automated selection, and between the two
radiologists.

Number of
branches

Kappa
Rad 1-

computer
Rad 2-

computer Rad 1-Rad 2

Case 1 31 0.87 0.80 0.87
Case 2 14 0.81 0.81 0.65
Case 3 25 0.68 0.51 0.68
Case 4 38 0.56 0.50 0.61
Case 5 18 0.24 0.33 0.67
Case 6 26 0.21 0.32 0.18
Case 7 15 0.04 −0.13 0.33
Overall 167 0.49 0.45 0.57

The average kappa for the agreement between radiologist 2
and the automated selection was 0.45 (range: −0.13 to 0.81),
which also corresponds to a moderate agreement (Table 4).
The average kappa between radiologist 1 and radiologist
2 was 0.57 (range: 0.18 to 0.87), which again falls in a
moderate agreement category (Table 4).The kappa values and
corresponding commonly used agreement categories based
on kappa statistics for the individual cases are presented in
Tables 3 and 4, respectively.

Figures 8–13 show examples of the automatically selected
pairs of best- andworst-quality vessel branches fromavailable
corresponding arterial branches in six phases using VQM
and radiologists’ preferences. To facilitate comparison, the
examples of corresponding branch pairs in Figures 8–13
always show the image with the highest VQM on the left and
the image with the lowest VQM on the right. This is different
from the randomized left and right placement of the image
pairs for the observer study.
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VQM = 286

Rad 1, Rad 2

preferred

(a)

VQM = 263

(b)

Figure 9: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection matched the radiologists’ preferences (branch (a)).

VQM = 216

Rad 1, Rad 2

preferred

(a)

VQM = 196

(b)

Figure 10: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection matched the radiologists’ preferences (branch (a)).

4. Discussion

In this study, we used cCTA cases with 6 phases for eval-
uation of the best-quality vessel selection method and the
cases were acquired with retrospective gating techniques.
Prospective gating, if applicable, is the current state of the
art that provides sufficient quality scans with less radiation.
However, prospective gating techniques can be effective only
in appropriately selected cases when the heart rate is stable
with low beat-to-beat variations and is below about 65 bpm.
This allows acquisition in a selected phase of the cardiac
cycle. If these conditions are not met, retrospective gating
is still used clinically to generate cCTA of multiple cardiac
phases. In addition, even with prospective gating, more than
one phase may be reconstructed, depending on the amount

of padding used. Our proposed method can be applied to
cCTA examinations with more than one phase and should be
independent of whether the multiple phases are obtained by
retrospective or prospective gating techniques.

The image pairs of three branches of different quality
are shown in Figures 8–10. The difference in the quality in
a pair between the best- and worst-quality vessel branches
was relatively similar in these examples. The difference in
the VQM of the two branches in the pair in Figure 8 was
slightly higher compared to the difference in the pairs in
Figures 9 and 10. For all three pairs the automated selection
matched the preference of both radiologists. In Figure 11,
however, the automated selection (branch (a)) did not match
the radiologists’ preferences (branch (b)). In Figure 12, the
automated selection (branch (a)) matched the preference of
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VQM = 178

(a)

VQM = 160

Rad 1, Rad 2

preferred

(b)

Figure 11: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection (branch (a)) did not match the radiologists’ preferences (branch
(b)).

VQM = 103

Rad 1 preferred

(a)

VQM = 91

Rad 2 preferred

(b)

Figure 12: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection (branch (a)) matched the preference of radiologist 1 but did not
match the preference of radiologist 2 (branch (b)).

radiologist 1 and did not match the preference of radiologist
2 (branch (b)), which was an indication that the difference
in the quality of the two branches was very small and the
radiologists themselves differed in their quality preference
choice. In Figure 13, the automated selection (branch (a))
again did not match the radiologists’ preference (branch (b)).

Visual inspection shows that the quality of the two branches
is very similar, which is also reflected by the very close VQM
values (83 and 80, resp.). In this case, as in the case above,
the selection of any one branch from the pair would probably
be acceptable. Figures 14 and 15 show a vessel pair with
branches and a vessel pair with calcified plaques, respectively.
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VQM = 83

(a)

VQM = 80

Rad 1, Rad 2

preferred

(b)

Figure 13: A pair of best- and worst-quality vessel branches selected automatically from the corresponding arterial branches in six phases
using VQM and the radiologists’ preferences. The automated selection (branch (a)) and the radiologists’ preferences (branch (b)) did not
match in this case.

VQM = 198

Rad 1, Rad 2

preferred

(a)

VQM = 182

(b)

Figure 14: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection matched the radiologists’ preferences (branch (a)).

The automated selection matched the preferences of both
radiologists in both cases.TheVQMwas able to provide good
estimate of the relative vessel quality in these cases, probably
because the averaging over the vessel segment made it less
sensitive to distortions caused by branches and plaques.

The agreement between the radiologists for Cases 2 and
6 (Table 3) in terms of kappa was lower than the agreement
between the automated selection and the radiologists. The
percent agreement between the radiologists for Cases 2 and
6 was also lower than or equal to the agreement between the
automated selection and the radiologists (Table 2).

The low kappa for the agreement between the radiologists
for a case, such as Case 7, indicates that the quality between
the best and the worst branch for many vessel pairs in the
case is relatively close and it is difficult to make a definitive

decision.This is consistentwith the near zero and the negative
kappa for the agreement between the automated selection
and the radiologists. For these vessel pairs, the selection of
a branch from any one of the two phases will probably be
acceptable, as demonstrated by the examples in Figures 12 and
13.

The average agreements between the automated selection
and radiologist 1 and between the automated selection and
radiologist 2 were very close in terms of both percent agree-
ment and kappa. The average agreement between the two
radiologists was slightly higher than the average agreement
between the automated selection and either radiologist.

In this preliminary study, we used only the average radial
gradient along the vessel branch as the vessel qualitymeasure.
The average radial gradient estimates the sharpness of the
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VQM = 259

Rad 1, Rad 2

preferred
(a)

VQM = 215

(b)

Figure 15: Automatically selected pair of best- and worst-quality vessel branches from the available corresponding arterial branches in six
phases using VQM and radiologists’ preferences. The automated selection matched the radiologists’ preferences (branch (a)).

Table 4: Agreement between radiologist 1 and the automated selec-
tion using VQM of the best-quality branch in the corresponding
vessel pairs, between radiologist 2 and the automated selection, and
between the two radiologists estimated in terms of the commonly
used categories based on Cohen’s kappa statistics [8].

Kappa
Rad 1-computer Rad 2-computer Rad 1-Rad 2

Case 1 Almost perfect Substantial Almost perfect
Case 2 Almost perfect Almost perfect Substantial
Case 3 Substantial Moderate Substantial
Case 4 Moderate Moderate Substantial
Case 5 Fair Fair Substantial
Case 6 Fair Fair Slight

Case 7 Slight Less than
chance Fair

Overall Moderate Moderate Moderate
Agreement categories based on Cohen’s kappa statistics [8].
Kappa < 0: less than chance agreement.
Kappa 0.01–0.20: slight agreement.
Kappa 0.21–0.40: fair agreement.
Kappa 0.41–0.60: moderate agreement.
Kappa 0.61–0.80: substantial agreement.
Kappa 0.81–0.99: almost perfect agreement.

vessel wall. It can be expected that other measures such as
the contrast and smoothness of the vessels may also be useful
as descriptors for the quality of the vessels. We will further
develop the VQM to improve the accuracy of the automated
ranking of the corresponding branches frommultiple phases.

One limitation of the study is the small number of cases.
Although this pilot study did demonstrate the feasibility of
our approach, a larger data set and more observers have to
be used in future studies to further develop and validate

the robustness of the methods. A second limitation is that,
in clinical practice, cCTA interpretation is not based on
one view and all display formats (straightened multiplanar
reformation (MPR)s, curved MPRs, and original axial data)
are available for diagnosis. However, in our observer study
for assessment of the performance of the automatic vessel
selection method, the observers were provided with the
straightened MPR display to visually judge the vessel quality
based on information similar to that used by the computer.
This experimental design reduced the reading time to a
more practical level for the pilot study and also focused the
comparison on the vessel selection stage based on the VQM
rather than the accuracy of the entire process including vessel
segmentation and straightening. It may also be noted that
should the proposed method become practical for clinical
use, it would only be used for initial selection of the best
phase for a given vessel segment; all the possible (or the
preferred) formats of the vessel segment at the selected phase
could be displayed automatically so that the radiologist could
make use of all diagnostic information as desired. A third
limitation is that we did not include all possible branch
pairs from all phases in the observer study because the total
number of pairings to be evaluated would be over 2000,
which would impose excessive demand on the radiologists’
effort. Since the comparison of the best- and worst-quality
phases was an easier task, the observer study could not reveal
the performance of the automatic ranking among all phases.
Nevertheless, the observer study did show a correlation of the
magnitude of the difference inVQMwith the visual similarity
in the vessel quality and that small differences in VQMwould
indicate very similar quality so that the choice of one or the
other might not be as critical. We will further improve the
methods and perform more extensive validation studies in
the future.
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5. Conclusion

In this study we proposed a method for automatic selection
of the best-quality vessels from multiple cCTA phases. The
method utilizes a number of image analysis techniques
specifically designed for cCTA, including coronary arterial
tree segmentation and registration, identification of coronary
tree branches and their correspondence among the multiple
phases, and assessment of vessel quality by a quantitative
measure that guides the selection of the best-quality phase
for each vessel from multiple cCTA phases. An observer
study with two cardiothoracic radiologists as observers was
conducted to evaluate the proposed method. The results
demonstrate that the automatic method agreed well with
the radiologists’ selections and thus the feasibility of the
approach. The best-quality arterial segments constitute the
building blocks for a virtual best-quality composite coronary
arterial tree. The automated selection of the best-quality
arterial segments from all available phases of the cCTA is
expected to improve the efficiency and facilitate the detection
of plaques by either the radiologist or a CAD system.
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Buecker, “Automatic selection of the optimal cardiac phase
for gated three-dimensional coronary X-ray angiography,” Aca-
demic Radiology, vol. 13, no. 5, pp. 630–640, 2006.

[3] M. H. K. Hoffmann, J. Lessick, R. Manzke et al., “Automatic
determination of minimal cardiac motion phases for computed
tomography imaging: initial experience,” European Radiology,
vol. 16, no. 2, pp. 365–373, 2006.

[4] R.M. S. Joemai, J. Geleijns,W. J.H.Veldkamp,A. deRoos, andL.
J. M. Kroft, “Automated cardiac phase selection with 64-MDCT
coronary angiography,” American Journal of Roentgenology, vol.
191, no. 6, pp. 1690–1697, 2008.

[5] R.M. S. Joemai, J. Geleijns,W. J. H. Veldkamp, and L. J.M. Kroft,
“Clinical evaluation of 64-slice CT assessment of global left
ventricular function using automated cardiac phase selection,”
Circulation Journal, vol. 72, no. 4, pp. 641–646, 2008.

[6] B. Ruzsics, M. Gebregziabher, H. Lee et al., “Coronary CT
angiography: automatic cardiac-phase selection for image
reconstruction,” European Radiology, vol. 19, no. 8, pp. 1906–
1913, 2009.

[7] C. Rohkohl, H. Bruder, K. Stierstorfer, and T. Flohr, “Improving
best-phase image quality in cardiac CT by motion correction
withMAMoptimization,”Medical Physics, vol. 40, no. 3, Article
ID 031901, 2013.

[8] A. J. Viera and J. M. Garrett, “Understanding interobserver
agreement: the kappa statistic,” Family Medicine, vol. 37, no. 5,
pp. 360–363, 2005.

[9] J. Lessick, O. Klass, S.Wuchenauer et al., “Automatic determina-
tion of differential coronary artery motion minima for cardiac
computed tomography optimal phase selection,” Academic
Radiology, vol. 22, no. 6, pp. 697–703, 2015.

[10] C. Zhou, H.-P. Chan, A. Chughtai et al., “Automated coronary
artery tree extraction in coronary CT angiography using a mul-
tiscale enhancement and dynamic balloon tracking (MSCAR-
DBT) method,” Computerized Medical Imaging and Graphics,
vol. 36, no. 1, pp. 1–10, 2012.

[11] C. Zhou, H.-P. Chan, A. Chughtai et al., “Computerized analysis
of coronary artery disease: performance evaluation of segmen-
tation and tracking of coronary arteries in CT angiograms,”
Medical Physics, vol. 41, no. 8, Article ID 081912, 2014.

[12] L. Hadjiiski, C. Zhou, H.-P. Chan et al., “Coronary CT angiog-
raphy (cCTA): automated registration of coronary arterial trees
from multiple phases,” Physics in Medicine and Biology, vol. 59,
no. 16, pp. 4661–4680, 2014.

[13] J. Liu, L. Hadjiiski, H. P. Chan et al., “Automatic selection of best
quality vessels from multiple-phase coronary CT angiography
(cCTA),” in Proceedings of the Medical Imaging 2015: Computer-
Aided Diagnosis, vol. 9414 of Proceedings of SPIE, Orlando, Fla,
USA, March 2015.

[14] J. Wei, C. Zhou, H.-P. Chan et al., “Computerized detection of
noncalcified plaques in coronary CT angiography: evaluation
of topological soft gradient prescreening method and luminal
analysis,”Medical Physics, vol. 41, no. 8, Article ID 081901, 2014.


