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ABSTRACT
Shifts in forest soil microbial communities over altitudinal gradients have long been
attracting scientific interest. The distribution patterns of different soil microbial
communities along altitudinal gradients in subtropical mountain forest ecosystems
remain unclear. To better understand the changes in soil microbial communities
along an altitude gradient, we used Illumina MiSeq metagenome sequencing
technology to survey the soil microbial communities in a Pinus massoniana forest at
four elevations (Mp1000, Mp1200, Mp1400, Mp1600) and in a tea garden in Guizhou
Leigong Mountain in Southwestern China. We observed that the richness of bacteria,
fungi, and viruses in the soil microbial community changed in a unimodal pattern
with increasing elevation while that of Archaea first increased significantly, then
decreased, and finally increased again. Euryarchaeota and Thaumarchaeota were the
predominant Archaea, Proteobacteria and Acidobacteria were the predominant
bacterial groups, Ascomycota and Basidiomycota were the predominant fungal
groups, and Myoviridae, Podoviridae, and Siphoviridae were the predominant virus
groups. Amino acid transport and metabolism, energy production and conversion,
signal transduction mechanisms, and DNA replication, restructuring and repair were
the predominant categories as per NOG function gene-annotation. Carbohydrate
metabolism, global and overview map, amino acid metabolism, and energy
metabolism were predominant categories in the KEGG pathways. Glycosyl
transferase and glycoside hydrolase were predominant categories among
carbohydrate enzyme-functional genes. Cluster, redundancy, and co-occurring
network analyses showed obvious differences in the composition, structure, and
function of different soil microbial communities along the altitudinal gradient
studied. Our findings indicate that the different soil microbial communities along the
altitudinal gradient have different distribution patterns, which may provide a better
understanding of the mechanisms that determine microbial life in a mid-subtropical
mountain forest ecosystem.
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INTRODUCTION
Natural vertical gradients associated with altitude in mountain ecosystems have attracted
great interest from ecologists around the world because rapid changes in climate and
biological characteristics within a short geographic range are commonly observed in these
habitats (Siles & Margesin, 2016). Altitudinal gradients have been used as “natural
experiments” to understand how changes in environmental factors such as temperature,
precipitation, humidity, solar radiation, and atmospheric pollution deposits affect changes
in the complex biota (plant, animal, microbial) communities in mountain terrains (Körner,
2007). The mechanism underlying changes in species richness along an altitudinal gradient
has always been a controversial issue in ecological and biogeographic studies. Although
there are reports of diminishing patterns or single-peak patterns for animal and plant
mechanisms responsive to elevation, such differences may show stronger variation for
microorganisms among different regions, including no trend, a decline, a single peak, or a
concave or other distribution patterns associated with changes in altitude (Liu et al., 2018;
Siles & Margesin, 2016). In recent years, research on altitudinal patterns of microbial (i.e.,
Bacteria, Fungi, ectomycorrhizal fungi, etc.) diversity has gradually increased by using
high-throughput sequencing technology (Geml et al., 2017; Jarvis, Woodward & Taylor,
2015; Liu et al., 2018; Schoen, Nieselt & Garnica, 2018; Shen et al., 2020;Wang et al., 2015;
Zhao et al., 2022; Zhou et al., 2021). Soil microorganisms are important biological
components associated with aboveground interactions of terrestrial ecosystems (Bahram
et al., 2018), recognized as key drivers of litter decomposition, plant growth, soil nutrient
cycling, and biogeochemical processes (Bardgett & van der Putten, 2014; Schloter et al.,
2018; Thakur & Geisen, 2019; van der Heijden & Wagg, 2013). Due to the importance of
forest soils as both sinks and potential sources of carbon, as well as to their predicted
sensitivity to climate change, microbial ecologists have been struggling to indicate what is
the interaction mechanism between environment factors (topography, climate, vegetations
and soil) and soil microbial communities (diversity and function) in forest ecosystems
(Lladó, López-Mondéjar & Baldrian, 2018). Topography, as a long-term and constant
factor, has a major impact on ecosystem dynamics, and changes in topography may lead to
changes in soil microbial communities (Qiu et al., 2012; Tajik, Ayoubi & Lorenz, 2020;
Zhang et al., 2013). From a biological perspective, topographic parameters can provide
accurate and valuable information for predicting the distribution of the biodiversity of soil
microbial communities (Lladó, López-Mondéjar & Baldrian, 2018; Tajik, Ayoubi & Lorenz,
2020). Therefore, promoting the study of the mechanism underlying the distribution of soil
microorganisms along altitudinal gradients in mountain ecosystems should prove useful
for scientifically-based management of mountain ecosystems (Geml et al., 2017; Jarvis,
Woodward & Taylor, 2015; Körner, 2007; Liu et al., 2018; Schoen, Nieselt & Garnica, 2018;
Siles & Margesin, 2016; Wang et al., 2015).

Mountain terrains are very common in Southwest China, which increase habitat
heterogeneity while providing an important foundation for biodiversity richness (Myers
et al., 2000). Pinus massoniana (Masson pine) is an important native tree species and the
most widely distributed pine tree in Southern China, with strong adaptability and
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tolerance to harsh environments (Lei et al., 2018). In fact, P. massoniana forest is the main
vegetation type in Southern China with key ecological and economic importance,
accounting for 6.1% and 4.0% of the total area and volume of tree forests in China,
respectively (Huang et al., 2020). Masson pine forests are distributed along elevation
gradients and thus provide natural experimental locations for studying the
elevation-associated mechanism underlying the distribution of soil microbial
communities.

In the present study, we aimed (i) to describe the taxonomic composition of different
microbial communities (Archaea, Bacteria, Fungi, and Viruses) that those soils harbor
(using Illumina MiSeq metagenome sequencing) along an altitudinal gradient; (ii) to
analyze the diversity and functional structure of soil microbial communities at different
altitudes; (iii) to assess the relationship between the diversity and function of soil microbial
communities in a typical mid-subtropical mountain (Leigong Mountain) Masson pine
forest ecosystem in southwestern China (Guizhou Province). This study will make us
better understand the structural and functional characteristics of soil microbial community
in subtropical mountain forests.

MATERIALS AND METHODS
Site description
The Leigong Mountain Nature Reserve (26�15′–26�32′ N; 108�5′–108�24′ E) was first
established as a Provincial Nature Reserve in 1982 and then promoted to a National Nature
Reserve in 2001. Leigong Mountain with 83% forest coverage belong to the typical
mid-subtropical mountain forest ecosystem (Zhang et al., 2020). Leigong Mountain
belongs to the humid climatic region of the mid-subtropical monsoon mountainous
region. The annual rainfall is 1,300w1,600 mm; the annual average temperature is about
9.2 �C and 16.3 �C at the top and at the foot of the mountain, respectively, with an annual
average temperature drop rate of 0.5 �C per 100 m. The soils are mainly acidic mountain
yellow soils and mountain yellow brown soils, with a deep soil profile. The zonal vegetation
belongs to the humid evergreen broad-leaved forest in the eastern mid-subtropical zone,
where it is distributed below 1,350 m a.s.l., while the mountain evergreen deciduous
broad-leaved mixed forest is distributed between 1,350 and 2,100 m a.s.l., above which the
alpine shrub is observed. Leishan county also is one of the main tea producing areas in
Guizhou province (the organic tea area is 653.2 hm2, and the annual tea products is 3,950
t), where tea garden are typical artificial shrub vegetation in mountain ecosystem.

Study site and soil sampling
In June 2019, four sites were selected along the altitudinal gradient established on the
P. massoniana forest in the Leigong Mountain at 1,000, 1,200, 1,400, and 1,600 m a.s.l. and
named Mp1000, Mp1200, Mp1400, and Mp1600, respectively. An artificial tea garden
(Tea-garden) was selected as the control plot at 1,000 m a.s.l. (Fig. 1). One vegetation
survey plot with 20 m × 20 m in size was also set at each altitude. Information on site
conditions (Table 1), plant communities, and litter was obtained for each plot. Soil samples
were excavated from the 0–20 cm topsoil layer at six points located along an “S” path
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drawn within each plot, and thoroughly mixed into one composite sample. Five soil
samples were collected (one from each survey plot plus one from the control plot).
For each sample, 500 g of soil was sieved though a 2-mm mesh and air-dried for
physicochemical analyses; additionally, 50 g of soil was encapsulated in a plastic tube and
kept at −80 �C for microbial DNA extraction.

Soil analysis and microbial DNA extraction
Soil pH was determined at a ratio of 1:2.5 (soil to water, w/w). Soil organic carbon (SOC)
was determined using the K2Cr2O7 titration method (Walkley–Black method). Total
nitrogen (TN) was measured using the semi-micro Kjeldahl method. Total phosphorus
(TP) was determined colorimetrically after wet digestion with H2SO4 + HClO4 (Xu et al.,
2014).

Figure 1 Map of study area and sampling sites. Full-size DOI: 10.7717/peerj.13504/fig-1
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Microbial DNA extraction and metagenome sequencing
Total genomic DNA was isolated from 0.50 g of soil using the MoBio Ultraclean Soil DNA
Isolation Kit (MoBio Laboratories, Carlsbad, CA, USA) following the instructions of the
manufacturer. Extracted DNA was stored at −80 �C until use. Tenfold diluted DNA
samples were then used for metagenome analysis on the Illumina MiSeq platform
(Illumina Inc., San Diego, CA, USA) according to the standard protocols of Majorbio
Bio-Pharm Technology Co. Ltd. (Shanghai, China).

The MiSeq platform was used to perform parallel mixing and sequencing of DNA
multiple samples. The sequence of each sample was introduced with an index tag sequence
indicating sample source information. Software “Seqprep” was used to cut the 3′ end and
5′ adapter sequence at the end. Software “Sickle” was used to remove sequences less than
50 bp; the average quality value was below a certain threshold (default 20) and N-base
reads; high-quality pair-end reads and single-end reads were retained (Pabinger et al.,
2014; Schirmer et al., 2015). We then used “fastp” (https://github.com/OpenGene/fastp)
software to perform quality control processing on the original sequencing data to obtain
high-quality control data (clean data). Software “Megahit” (https://github.com/voutcn/
megahit) was used to assemble sequences with different sequencing depths (Li et al., 2015)
and to preserve sequences with assembly contigs >300 bp. MetaGene (http://metagene.cb.
ku-tokyo.ac.jp/) software was then used to predict open reading frames (ORF) of contigs
≥100 bp (gene sequences) in clean sequences (Noguchi, Park & Takagi, 2006). Using
CD-HIT (http://www.bioinformatics.org/cd-hit/) software, clustering (identity ≥90% and
coverage ≥90%) was performed on the predicted gene sequences of all samples, taking the
longest gene in each class as a representative sequence to construct a non-redundant gene
set (Fu et al., 2012). SOAPaligner software was used to compare the high-quality reads of
each sample with the non-redundant gene set (identity ≥95%) and to obtain gene
abundance information in the corresponding samples (Luo et al., 2012). For species
identification, BLASTp (http://blast.ncbi.nlm.nih.gov/Blast.cgi) software was first used to
blast the obtained gene sequences against the non-redundant (NR) protein sequence
database (Altschul et al., 1997) and the evolutionary genealogy of genes: Non-supervised
Orthologous Groups (eggNOG) database (http://eggnog.embl.de/) with the expected
e-value for the functional annotation set to 1e−5 (Jensen et al., 2008). The Kyoto
Encyclopedia of Genes and Genomes (KEGG) Database and an e-value of 1e−5 were used

Table 1 Location and dominant species of study sites.

Sites Latitude and longitude Altitude
(m)

Slope
(�)

Aspect
(�)

Dominant species

Mp1000 108�06′42.08″, 26�23′00.72″ 1,008 12 121 Pinus massoniana + Cunninghamia Lanceolata

Mp1200 108�10′02.83″, 26�21′29.72″
108�09′37.60″, 26�21′36.92″

1,198 10 160 P. massoniana

Mp1400 108�10′04.86″, 26�21′40.68″ 1,394 15 141 P. massoniana

Mp1600 108�11′30.85″, 26�22′27.92″ 1,596 7 165 P. massoniana + C. Lanceolata

Tea-garden 108�06′42.21″, 26�23′01.73″ 991 3 120 Camellia sinensis
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for functional annotation (Du et al., 2014). The Carbohydrate-active enzymes (CAZy)
database (http://www.cazy.org/, Version 5.0) and an e-value of 1e−5 were used for active
carbohydrate enzymes functional annotation (Lombard et al., 2014). Fungal guilds were
assigned using the FUNGuild platform (http://www.funguild.org/) (Nguyen et al., 2016).

The number of total and unique species and the functional genes of Archaea, Bacteria,
Fungi, and Virus groups in the different soil samples were determined and, using the
VennDiagram R package (https://www.r-project.org) a Venn diagram was produced for
the numbers of Archaea, Bacteria, Fungi, and Viruses in the soil microbial community. A
horizontal community histogram, also produced in R using cluster analysis, was based on
the similarity of soil microbial community between samples. Similarity results of the soil
microbial community among different soil samples are presented as a heatmap.

The correlation between the soil microbial community matrix and the function matrix
among the different samples was also tested. The soil microbial community species-level
matrix based on the Bray-Curtis distance algorithm was used for redundancy analysis
(RDA). The “networks” software was used for co-occurrence network analysis (Barberan
et al., 2012). Soil environmental factors were analysed using One-way analysis of variance
(ANOVA) in SPSS 22.5 (https://www.ibm.com/analytics/spss-statistics-software). Finally,
Sigma Plot 12.5 and Adobe Illustrator 2020 (https://www.adobe.com/products/illustrator.
html) software were used for figure drawing.

RESULTS
Composition and structure of soil microbial communities
A total of 452,526,750 original sequences were obtained from the metagenomic sequencing
of soil microorganisms in the P. massoniana forest along the altitudinal gradient
established. After quality control, 447,074,316 high-quality sequences were generated and
then divided into different soil microbial groups, including Archaea, Bacteria, Fungi, and
Viruses. There were 62,208,980 high-quality sequences and each sample produced
9,960,236~16,161,802 high-quality sequences. After metagenomic sequencing, BALSTp on
the NR database allowed identifying 13,307 species of soil microorganisms. These included
912 Archaea, 11,576 Bacteria, 417 Fungi, and 402 Viruses (Table 2).

The changes in richness and in Shannon’s index of soil microbial groups at the different
altitudes selected at the study site showed different trends (Table 3). In terms of species
richness, the abundances of soil Bacteria, Fungi, and Viruses exhibited a “unimodal”

Table 2 The number of metagenomic sequencing by NR species annotation.

Microbe Phylum Class Order Family Genus Species

Archaea 12 24 38 60 144 912

Bacteria 82 135 251 466 1,864 11,576

Fungi 10 33 74 154 254 417

Viruses 1 1 4 17 60 402

Total 105 193 367 697 2,322 13,307
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pattern with altitude, while Archaea showed a major peak at Mp1200 (752) and a
secondary peak at Mp1600 (716). With increasing altitude, Shannon’s index values
increased for Archaea and Fungi but decreased for Bacteria; for Viruses, no obvious
pattern was found.

The distributions of exclusive and common species of the different soil microbial groups
showed obviously different profiles (Fig. 2). Common species of Archaea, Bacteria, Fungi,
and Viruses accounted for 58.6%, 75.1%, 50.4%, and 7.5% of the soil microbial groups,

Table 3 Alpha diversity of soil microbial community.

Sites Richness Shannon index

Archaea Bacteria Fungi Viruses Archaea Bacteria Fungi Viruses

Mp1000 689 9,993 292 125 7.29 9.08 7.3 4.72

Mp1200 752 10,172 297 166 7.64 8.62 7.16 4.45

Mp1400 698 10,247 318 138 7.85 8.97 7.29 4.91

Mp1600 716 10,114 297 118 7.86 8.9 7.12 4.06

Tea-garden 697 10,348 354 225 7.03 8.45 7.51 5.7

Figure 2 Venn diagram of exclusive, shared species, and total species associated with (A) archaea,
(B) bacteria, (C) fungi and (D) viruses in soil microbial communities at different elevations in a
Pinus massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-2
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respectively, whereas exclusive species of Archaea, Bacteria, Fungi, and Viruses accounted
for 12.3%, 6.6%, 15.6%, and 54.5%, respectively. The spatial distribution patterns of the
different soil microbial groups also differed across the altitudinal gradient. The ratio of
exclusive and common species for Archaea and Fungi were similar, but with obvious
differences of the ratio for Bacteria or Viruses.

Euryarchaeota and Thaumarchaeota were the predominant groups of soil Archaea in
the P. massoniana forest surveyed across the selected altitudinal gradient. The order of
relative abundance of these two groups at the five sites was: Tea-garden (84.1%) > Mp1000
(80.3%) > Mp1200 (75.8%) > Mp1400 (75.6%) > Mp1600 (75.5%), thus showing a
decreasing trend from 1,000 to 1,200 m altitude. Euryarchaeota and Thaumarchaeota were
followed in relative abundance by Candidatus Bathyarchaeota, Crenarchaeota, Candidatus
Thorarchaeota, Candidatus Lokiarchaeota, Candidatus Micrarchaeota, Candidatus
Korarchaeota, Candidatus Parvarchaeota, Candidatus Nanohaloarchaeota, and
Nanoarchaeota (Fig. 3A).

Proteobacteria and Acidobacteria were the predominant groups of Bacteria. The order
of relative abundance of these two bacterial groups at the five sites was: Mp1000
(73.1%) < Tea-garden (74.0%) < Mp1200 (74.3%) < Mp1600 (76.0%) < Mp1400 (76.2%),
thus showing an increasing trend with increasing altitude. The bacterial groups following
in relative abundance were Actinobacteria, Verrucomicrobia, Chloroflexi, Planctomycetes,
Cyanobacteria, Firmicutes, Bacteroidetes, Gemmatimonadetes, and other bacteria
(Fig. 3B).

Ascomycota and Basidiomycota were the predominant groups of Fungi. The order of
relative abundance of these two fungal groups at the five sites was: Tea-garden
(89.4%) < Mp1000 (92.2%) < Mp1200 (93.3%) < Mp1400 (94.2%) < Mp1600 (94.4%), thus
showing an increasing trend with increasing altitude. Moreover, ascomycetes increased
with elevation and their relative abundance decreased significantly whereas basidiomycetes
showed an obvious increase with elevation. The relative abundances of the two groups
showed increasing trends with increasing altitude. The fungal groups following in relative
abundance were Chytridiomycota, Glomeromycota, other Fungi, and unclassified Fungi
(Fig. 3C).

Myoviridae, Podoviridae, and Siphoviridae were the predominant virus groups.
The order of relative abundance of these groups at the five sites was: Mp1600
(42.1%) < Tea-garden (48.7%) < Mp1000 (49.6%) < Mp1200 (50.8%) < Mp1400 (54.5%).
The groups following in relative abundance were Phycodnaviridae, Tectiviridae,
Mimiviridae, unclassified virus, Caudovirales, and other viruses (Fig. 3D).

Clustering of the different soil microbial groups (Archaea, Bacteria, Fungi, and
Viruses) at the genus level showed significant differences with altitude. Overall,
Candidatus_Nitrosotalea, unclassified_p_Candidatus_Bathyarchaeota (from
phylum to genus), Methanosarcina, Nitrososphaera, and unclassified_d_Archaea
(from domain to genus) were the predominant archaeal genera (Fig. 4A), while
unclassified_f_Acidobacteriaceae (from family to genus), Candidatus_Solibacter,
Candidatus_Koribacter, and Bradyrhizobium were the predominant bacterial genera
(Fig. 4B). Moniliophthora, Penicillium, Oidiodendron, Colletotrichum, Aspergillus, and
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Cladophialophora were the predominant fungal genera (Fig. 4C). Unclassified_d_Viruses
(from domain to genus), unclassified_f_Myoviridae (from family to genus),
unclassified_f_Siphoviridae (from family to genus), and unclassified_f_Podoviridae (from
family to genus) were the predominant virus genera (Fig. 4D).

Figure 3 The relative abundance of (A) Archaea, (B) Bacteria, (C) Fungi, (D) Viruses in soil microbial communities across an altitudinal
gradient in a Pinus massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-3
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Figure 4 Relationship between (A) Archaea, (B) Bacteria, (C) Fungi, (D) Viruses genera present across an altitudinal gradient in a Pinus
massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-4
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Functional gene composition and structure of soil microbial
communities
Based on the eggNOG database, the soil microbial community functional annotation was
determined for the P. massoniana forest at different altitudes (Fig. 5). The main groups of
functional genes were related to amino acid transport and metabolism (7.51–7.98%),
energy production and transformation (6.62–7.46%), signal transduction mechanisms
(6.76–7.24%), and DNA replication, recombination, and repair (6.46–7.16%). These
dominant functional gene categories are important for energy production and cell
metabolism. Genes with unknown functions accounted for 30% (28.58–31.16%) with the
most abundant of all functional genes classified.

A high representation of carbohydrate metabolism (12.22–13.00%), global and overview
map (11.51–11.62%), amino acid metabolism (10.23–10.67%), and energy metabolism
(7.51–7.80%) was observed when the KEGG database was applied to the functional

Figure 5 NOG functional gene composition of soil microbial communities at different elevations in
a Pinus massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-5
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annotation into putative pathways (Fig. 6A). Glycosyl transferase (GT, 34.59–38.58%) and
glycoside hydrolase (GH, 28.98–33.59%) were most represented carbohydrate active
enzymes (CAZy), followed by carbohydrate esterase (CE, 15.91–16.28%), coenzyme
activity (AA, 10.43–10.92%), and polysaccharide lyase (PL, 3.00–3.64%), combined with
the carbohydrate Module (CBM, 1.98–2.14%) (Fig. 6B).

Saprophytic and parasitic trophic mode made up the two largest proportions in soil
fungal communities in the P. massoniana forest; while Ectomycorrhizal fungi and Ericoid
mycorrhizal fungi were dominant groups in the symbiotic trophic mode. The relative
abundances of different functional groups in soil fungal communities in the P. massoniana
forest showed varying trends with increasing altitudes (Fig. 7), such as undefined
saprotroph, plant pathogen, animal pathogen-undefined saprotroph, and ericoid
mycorrhizal fungi showed a decreasing trend with increasing altitudes, while wood
saprotroph, plant pathogen-undefined saprotroph, and Ectomycorrhizal fungi showed an
increasing trend with increasing altitudes (Fig. 7). These results suggest that specific
functional group in soil fungal communities may be better indicators of forests in terms of
elevation changes.

Similarity of species and functions among soil microbial communities
The similarity and dissimilarity of species as per NR, NOG, KO, and CAZy functional
genes among all sample sites were compared to results obtained from similarity clustering
analysis and RDA (Fig. 8). The similarity of species and functions of soil microbial

Figure 6 KEGG pathway (A) and CAZy (B) functional gene classification for soil microbial communities at different elevations in a Pinus
massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-6
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communities along the altitudinal gradient in the P. massoniana forest was as described
above, i.e., the RDA ordination of soil microbial communities at different altitudes based
on functional gene composition showed a good level of consistency with the ordination
based on species identification. The distribution of identified species, NOG, KO, and CAZy
functional genes of soil microbial community at MP1000, MP1400, and MP1600 were
clearly separated from those observed at MP1200 (Fig. 8B). Furthermore, a significant
difference was observed between the P. massoniana forest and the tea garden surveyed.

Co-occurrence patterns of the different soil microbial groups
In order to understand the correlation between species of the different soil microbial
communities, we detected significant differences among different soil microbial groups
(Archaea, Bacteria, Fungi, and Viruses) and their corresponding random networks (Fig. 9)
in terms of average degree, modularity, number of communities, and degree centrality
were found (Table 4). Modularity ranked as follows: Archaea (0.866) > Bacteria (0.794) >
Fungi (0.698) > Viruses (0.539), while degree centrality showed the following ranking:
Bacteria (0.181) > Viruses (0.155) > Fungi (0.087) > Archaea (0.048) (Table 4). Overall, the
co-occurrence networks of archaeal and fungal species showed a relatively high similarity,
while the co-occurrence network of bacterial and viral species showed a relatively high
similarity.

Figure 7 FUNGuild function prediction for soil fungal communities at different elevations in a
Pinus massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-7
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Figure 8 NR species, NOG, KO, and CAZy classification of functional genes of soil microbial
communities by clustering tree (A, C, E, G) and RDA analyses (B, D, F, H) at different elevations
in a Pinus massoniana forest. Full-size DOI: 10.7717/peerj.13504/fig-8
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Figure 9 Species co-occurrence networks of non redundant species of the different soil
microorganisms ((A) Archaea; (B) Bacteria; (C) Fungi; (D) Viruses) in Pinus massoniana forest.

Full-size DOI: 10.7717/peerj.13504/fig-9

Table 4 Topological properties of soil microbiome co-occurrence network.

Network properties Archaea Bacteria Fungi Viruses

Number of nodes 527 748 399 236

Positive edges 2,589 12,308 1,762 6,952

Negative edges 494 663 144 15

Average degree 11.7 34.7 9.6 37.1

Modularity 0.866 0.794 0.698 0.539

Number of communities 23 53 38 34

Degree centralization 0.048 0.181 0.087 0.155
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DISCUSSION
The relationship between altitudinal distribution patterns and maintenance of biodiversity
is currently a highly controversial topic in the field of biodiversity and ecosystem functions.
The Leigong Mountain belongs to a typical mid-subtropical mountain forest ecosystem in
southwestern China, and it is a National Nature Reserve (Zhang et al., 2020) with a
well-preserved ecological environment, thus providing an ideal site for “the in-situ
experiment” reported herein. In addition, previous studies at this mountain ecosystem
provided important information on soil properties and vegetation types along the elevation
gradient of Leigong Mountain, indicating that the different soil and vegetation types have
obvious spatial boundaries (Chen et al., 2012; Zhang, Qiu & Mao, 2019). Therefore, we
hypothesized that the different soil microbial communities (Archaea, Bacteria, Fungi, and
Viruses) could have different distribution patterns along the different elevations of this
typical mid-subtropical mountain forest ecosystem.

P. massoniana is a native and widely distributed tree species that is well adapted to the
regional climatic conditions (Lei et al., 2018); this ensured the selection of representative
P. massoniana forest plots along the altitudinal gradient established for conducting the
survey reported herein. Soil microbial communities can be diagnosed by metagenome
technology, which can annotate microorganisms to the species level, and detect Archaea,
Bacteria, Fungi, and Viruses in soil microbiomes (Awasthi et al., 2020; Jo, Oh & Park,
2020). This technology can also perform gene function annotation (Awasthi et al., 2020; Jo,
Oh & Park, 2020), thereby providing information on both the structural and functional
characteristics of microbial communities among the different elevations. The Leigong
Mountain mid-subtropical mountain forest ecosystem ranges from 650 to 2,179 m a.s.l.,
but our study focused on the 1,000 to 1,600 m a.s.l. range. Future studies on soil microbial
community distribution patterns should disentangle the links between the environmental
variables (vegetation types, edaphic factor, microclimate, etc.) and the detailed functions of
the microbial communities along wider elevation gradients in this typical subtropical,
non-karst mountain forest ecosystem.

Euryarchaeota and Thaumarchaeota were the predominant phyla of soil Archaea in the
P. massoniana forest across the different elevations. Many reports have pointed out these
phyla as the dominant in soil Archaea (Siles & Margesin, 2016;Wang et al., 2015), making
important contributions to the biogeochemical cycles of soil carbon, nitrogen, and
hydrogen, among many other elements. A good example of this paramount ecological
function is that of autotrophic ammonia-oxidizing Archaea who perform a key step in the
nitrogen digestion process in soils (Leininger et al., 2006; Zhang et al., 2012). The present
study found that the abundance of Archaea had a lightly increasing trend with increasing
altitude at 1,000–1,600 m a.s.l. on LeigongMountain. This finding is consistent with results
reported for the 1,000–1,500 m a.s.l. range on Mount Fuji, Japan (Singh, Takahashi &
Adams, 2012).

Bacteria is the largest and most diverse and versatile of soil microbial groups (Delgado-
Baquerizo et al., 2018). Consistent with the consensus that they are the most common
phyla among soil bacteria (Wang et al., 2015), Proteobacteria and Acidobacteria were the
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predominant soil bacterial groups in the present study, both playing a very important role
in the soil-matter cycle (carbon, nitrogen, sulphur, and other elements) and in the
construction of the ecological environment (Barns et al., 2007; Spain, Krumholz &
Elshahed, 2009).

Fungi are also an important component of the soil microbiome as they play a crucial
role in nutrient cycling, as well as in promoting plant growth and vegetation community
succession (Tedersoo et al., 2014). Consistent with previous reports (Matsuoka et al., 2019),
the Ascomycota and Basidiomycota found in the present study were the predominant
fungal groups across the altitudinal gradient under study; however, they showed opposite
trends in relative abundance: the relative abundance of Ascomycota decreased with
increasing elevation (from 66.9% at Mp1000 to 46.3% at Mp1600), whereas that of
Basidiomycota increased with increasing elevation (from 25.2% at Mp1000 to 48.1% at
Mp1600). Overall, the relative abundance of Ascomycota and Basidiomycota together
increased slightly with elevation (92.2% at Mp1000 to 94.4% at Mp1600). The increasing
trend in relative abundance observed herein for Basidiomycota is consistent with the
increasing trend observed for the same group in at 950–1,700 m a.s.l. in Norikura
Mountain, Japan (Ogwu et al., 2019). Furthermore, the trend observed here for
Ascomycota was similar to that found in Norikura Mountain. Therefore, the specific set of
predominant fungal groups may serve as a more sensitive indicator of environmental
gradients determined by differences in altitude.

Viruses are ubiquitous and play important roles in regulating their hosts’mortality and
community structure, the genetic landscape, and the nutrient turnover in ecosystem
(Anderson, Brazelton & Baross, 2011; Narr et al., 2017; Paez-Espino et al., 2016). Although
soil is the most important habitat for virus distribution, there is currently a very limited
number of reports on soil viruses (Narr et al., 2017; Paez-Espino et al., 2016), which may be
due to the challenges involved in the detection, isolation, and classification of unknown
viruses (Narr et al., 2017); therefore, viruses constitute what is referred to as “the dark
matter” of soil microbial communities (Paez-Espino et al., 2016). In the present study,
Myoviridae, Podoviridae, and Siphoviridae were the predominant virus groups in the soils
of the P. massoniana forest of Leigong Mountain. Although they are reportedly the most
common virus groups in a wide range of environments (Chen et al., 2014), we found no
obvious trend in viral community composition changes between 1,000 and 1,600 m a.s.l. in
the present study. This result likely reflects the fact that virus dynamics may be affected by
multiple factors, including host and environmental factors. The results of the symbiotic
network analysis further reflected the differences in interaction patterns among species
within the different groups of the microbial community in a soil.

The gene functional composition of the soil microbial community at different altitudes
was predicted by NOG, KEGG, and CAZy functional gene annotations. The results showed
a relatively consistent trend among these different functional analyses. Thus, there were no
obvious differences at the high category level in functional gene detection along the
elevation gradient surveyed, a finding that may be related to the phenomenon of “gene
redundancy” (Fierer et al., 2013; Louca et al., 2018). Functional redundancy of soil
microbial communities may be a microbial community maintenance mechanism
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(ecological strategy), which can play an important buffer role in the process of combating
external environmental changes and various disturbances (Louca et al., 2018). This
emergent property of an open microbial system may be caused by the limitations of
current research techniques (when a high-dimensional trait space is projected to a
lower-dimensional function space of interest). Nonetheless, the comparison between the
species composition matrix and the functional gene composition matrix of the soil
microbial communities along the altitudinal gradient surveyed showed a significant
correlation between the two. This supports our hypothesis that soil microbiome diversity
can influence multiple ecosystem functions, while the elevation factor may indirectly
influence soil microbiome functions by shaping soil microbiome composition.

Various factors, such as climate, vegetation type, plant diversity, and soil pH and other
physicochemical properties, may determine the altitudinal distribution pattern of soil
microbial diversity in a certain region (Bahram et al., 2018; Liu et al., 2018; Siles &
Margesin, 2016). In this study, the investigated soil factors had a certain influence on the
composition and function of soil microorganisms, but not significant (Fig. 8); the results
may be due to the relatively small altitude span and the same forest vegetation.
Considering there are still many limitations in the existing studies on the elevation
gradient, such as the differences in the geographical location, size and habitat of the
mountain, and the difference in the elevation span and the span size of vegetation types of
the sampling points, the key drivers of the biological and abiotic environment of the soil
microorganisms in the mountain ecosystem also are varied (Bahram et al., 2018; Liu et al.,
2018; Siles & Margesin, 2016).

The co-occurrence networks of archaeal and fungal species showed a relatively high
similarity, which may be related to the origin of the relationship between Archaea and
fungi (Fig. 9). In turn, the co-occurrence network of bacterial and viral species showed a
relatively high similarity, which may be due to the closer relationship between them in the
life history of the individuals. Since complex soil processes are driven by soil microbiome
including soil Archaea, bacteria, fungi, and viruses, these data indicate a challenging and
complex ecological network of relationships among the different groups of soil
microorganisms.

Overall, metagenomic sequencing technology in this study was used to comprehensively
reflect structural and functional characteristics of soil microbial community in
P. massoniana forest along different elevation gradients. However, due to the lack of survey
site repetition, and not involving the time gradient (seasonal or inter-annual change)
survey; Therefore, these aspects need to be further strengthened in future studies.

CONCLUSIONS
Our findings suggest that different soil microbial communities (Archaea, Bacteria, Fungi,
and Viruses) have different distribution patterns in a P. massoniana forest along an
altitudinal gradient. This finding provide an ecological management and utilization
guidance for incorporating soil microbial diversity and function in mid-subtropical
mountain forest ecosystem.
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