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Amajor challenge for droplet-based single-cell sequencing technologies is distinguishing true cells from uninformative bar-

codes in data sets with disparate library sizes confounded by high technical noise (i.e., batch-specific ambient RNA). We pre-

sent dropkick, a fully automated software tool for quality control and filtering of single-cell RNA sequencing (scRNA-seq)

data with a focus on excluding ambient barcodes and recovering real cells bordering the quality threshold. By automatically

determining data set–specific training labels based on predictive global heuristics, dropkick learns a gene-based representa-

tion of real cells and ambient noise, calculating a cell probability score for each barcode. Using simulated and real-world

scRNA-seq data, we benchmarked dropkick against conventional thresholding approaches and EmptyDrops, a popular com-

putational method, showing greater recovery of rare cell types and exclusion of empty droplets and noisy, uninformative

barcodes. We show for both low- and high-background data sets that dropkick’s weakly supervised model reliably learns

which genes are enriched in ambient barcodes and draws a multidimensional boundary that is more robust to data set–spe-

cific variation than existing filtering approaches. dropkick provides a fast, automated tool for reproducible cell identification

from scRNA-seq data that is critical to downstream analysis and compatible with popular single-cell Python packages.

[Supplemental material is available for this article.]

Single-cell RNA sequencing (scRNA-seq) allows for untargeted pro-
filing of genome-scale expression in thousands of individual cells,
providing insights into tissue heterogeneity and population dy-
namics. Droplet-based platforms that involve microfluidic encap-
sulation of cells in water–oil emulsions (Klein et al. 2015;
Macosko et al. 2015; Zheng et al. 2017) have grownwidely popular
for their robustness and throughput. The use of barcoded poly-thy-
midine capture oligonucleotides provides information for assign-
ing eventual sequencing reads to each droplet downstream from
bulk library preparation. Because of the low cellular density re-
quired to avoid doublets (i.e., two or more cells captured in the
same droplet), the vast majority of droplets are empty, ideally con-
taining only tissue dissociation buffer and a barcoded RNA-capture
bead with no cellular RNA. However, during tissue dissociation,
cells may die and lyse, shedding ambient mRNA into the superna-
tant that is then captured as background in droplets containing
cells and so-called “empty droplet” reactions. Ultimately, a drop-
let-based scRNA-seq data set contains up to hundreds of thousands
of barcodes that correspond to these “empty droplets,” which in-
clude sequenced material from ambient RNA alone.

To prepare these data for downstream analysis, empty drop-
lets and other uninformative barcodes with little to no molecular
information must be removed. Often, computational biologists
will define manual thresholds on global heuristics such as total

counts of unique molecular identifiers (UMIs) or the total number
of genes detected in each barcode in order to isolate high-quality
cells. Although these hard cutoffs may generally yield expected
cell populations and remove the bulk of populational noise in
low-background samples, they are highly arbitrary, batch specific,
and generally biased against cell types with lowRNA content or ge-
netic diversity (Lun et al. 2019). Furthermore, lenient thresholds
often yield filtered data sets with populations of dead and dying
cells or empty droplets with high ambient RNA content, especially
in encapsulations with high background resulting from tissue-spe-
cific cell viability and dissociation protocols. These cell clusters
may be gated out manually by the experienced single-cell biolo-
gist, but theywill distort dimension-reduced embeddings and alter
statistical testing for differential gene expression if left unchecked.

Here we introduce dropkick, a fully automated machine
learning software tool for data-driven filtering of droplet-based
scRNA-seq data. dropkick provides a quality-control (QC) module
for initial evaluation of global distributions that define barcode
populations (real cells vs. empty droplets) and quantifies the
batch-specific ambient gene profile. The dropkick filteringmodule
establishes initial thresholds on predictive global heuristics using
an automated gradient-descent method and then trains a gene-
based logistic regression model to assign confidence scores to all
barcodes in the data set. dropkick model coefficients are sparse
and biologically informative, identifying a minimal number of
gene features associated with empty droplets and low-quality cells
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in a weakly supervised fashion. The following study aims to show
how dropkick outperforms basic threshold-based filtering and a
similar data-drivenmodel (Lun et al. 2019) in recovery of expected
cell types and exclusion of empty droplets, with robustness and re-
producibility across encapsulation platforms, samples, and vary-
ing degrees of noise from ambient RNA.

Results

Evaluating data set quality with the dropkick QC module

Global data quality and predominance of ambient RNA affect both
reliable cell identification as well as downstream analyses includ-
ing clustering, cell type annotation, and trajectory inference in
scRNA-seq data (Fleming et al. 2019; Yang et al. 2020; Young
and Behjati 2020). Single-cell data with a low signal-to-noise ratio
owing to high ambient background can result in information loss
thatmayultimately confound cell type and cell state identification
and related statistical analyses (Zhang et al. 2019). For instance, an
scRNA-seq encapsulation with a high degree of cell lysis can cause
marker genes from abundant cell types to be present in the ambi-
ent RNA profile that contaminates all cell barcodes. In this sce-
nario, global differences between cell populations would be
diminished by the common detection of ambient noise, leading
to loss of resolution in inference of cell identity and state.

To quantify ambient contamination that reduces this batch-
specific signal-to-noise ratio, we have developed a comprehensive
QC report for unfiltered, postalignment UMI count matrices.
Figure 1 provides an example dropkick QC report for a human
T cell data set encapsulated using the 10x Genomics Chromium
platform (Zheng et al. 2017). This sample is exemplary of a low-
background data set, as the cells isolated from human blood do
not require dissociation that causes cell stress and lysis in other tis-
sues (Supplemental Fig. 1). Barcodes are ranked by total counts to
yield a profile that describes the expected number of high-quality
cells, empty droplets, and uninformative barcodes (Fig. 1A;
Fleming et al. 2019). The number of genes detected per barcode fol-

lows a similar distribution to total counts, which informs our
choice of dropkick training thresholds in the following sections.
The first plateau in the total count profile of the T cell data set in-
dicates approximately 4000 high-quality cells, followed by a sharp
drop in the distribution (Fig. 1A). This drop-off in total UMI con-
tent signifies an estimated location for a manual cutoff as seen in
the 10x CellRanger version 2 analysis software (Lun et al. 2019).

dropkick next defines a subset of ambient genes using the
dropout rate, or the fraction of barcodes in which each gene is
not detected. Ranking genes in ascending order by dropout rate
(Fig. 1B), dropkick labels those with dropout rates lower than the
top 10 as “ambient.” High-background data sets may have many
(more than 10) genes that are detected in nearly every barcode
(dropout rate≈0) (Supplemental Fig. 1). The dropkick definition
of an ambient profile thus ensures that all relevant genes are in-
cluded. The contribution of this ambient subset to the total counts
of each barcode can then be calculated, shown as blue points in the
dropkick QC report (Fig. 1A). Similarly, an overlay ofmitochondri-
al read percentage indicates dead or dying cells undergoing
apoptosis (Tait and Green 2010). Indeed, the ambient and mito-
chondrial contributions to the empty droplets in the second
plateau of the total count log-rank curve are markedly higher
than those in the first plateau (Fig. 1A). Another noteworthy ob-
servation is that dropkick defines an ambient profile that is dis-
tinct from the subset of mitochondrial genes. This is important
for assessing cell quality in downstream clustering and dimen-
sion reduction, as any empty droplets that remain in the data
set after filtering often cluster together in low-dimensional em-
beddings and can be highlighted by their enrichment in ambient
genes. As stated previously, marker genes from abundant cell
types may show up in the ambient gene set owing to excessive
lysis of these common cells during tissue preparation
(Supplemental Fig. 1; Fleming et al. 2019; Yang et al. 2020;
Young and Behjati 2020). Accordingly, analysts should be cogni-
zant of background expression levels that contaminate adjacent
cell populations and confound cell type identification during
subsequent analysis.

BA

Figure 1. Evaluating data set quality with the dropkick QCmodule. (A) Profile of total counts (black trace) and genes (green points) detected per ranked
barcode in the 4000 pan–T cell data set (10x Genomics). Percentage of mitochondrial (red) and ambient (blue) reads for each barcode included to denote
quality along data set profile. (B) Profile of dropout rate per ranked gene. Ambient genes are identified by dropkick and used to calculate ambient percent-
age in A.
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As each scRNA-seq data set has unique, batch-specific ambi-
ent RNA profiles and barcode distributions, the dropkick QCmod-
ule allows for estimation of global data quality. Themouse colonic
mucosa dissociated and encapsulated in parallel using inDrop and
10x Genomics platforms (Supplemental Fig. 1) exemplifies high-
background scRNA-seq data, as indicated by elevated RNA levels
in the second plateau of the total counts and genes curves.
Moreover, the marker genes Car1 and Muc2 from abundant colo-
nocytes and goblet cells, respectively, are identified by dropkick
as ambient genes for these data. This signifies lysis of common ep-
ithelial cell populations during tissue preparation and dissocia-
tion. Given the dropkick QC report, the user should thus expect
background expression across all barcodes, which could prove piv-
otal to downstream processing and biological interpretation.
Taken together, dropkick can estimate the number of high-quality
cells in our data set, determine average background noise from am-
bient RNA, and thus predict performance of filtering and ensuing
analysis based on global data quality.

Description of dropkick filtering method

dropkick uses weakly supervisedmachine learning to build a mod-
el of single-cell gene expression in order to score and classify bar-
codes as real cells or empty droplets within individual scRNA-seq
data sets. To construct a training set for this model, dropkick be-
gins by calculating batch-specific global metrics that are generally
predictive of barcode quality, such as the total number of genes de-
tected (Fig. 2A, n_genes), which was chosen as the default training
heuristic for dropkick by testing concordance with three alterna-
tive cell labels across 46 scRNA-seq samples (Supplemental Fig.
2). A data set similar to the 10x Genomics human T cell encapsu-
lation (Fig. 1) will show a multimodal distribution of n_genes
across all barcodes (Fig. 2B), where the peaks of the distribution

match the plateaus seen in the log-rank representation (Fig. 2C).
Next, dropkick performs multilevel thresholding on the n_genes
histogram using Otsu’s method (Fig. 2B,C; Otsu 1979). This auto-
mated gradient-descent technique divides the barcode distribution
into three levels in this “heuristic space”: a lower level containing
uninformative barcodes (which are thrown away), an upper level
containing barcodes with very high cell probability based on
n_genes, and an intermediate level that consists of both high-
RNA empty droplets and relatively low-RNA cells. The upper and
intermediate barcode populations are labeled as real cells and pu-
tative empty droplets, respectively, for initial dropkick model
training. These weakly self-supervised labels based on threshold
cutoffs in “heuristic space” are expected to be noisy, and the
goal of the next step in the dropkick pipeline is to redraw these
rough boundaries in “gene space” using logistic regression in order
to recover real cells from the intermediate barcode cohort while re-
moving ambient barcodes from the upper plateau (Fig. 2D,E).

The logistic regressionmodel used by dropkick uses elastic net
regularization (Zou andHastie 2005), which balances feature selec-
tion and grouping by preserving or removing correlated genes
from the model in concert. The motivation for choosing this reg-
ularization method is twofold. First, the resulting model exists in
“gene space,” maintaining the relative dimensionality of the
data set and providing biologically interpretable coefficients that
describe barcode quality. Second, the model is penalized for com-
plexity, which yields the simplest model (sparse coefficients) that
adjusts the noisy initial labels while compensating for expected
collinearities and errors in measurement.

Evaluating dropkick filtering performance with synthetic data

We tested dropkick filtering on single-cell data simulations that
define both empty droplets and real cells, providing ground-truth

labels for comparison to dropkick out-
puts (Fleming et al. 2019). These synthet-
ic data sets modeled ambient RNA noise
in the cell populations to confound
filtering, as seen in real-world data
sets. We simulated both low-background
(Fig. 3A,B) and high-background (Fig.
3C,D) scenarios (see Methods: Synthetic
scRNA-seq data simulation).

To show the utility of the dropkick
model over one-dimensional threshold-
ing and an analogous data-driven fil-
tering model, we ran dropkick, 10x
Genomics CellRanger version 2 (Cell-
Ranger_2), and the EmptyDrops R pack-
age (Lun et al. 2019) on 10 iterations of
low- and high-background simulations.
An example UMAP embedding of all
barcodes kept by dropkick_label (drop-
kick score≥0.5) and the two analogous
methods shows that all three methods
excluded empty droplets (assigned clus-
ter 0 from the simulation), with a single
false-negative (FN) barcode highlighted
in the EmptyDrops label set (Fig. 3A).
An UpSet plot (Fig. 3B; Lex et al. 2014)
tabulating shared barcode sets across
10 low-background simulations reveals
nearly perfect specificity, sensitivity,

E

BA C

D

Figure 2. Description of dropkick filteringmethod. (A) Diagram of scRNA-seq counts matrix with initial
cell confidence for each barcode based solely on total genes detected (n_genes), depicted by color (red,
empty droplet; blue, real cell). (B) Histogram showing the distribution of barcodes by their n_genes value.
Black lines indicate automated thresholds for training the dropkick model. (C ) log(n_genes) versus log
(rank) representation of barcode distribution as in dropkick QC report (Fig. 1A). Thresholds from B are
superimposed. (D) Thresholds in heuristic space (B,C) are used to define initial training labels for logistic
regression. (E) dropkick chooses an optimal regularization strength through cross-validation and then as-
signs cell probabilities and labels to all barcodes using the trained model in gene space.
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and area under the receiver operating characteristic curve
(AUROC) for all three methods in the low-background scenario
(Supplemental Fig. 3A,B,D; Supplemental Tables 1, 2).

Conversely, the high-background simulations produced a
large number of false positives (FPs) in the CellRanger_2 and
EmptyDrops labels (Fig. 3C), as ambient barcodes with high-
RNA content lie above the total count threshold identified by
CellRanger and the inflection point used as a testing cutoff by
EmptyDrops (Lun et al. 2019). A UMAP embedding of an exam-
ple high-background simulation reveals a large population of
empty droplets (assigned cluster 0 by the simulation) that drop-
kick_label removes from the final data set (Fig. 3D). Accordingly,
dropkick displayed overall specificity and AUROC of 0.9999±
0.0002 and 0.9998±0.0002 for the high-background simulations
compared with 0.9910±0.0018 and 0.9955 ±0.0009 for Cell-
Ranger_2 and 0.9838±0.0133 and 0.9917±0.0071 for Empty-
Drops, respectively (Supplemental Fig. 3E,F,H; Supplemental
Tables 1, 2).

We also compared outputs from the trained model (drop-
kick_label) to automated dropkick training labels (thresholding
on n_genes) in both low- and high-background scenarios to fur-
ther show the utility of dropkick’s machine learning model over
heuristic cutoffs alone. Similar to CellRanger_2, the dropkick
threshold performed favorably for the lowbackground simulation,
in which real cells are separated distinctly from empty droplets in
heuristic space, indicated by a sharp drop-off in total counts and
genes in the dropkickQC log-rank plot (Fig. 3B, inset). This one-di-
mensional thresholding resulted in sensitivity, specificity, and
AUROC of 0.9986±0.0007, 0.997±0.0006, and 0.9978±0.0005,
respectively, for 10 low-background simulations (Supplemental
Fig. 3C; Supplemental Table 1). The trained dropkick model, on
the other hand, recovered all real cells (sensitivity 1.0), with a per-
fect average AUROC of 1.0 ±0.0 (Supplemental Fig. 3D; Supple-
mental Table 1). This modest improvement indicates the utility
of the dropkickmodel for sensitively discerning real cells from am-
bient barcodes over simple heuristic thresholding, even in a

B

A

C

D

Figure 3. Evaluating dropkick filtering performance with synthetic data. (A) UMAP embedding of all barcodes kept by dropkick_label, CellRanger_2, and
EmptyDrops for an example low-background simulation. Points colored by each of the three filtering labels, as well as ground-truth clusters determined by
the simulation and dropkick score (cell probability). Arrow highlights a single false-negative (FN) barcode in the EmptyDrops label set for this replicate. (B)
UpSet plot showing mean size of shared barcode sets across dropkick_label, CellRanger_2, EmptyDrops, and true labels for 10 simulations. Error bars, SD.
Unique sets show false-positive (FP) barcodes labeled by dropkick and FN barcodes excluded by EmptyDrops. Inset shows log-rank representation of the
low-background simulation in A. (C) Same as in B, for 10 high-background simulations. Inset shows log-rank representation of the high-background sim-
ulation in D. (D) Same as in A, for an example high-background simulation. Arrow highlights cluster 0, designated as “empty droplets” by simulation (see
Methods: Synthetic scRNA-seq data simulation).
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relatively low-background sample. In the high-background simu-
lations, sensitivity of dropkick training labels fell to 0.8762±
0.0092, with an average AUROCof 0.9074±0.0043 (Supplemental
Fig. 3G; Supplemental Table 1). Following model training, drop-
kick’s sensitivity and AUROC once again improved to 0.9995±
0.0004 and 0.9998± 0.0002, respectively (Supplemental Fig. 3H;
Supplemental Table 1). These data further signify that the dropkick
logistic regression model results in enhanced performance over
one-dimensional heuristic thresholding, especially in the presence
of high ambient noise in the training set.

Benchmarking dropkick performance on simulated

high-background data

Next, we aimed to further confirm dropkick’s utility in filtering
high-background data by simulating extremely high ambient
droplets to overlay on the 10x Genomics human PBMC data set.
These data are particularly clean and easy to filter in its raw state,
as the suspended cells fromhuman blood were minimally agitated
before encapsulation. To imitate empty droplets with high mRNA
content, we combined all reads in barcodeswith less than 100 total
UMI counts and used the resulting pseudobulk as weightings for a
random generation of count vectors from a multinomial distribu-
tion with UMI sums between 10 and 5000 total counts. We added
2000 of these count vectors back to the original matrix, modeling
high-background empty droplets (Fig. 4A). Upon filtering with
dropkick, CellRanger version 2, and EmptyDrops, a large subset
of the simulated ambient barcodes remained in the latter two label
sets but was discarded entirely by dropkick (Fig. 4C,D). We jointly
processed all barcodes kept by the three filtering tools using non-
negative matrix factorization (NMF) (Kotliar et al. 2019) to define
cell clusters and corresponding cell type metagene scores (Fig. 4C;
Supplemental Fig. 4). dropkick recovered significantly more lym-

phoid progenitors, monocytes, and T and B cells than both
EmptyDrops and CellRanger according to sc-UniFrac (Liu et al.
2018) analysis, indicating that it successfully parsed the noise in-
troduced by the simulated droplets (Fig. 4D). dropkick also
completely excluded Leiden cluster 1, the simulated barcodes
with high NMF scores for usage 9, which contained high loadings
for several ambient genes (Fig. 4B,C; Supplemental Fig. 4B). This
result both confirmed the effectiveness of the pseudobulk multi-
nomial simulation and further established dropkick’s robustness
in filtering high-background data.

Dropkick recovers expected cell populations and eliminates

low-quality barcodes in experimental data

To evaluate dropkick’s performance against existing scRNA-seq fil-
tering algorithms with real-world data, we processed a human
T cell data set from 10x Genomics (Fig. 1) and again compared de-
fault dropkick results (dropkick_label) to CellRanger version 2
and EmptyDrops. The final dropkick coefficients and chosen
regularization strength (lambda; Fig. 5A) reveal that the model is
sparse—with nearly 98% of all coefficient values equal to zero—of-
fering an interpretable gene-based output. Without prior training
or supervision, dropkick identified higher counts ofmitochondrial
genes, which are markers of cell death and poor barcode quality
(Tait and Green 2010), as predictive of empty droplets (Fig. 5A).
To visualize heuristic distributions within the T cell data set, the
number of detected genes and the percentage of ambient counts
per barcode are shown along with dropkick’s automatic training
thresholds (Fig. 5B). Uninformative barcodes below the lower
n_genes threshold were discarded before model training and as-
signed a dropkick score of zero. Barcodes between the two thresh-
olds were initially assigned a label indicating putative empty
droplets, whereas those above the upper threshold were labeled

BA C

D

Figure 4. Benchmarking dropkick performance on simulated high-background data. (A) Log-rank total counts curve for the high-background PBMC
simulation. The horizontal dashed line indicates the threshold below which ground-truth empty droplets were used to build simulated barcodes from a
multinomial distribution (100 total counts). Gold rug plot indicates the location along the total counts curve of 2000 simulated high-UMI droplets (see
Methods: High-Background PBMC Simulation). (B) Genes in PBMC simulation ranked by dropout rate. Top 10 ambient genes are listed, defining ambient
profile used to calculate percentage in A. (C) UMAP embedding of all barcodes kept by dropkick_label, CellRanger_2, and EmptyDrops. Points colored by
each of the three filtering labels, Leiden clusters determined by NMF analysis, dropkick score (cell probability), and select cell type metagene usages from
NMF. Top seven gene loadings for each NMF factor are printed on their respective plots, in axis order from top to bottom. Circled area shows independent
cluster of simulated empty droplets. (D) Table and bar graph enumerating the total number of barcodes detected by each algorithm in all NMF clusters.
Significant cluster enrichment as determined by sc-UniFrac is denoted by brackets.
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as real cells for model training. The dropkick score overlay illus-
trates how dropkick redrew label boundaries in gene space (Fig.
5B). dropkick scores are noticeably lower for barcodes with high
ambient RNA content, whereas some putative empty droplets
with lower background are “rescued” and labeled as real cells by
the trained dropkick model. It is important to note that this
high-dimensional boundarywas learned by dropkickwithno prior
labeling of “ambient” transcripts. Rather, dropkick’s weakly super-
vised algorithm excluded barcodes with high ambient content
based solely on their transcriptional similarity to the least informa-
tive barcodes (lower n_genes) in the training set.

We again jointly processed all barcodes kept by dropkick_la-
bel (dropkick score≥0.5), CellRanger_2, and EmptyDrops using
NMF (Kotliar et al. 2019) to define cell clusters, as well as sc-
UniFrac (Liu et al. 2018) to determine population differences
across labeled barcode sets. A UMAP embedding of these barcodes
reveals a population of cells with high mitochondrial content
that is mostly excluded by dropkick (Fig. 5C). This area is en-
riched in clusters 3 and 5 from NMF analysis, which carry exclu-
sively mitochondrial genes as their top differentially expressed
features (Fig. 5D). Based on sc-UniFrac, these two clusters consti-
tute the only statistically significant differences between
EmptyDrops and dropkick (Fig. 5E). These data indicate that
dropkick recovers as many or more real cells in expected popula-
tions than previous algorithms while also identifying and exclud-
ing low-quality dead or dying cells with high mitochondrial RNA
content.

Dropkick outperforms analogous methods on challenging

data sets

To challenge the robustness of themodel, we next used dropkick to
filter real-world samples with more complex cell types and higher
noise. Human colorectal carcinoma (3907_S2) and adjacent nor-
mal colonic mucosa (3907_S1) samples were dissociated and en-
capsulated using the inDrop scRNA-seq platform (Klein et al.
2015). In contrast to the 10x Genomics pan–T cell data set (Figs.
1, 5), these samples showed high levels of background, containing
empty droplets with thousands of UMI counts detected per bar-
code and up to 40% ambient RNA in expected cell barcodes
(Supplemental Fig. 6A,D). Because of this dominant ambient pro-
file, infiltrating immune populations with lower mRNA content
than epithelial cells can be lost among empty droplets. Indeed,
CellRanger_2 and EmptyDrops show depletion in T cells (cluster
7) and macrophages (cluster 11) compared with dropkick (Fig.
6A,B). Prevalence of high-RNA empty droplets also yields a popu-
lation with low genetic diversity and mitochondrial gene enrich-
ment (Fig. 6A, cluster 4) that is kept by the one-dimensional
thresholding of CellRanger_2 but discarded by dropkick. sc-
UniFrac analysis confirmed that dropkick recovers significantly
more cells from rare populations than both CellRanger_2 and
EmptyDrops in this pair of high-background data sets dominated
by ambient RNA from dead and dying colonic epithelial cells
(Fig. 6C; Supplemental Fig. 6).Meanwhile, dropkick also identified
and removed significantly more dead cells (cluster 4) than both

BA C
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Figure 5. dropkick recovers expected cell populations and eliminates low-quality barcodes in experimental data. (A) Plot of coefficient values for 2000
highly variable genes (top) andmean binomial deviance ± SEM (bottom) for fivefold cross-validation along the lambda regularization path defined by drop-
kick. The top and bottom three coefficients are shown, in axis order, along with total model sparsity representing the percentage of coefficients with values
of zero (top). Chosen lambda value indicated by dashed vertical line. (B) Joint plot showing scatter of percentage of ambient counts versus arcsinh-trans-
formed genes detected per barcode, with histogram distributions plotted on margins. Initial dropkick thresholds defining the training set are shown as
dashed vertical lines. Each point (barcode) is colored by its final dropkick score after model fitting. (C ) UMAP embedding of all barcodes kept by drop-
kick_label, CellRanger_2, and EmptyDrops. Points colored by each of the three filtering labels, as well as Leiden clusters determined by NMF analysis, drop-
kick score (cell probability), and percentage counts mitochondrial. Circled area shows high mitochondrial enrichment in a population discarded by
dropkick. (D) Dot plot showing top differentially expressed genes for each NMF cluster. The size of each dot indicates the percentage of cells in the pop-
ulation with nonzero expression for the given gene, and the color indicates the average normalized expression value in that population. Bracketed genes
indicate significantly enriched populations in EmptyDrops compared with dropkick_label as shown in E. (E) Table and bar graph enumerating the total
number of barcodes detected by each algorithm in all NMF clusters. Significant cluster enrichment as determined by sc-UniFrac is denoted by brackets.
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CellRanger_2 and EmptyDrops (Fig. 6C) by designatingmitochon-
drial and ambient genes as negative coefficients (Supplemental
Fig. 6B,E).

Dropkick filters reproducibly across scRNA-seq batches

We also applied dropkick to a combined human placenta data set
from six patients to show robustness of themodel to batch-specific
variation. dropkick learned the distribution of genes and ambient

RNA specific to each data set and filtered them accordingly
(Supplemental Fig. 7A), with a resulting AUROC of 0.9956±
0.0051 across all six replicates compared to EmptyDrops labels
(Supplemental Table 3). We also performed two types of manual
cell labeling as well as the CellBender remove-background
model (Fleming et al. 2019) to provide additional alternative
filtering labels to compare with dropkick (see Methods:
CellRanger 2, EmptyDrops, CellBender, and manual filtering of
real-world scRNA-seq data sets) (Supplemental Fig. 7B,D–H,J).

B

A

C

Figure 6. dropkick outperforms analogous methods on challenging data sets. (A) UMAP embedding of all barcodes kept by dropkick_label (dropkick
score≥0.5), CellRanger_2, and EmptyDrops for human colorectal carcinoma inDrop samples. Points colored by each of the three filtering labels, as
well as clusters determined by NMF analysis, dropkick score (cell probability), arcsinh-transformed total genes detected, percentage counts mitochondrial,
and original batch. 3907_S1 is normal human colonic mucosa, and 3907_S2 is colorectal carcinoma from the same patient. (B) Dot plot showing top differ-
entially expressed genes for eachNMF cluster. The size of each dot indicates the percentage of cells in the population with nonzero expression for the given
gene, and the color indicates the average expression value in that population. Bracketed genes indicate significantly enriched or depleted populations in
dropkick compared with CellRanger_2 and/or EmptyDrops labels as shown in C. (C) Table and bar graph enumerating the total number of barcodes de-
tected by each algorithm in all NMF clusters for the combined data set. Significant cluster enrichment as determined by sc-UniFrac is denoted by brackets.
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The CellBender remove-background package primarily aims to
subtract ambient background from single-cell expression data
sets rather than filter alone. This resulted in the addition of a large
population of high ambient barcodes unique from those labeled
by dropkick, EmptyDrops, and CellRanger 2, warranting further
assessment of the efficacy of background-removal methods in
the context of consensus cell labels beyond the scope of this paper
(Supplemental Fig. 7B–E).

Extending this analysis to a larger cohort of scRNA-seq sam-
ples from both 10x Genomics (n=13) and inDrop (n=33) encap-
sulation platforms, we see that dropkick is highly concordant with
CellRanger version 2 (AUROC 0.9656±0.0271) and EmptyDrops
(AUROC 0.9817±0.012), suggesting global recovery of major cell
populations (Supplemental Fig. 8A,B,E,F; Supplemental Tables 3,
4). dropkick filtering for 33 inDrop samples yielded an AUROC
of 0.9729±0.0335 compared with manually curated labels using
an inflection point cutoff followed by dimension-reduced cluster
gating (Supplemental Fig. 8C; Supplemental Table 6; for review,
see Chen et al. 2021). For all 46 scRNA-seq samples, we also per-
formed bivariate thresholding on total UMI counts and percentage
of mitochondrial transcripts per droplet, mimicking another pop-
ular preprocessing technique. Again, dropkick’s AUROC averaged
0.9805±0.0194, confirming the model’s utility for robust filtering
across several unique data sets (Supplemental Fig. 8D,H; Supple-
mental Tables 5, 6). Finally, we measured the total run time of
dropkick, which was appreciably faster than both CellBender re-
move-background and the EmptyDrops R package on average, run-
ning to completion in 40.56 ±25.97 sec across 10 replicates of all
46 samples when using five CPUs with dropkick’s built-in paralle-
lization (Supplemental Fig. 8J).

Discussion

Barcode filtering is a key preprocessing step in analyzing droplet-
based single-cell expression data. Reliable filtering is confounded
by distributions of global heuristics such as total UMI counts, total
genes, and ambient RNA that can be highly variable across batches
and encapsulation platforms.We have developed dropkick, a fully
automatedmachine learning software tool that assigns confidence
scores and labels to barcodes from unfiltered scRNA-seq counts
matrices. By automatically curating a training set using predictive
heuristics and training a gene-based logistic regression model,
dropkick ensures that ambient barcodes (“empty droplets”) are re-
moved from the filtered data set while recovering rare, low-RNA
cell types that may be lost in ambient noise. We showed that un-
like previous filtering approaches including one-dimensional
thresholding (CellRanger 2) and a Dirichlet-multinomial model
(EmptyDrops), dropkick is robust to the level of ambient RNA, per-
forming favorably in both low- and high-background scenarios
across simulated and real-world data sets.

Although we have shown that dropkick is more robust to
varying degrees of ambient background than existing filtering
methods, the dropkick model is still limited by the input data
set. As stated previously (see Results: Evaluating data set quality
with the dropkick QC module), the profile of ranked total
counts/genes and the global contribution of ambient reads are vi-
tal to analysis of single-cell sequencing data, including cell filter-
ing. Data with weak separation between high-quality cells and
empty droplets (i.e., a unimodal distribution of n_genes lacking
distinct plateaus in the log-rank curve) will perform poorly in in-
flection-point thresholding as well as data-driven models such as
EmptyDrops and dropkick owing to the similarity between theo-

retically “high-confidence” barcodes and ambient background
droplets. Moreover, data sets dominated by expression of ambient
genes (>40% average ambient counts across all barcodes) will also
perform poorly in automated filtering. Although such data arti-
facts may be handled by dropkick’s heavy feature selection con-
ferred by HVG calculation and elastic net regularization, there
will also be circumstances that cause dropkick—as well as Cell-
Ranger and EmptyDrops—to return an over- or underfiltered
data set. Scenarios such as those described should be considered
QC failures, and further analysis should not be performed. For
this reason, the dropkick QC module is extremely beneficial in
postalignment evaluation of scRNA-seq data quality and should
be applied to all data sets before filtering. The dropkick Python
package provides a fast, user-friendly interface that integrates
seamlessly with the SCANPY (Wolf et al. 2018) single-cell analysis
suite for ease of workflow implementation.

Methods

Indrop data generation

The human colorectal carcinoma inDrop data were generated ac-
cording to published protocols (Banerjee et al. 2020; Southard-
Smith et al. 2020).

QC and ambient RNA quantification with the dropkick

QC module

The dropkick QC module begins by calculating global heuristics
per barcode (observation) and gene (variable) using the SCANPY
(Wolf et al. 2018) pp.calculate_qc_metrics function. These metrics
are used to order barcodes by decreasing total counts (black curve
in Fig. 1A) and order genes by increasing dropout rate (Fig. 1B). The
nth gene ranked by dropout rate determines the cutoff for calling
“ambient” genes, with n determined by the n_ambient parameter
in the dropkick.qc_summary function. All genes with dropout rates
less than or equal to this threshold are labeled “ambient.” In a sam-
plewithmany (>n) genes detected in all barcodes, this ensures that
the entire ambient profile is identified. Through observation of
samples used in this study, we set the default n_ambient = 10. To
compile the dropkickQC summary report, the log-total counts ver-
sus log-ranked barcodes (Fig. 1A, black curve) are plotted along
with total genes detected for each barcode (Fig. 1A, green points),
percentage counts from “ambient” genes in each barcode (Fig. 1A,
blue points), and percentage counts from mitochondrial genes in
each barcode (Fig. 1A, red points).

Labeling training set with the dropkick filtering module

The dropkick filtering module also begins by calculating global
heuristics per barcode (observation) and gene (variable) using
the SCANPY (Wolf et al. 2018) pp.calculate_qc_metrics function.
Next, training thresholds are calculated on the histogram of the
chosen heuristic(s); arcsinh-transformed n_genes by default. drop-
kick then uses the scikit-image function filters.threshold_multiotsu
to identify two local minima in the n_genes histogram that repre-
sent the transitions from uninformative barcodes to “empty drop-
lets” and from “empty droplets” to real cells. These locations are
also characterized by the two expected drop-offs in the total
counts/genes profiles as shown in the dropkick QC report (Fig. 1;
Supplemental Fig. 1). To label barcodes for dropkick model train-
ing, barcodes with fewer genes detected than the first multi-Otsu
threshold are discarded owing to their lack of molecular informa-
tion. dropkick then labels barcodes below the second threshold
as “empty” and remaining barcodes above the second threshold
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as real cells for initial training. These inputs to the dropkick logistic
regression model represent the “noisy” boundary in heuristic
space that is to be replaced with a learned cell boundary in gene
space.

Training and optimizing the dropkick filtering model

The dropkick filtering model uses logistic regression with elastic
net regularization (Zou and Hastie 2005) and is fit as described
by Friedman et al. (2010). The elastic net combines ridge and lasso
(least absolute shrinkage and selection operator) penalties for opti-
mal regularization of model coefficients. The ridge regression pen-
alty pushes all coefficients toward zero while allowing multiple
correlated predictors to borrow strength from one another, ideal
for a scenario like scRNA-seq with several expected collinearities
(Hoerl and Kennard 1970). The lasso penalty, on the other hand,
favors model sparsity, driving coefficients to zero and thus select-
ing informative features (Tibshirani 1996). The combined elastic
net balances feature selection and grouping by preserving or re-
moving correlated features from the model in concert (Zou and
Hastie 2005).

The fraction α∈ [0, 1] (alpha) represents the balance between
the lasso and ridge penalties for the elastic net model. If α=0, the
regularization would be entirely ridge, whereas if α=1, it would be
entirely lasso. By default, dropkick fixes this alpha value at 0.1, but
the user may alter this parameter or provide multiple alpha values
to optimize through cross-validation (with lambda; explained be-
low) at the expense of slightly longer computational time. All de-
fault dropkick results in this paper used α=0.1, and we also ran
dropkick on all 46 samples with given alpha values [0.1, 0.25,
0.5, 0.75, 0.9]. Optimal values chosen by dropkick cross-validation
for this set of runs are shown in Supplemental Table 7. Only nine
of 46 models chose a value other than α=0.1.

For a desired length of “lambda path,” n (default n=100 for
dropkick), the model is fit n+1 times, where the first pass deter-
mines the values of lambda (regularization strength) to test and
subsequent fits determine model performance using cross-valida-
tion (CV; default fivefold for dropkick). Each fit involves selection
of highly-variable genes (HVGs; SCANPY pp.highly_variable_genes;
default 2000 for dropkick) from the training set. For both the first
pass and the final model, the training set consists of all available
barcodes, whereas training the model along the lambda path
uses only the current training fold as to not bias model fitting
with information from the test set. The lambda path is scored us-
ing mean deviance from the training labels for all cross-validation
folds. The largest value of lambda such that its mean CV deviance
is less than or equal to one standard error above the minimum
deviance is chosen as the final regularization strength for themod-
el in order to further minimize overfitting. Finally, dropkick fits a
logistic regression model using all training labels and the chosen
lambda value and assigns cell probability (dropkick_score) to all
barcodes. By default, the resulting dropkick_label is positive
(one; real cell) for barcodes with dropkick_score≥0.5, but the
user may define a stricter or more lenient threshold for particular
applications.

Synthetic scRNA-seq data simulation

Weused CellBender (Fleming et al. 2019) to build synthetic single-
cell data sets. We generated a basic count matrix with 30,000 fea-
tures (n_genes), 12,000 total droplets (including 3000 n_cells and
9000 n_empty), and six clusters. The default ratio between the cell-
size scale factor and the empty droplet–size scale factor—d_cell at
10,000 and d_empty at 200—created an unrealistic gap between
the empty droplets and the real cells but built a foundation on

which to producemore realistic simulations. By adjusting these pa-
rameters, we simulated two different scenarios with the number of
features, total droplets, and clusters held constant. The first sce-
nario modeled a “low background” data set, with a realistic
n_genes and total count profile and relatively low ambient RNA.
We set the cell-size scale factor (d_cell) to 10,000, and the empty
droplet–size scale factor (d_empty) to 1000. These settings pro-
duced a small gap between the real cells and the empty droplets,
yet still mimicked a low background droplet profile.We thenmod-
eled a “high background” scenario, which hadmuch higher ambi-
ent RNA content. For this simulation, we set d_cell to 10,000 and
d_empty to 2000. This simulationmimicked a real scRNA-seq data
set with a high ambient profile, as it had a smaller gap between real
cells and empty droplets. Taken together, these simulations reca-
pitulate real-world single-cell data and were tested by dropkick to
compare their ground-truth labels to those determined by drop-
kick filtering.

High-background PBMC simulation

To imitate empty droplets with highmRNAcontent over a relative-
ly low-background sample, we used the 10x Genomics 4000 hu-
man PBMC data set. Because this encapsulation was derived from
suspended blood cells, there was negligible lysis and ambient con-
tamination, and emptydroplets are very clearly distinguished from
real cells based on their mRNA content alone. Combining reads
from the bottom 1000 genes by dropout rate across all barcodes
with less than 100 total UMIs, we normalized this pseudobulk as
probabilistic weightings for a random generation of count vectors.
We drew 2000 random integers between 10 and 5000 to determine
the total number of counts for each simulated barcode and then
drew that number of random integers fromamultinomial distribu-
tion using the random.default_rng.multinomial function from the
numpy Python package, with pvals equal to the weightings deter-
mined from the true empty droplet pseudobulk. We then added
these 2000 count vectors back to the original matrix, labeling
them as “simulated” for downstream comparison (Fig. 4A).

CellRanger 2, EmptyDrops, CellBender, and manual filtering

of real-world scRNA-seq data sets

CellRanger and EmptyDrops filtering algorithms were derived
from Lun et al. (2019), with CellRanger 2 described by the
function DefaultDrops (from the repository https://github.com/
MarioniLab/EmptyDrops2017) and EmptyDrops by the Empty-
Drops function within the DropletUtils R package (v1.8.0). All 10x
data sets were processed as by Lun et al. (2019; https://github
.com/MarioniLab/EmptyDrops2017). EmptyDrops was run for all
inDrop data sets using the “inflection point” from CellRanger 2
analysis as the minimum non-ambient UMI threshold as by Lun
et al. (2019; https://github.com/MarioniLab/EmptyDrops2017).

Further investigation of user-defined parameters for both
methods was performed by titrating the “lower” parameter, which
describes the lower proportion of total barcodes to ignore when cal-
culating the inflection point for CellRanger 2, as well as the max-
imum total UMI counts under which all barcodes are considered
ground-truth empty droplets for EmptyDrops. We compared
dropkick scores to the resulting labels (Supplemental Fig. 9;
Supplemental Tables 8–11), noting that suboptimal parameter val-
ues led to lower concordance than those in Supplemental Tables 3
and 4.

CellBender remove-background, although primarily an ambi-
ent RNA subtraction model, also provides cell labels from raw
scRNA-seq counts matrices (Fleming et al. 2019). With the caveat
that CellBender likely retains more previously high-background
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droplets after regressing out ambient reads, CellBender was per-
formed on 10x Genomics samples using the same expected cell
number used for EmptyDrops by Lun et al. (2019), and concor-
dance was tested with dropkick labels as before, showing a slightly
lower average AUROC of 0.9585±0.0596 for 13 10x Genomics
samples (Supplemental Fig. 8G; Supplemental Table 5).

Manual filtering was performed for each inDrop sample by
initial thresholding beyond the inflection point detected in the
first curve of the ranked barcodes profile (as in Fig. 1A). Then, fol-
lowing standard dimension reduction and high-resolution Leiden
clustering, clusters with low-quality cells (highmitochondrial/am-
bient percentage, low total counts/genes) weremanually gated out
of the final data set. Thesemanually curated labels were used as an
orthogonal gold standard for benchmarking automated thres-
holding methods (Supplemental Fig. 2A) and final AUROC
(Supplemental Fig. 8D). For further description of this manual fil-
tering method, see Chen et al. (2021).

Bivariate thresholdingwas performed for all samples using to-
tal UMI counts and percentage mitochondrial counts, keeping
barcodes that have greater than or equal to the minimum total
count threshold and <40% mitochondrial reads.

Supplemental Table 7 contains parameters used for each of
the above methods on all 46 data sets.

sc-UniFrac analysis of shared populations between dropkick,

CellRanger 2, and EmptyDrops labels

To evaluate the preservation of expected cell clusters between
dropkick and alternative labels, we used sc-UniFrac (Liu et al.
2018) to determine the global and populational differences be-
tween the label sets. We used NMF to analyze the union of barco-
des kept by dropkick_label, CellRanger_2, and EmptyDrops in
order to reduce dimensions into cell identity and activity “meta-
genes” (Kotliar et al. 2019).We then clustered this low-dimension-
al space using the Leiden algorithm (Traag et al. 2019) to define
consensus cell populations for sc-UniFrac analysis. We then ran
sc-UniFrac (v0.9.6) to evaluate statistically significant cluster dif-
ferences based on both cluster membership and gene expression
hierarchies between clusters. The global sc-UniFrac distance
quantified the overall similarity of hierarchical trees across barcode
label sets.

Dimension reduction, clustering, projection, and differential

expression analysis

We used consensus nonnegative matrix factorization (cNMF)
(Kotliar et al. 2019) for initial dimension reduction. The optimal
number of factors, k, was determined by maximizing stability
and minimizing errors across all tested values after 30 iterations
of each. We then built a nearest-neighbors graph in SCANPY
(pp.neighbors function) from the NMF usage scores for consensus
factors in all cells, where we set n_neighbors to the square root
of the total number of cells in the data set. We then clustered cells
with the Leiden algorithm (SCANPY tl.leiden function) (Traag et al.
2019) applied to this graph. Resulting clusters were used in sc-
UniFrac analysis, differential expression, and visualization. We
performed differential expression analysis using a Student’s t-test
with Benjamini–Hochberg P-value correction for multiple testing
(SCANPY tl.rank_genes_groups). To visualize data sets in 2D space,
we ran partition-based graph abstraction (PAGA; SCANPY tl.paga)
(Wolf et al. 2019) on this nearest-neighbors graph and associated
Leiden clustering in order to create a simple representation of clus-
ter similarity. Finally, a UMAP projection (McInnes et al. 2018)
seeded with these PAGA positions provided a 2D embedding of
all cells in the data set (SCANPY tl.umap with init_pos = ”paga”).

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE158636. All publicly available data sets are listed in
Supplemental Table 12. The dropkick Python package is available
for download via “pip” from the Python Package Index (PyPI) at
https://pypi.org/project/dropkick/. Source code for the package is
available as Supplemental Code and at GitHub (https://github
.com/KenLauLab/dropkick). Scripts for reproducing the analyses
in this manuscript are available as Supplemental Scripts and at
GitHub (https://github.com/codyheiser/dropkick-manuscript).
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