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Abstract

Motivation: The advent of in vivo automated techniques for single-cell lineaging, sequencing and analysis of gene
expression has begun to dramatically increase our understanding of organismal development. We applied novel
meta-analysis and visualization techniques to the EPIC single-cell-resolution developmental gene expression dataset
for Caenorhabditis elegans from Bao, Murray, Waterston et al. to gain insights into regulatory mechanisms govern-
ing the timing of development.

Results: Our meta-analysis of the EPIC dataset revealed that a simple linear combination of the expression levels of
the developmental genes is strongly correlated with the developmental age of the organism, irrespective of the cell
division rate of different cell lineages. We uncovered a pattern of collective sinusoidal oscillation in gene activation,
in multiple dominant frequencies and in multiple orthogonal axes of gene expression, pointing to the existence
of a coordinated, multi-frequency global timing mechanism. We developed a novel method based on Fisher’s
Discriminant Analysis to identify gene expression weightings that maximally separate traits of interest, and found
that remarkably, simple linear gene expression weightings are capable of producing sinusoidal oscillations of any
frequency and phase, adding to the growing body of evidence that oscillatory mechanisms likely play an important
role in the timing of development. We cross-linked EPIC with gene ontology and anatomy ontology terms, employ-
ing Fisher’s Discriminant Analysis methods to identify previously unknown positive and negative genetic
contributions to developmental processes and cell phenotypes. This meta-analysis demonstrates new evidence for
direct linear and/or sinusoidal mechanisms regulating the timing of development. We uncovered a number of previ-
ously unknown positive and negative correlations between developmental genes and developmental processes or
cell phenotypes. Our results highlight both the continued relevance of the EPIC technique, and the value of meta-
analysis of previously published results. The presented analysis and visualization techniques are broadly applicable
across developmental and systems biology.

Availability and implementation: Analysis software available upon request.

Contact: bab@mit.edu or isaac_kohane@harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Four-dimensional microscopy (imaging three dimensions over time)
and a range of single-cell sequencing and profiling techniques are
enabling unprecedented study of how the developmental program
unfolds in vivo (Bao et al., 2006; Boyle et al., 2006; Cao et al.,
2017; Giurumescu et al., 2012; Liu et al., 2009; Moore et al., 2013;
Murray et al., 2006; 2008; Richards et al., 2013; Wolf et al., 2018).
However, as the amount of available single-cell data increases, e.g.
through the advent of single-cell RNA sequencing (scRNA-seq)

(Chen et al., 2018), we need better tools for analyzing and visualiz-
ing these datasets [e.g. Cho et al. (2018) and Hie et al. (2019)], in
order to make the data more comprehensible and useful.

One of the early groundbreaking whole-organism single-cell
gene expression analysis techniques, by Bao et al. (2006) (Murray
et al., 2006, 2008, 2012) employed histone-mCherry reporters
under the control of upstream promoters to detect expression levels
of genes of interest at single-cell resolution, while employing fluores-
cent cell labeling and 4D confocal microscopy to enable automated
cell lineaging. This process yielded a complete 3D map of gene
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expression at single-cell resolution across the entire developmental
timeline while simultaneously tracing the cell division pedigree,
resulting in a 4D gene expression dataset superimposed over the cell
division tree. This dataset was published as Expression Patterns in
Caenorhabditis (EPIC) (Waterston et al., 2006). After the initial im-
pact of this publication, the technique and the results were not ex-
tensively scrutinized, meta-analyzed or reproduced in subsequent
published work, and scRNA-seq has subsequently drawn the atten-
tion of the research community [e.g. Ramsköld et al. (2012) and
Cao et al. (2017)].

However, even today, the EPIC technique remains a goldmine
for understanding development, and retains several major advan-
tages over RNA-Seq, including that in EPIC, gene expression is
tracked continuously in vivo for each cell, throughout the lifetime of
each cell and over the entire developmental timeline of the organism
(until rapid movement of the organism prevents further tracking),
without sacrificing the organism and without requiring the mixing
or combination of data from different cells or different organisms to
produce sufficient data to generate a fine-grained timeline of devel-
opment at different time points. Optical scanning in EPIC provides
continuous gene expression profiling at single-cell resolution, at
least for optically translucent organisms, such as Caenorhabditis ele-
gans, and does not suffer from either the cell type mixing issues of
RNA-Seq or the single-cell extraction and isolation complexity
issues of scRNA-seq. The EPIC technique is also capable of not only
tracking the expression levels of genes of interest within each cell,
but also simultaneously tracing the cell division lineage of the organ-
ism, which would be a particularly powerful technique for studying
the effect of specific mutations on development, as well as organisms
whose cell lineages vary more widely than that of C.elegans. Due to
each of these advantages over the dominant technique of RNA-Seq,
the EPIC technique (and the published EPIC dataset) deserves sig-
nificantly greater exposure and further study than it has thus far
received. This paper aims to provide a deeper look into the pub-
lished EPIC dataset, to determine whether interesting signals could
be found within the dataset that were missed in the original authors’
analyses and visualizations. Our meta-analysis of the EPIC dataset
focused on understanding the timing of development as a function
of gene expression.

Despite evidence that a global biological clock may govern the
fate of cells and the timing of development, mechanisms regulating
the timing of development that have been discovered so far appear
to be localized, and a comprehensive control mechanism for global
developmental timing has yet to be determined (Cooke, 1975; Dale
and Pourquié, 2000; Desai and McConnell, 2000; Hench et al.,
2015; Lorthongpanich et al., 2012; Nair et al., 2013; Palmeirim
et al., 1997; Reinhart et al., 2000; Satoh, 1982; Zhao et al., 2010).
Recent work on single-cell gene expression has illuminated interest-
ing regulatory processes at work during development (Araya et al.,
2014; Bendall et al., 2014; Davis et al., 2012; Trapnell et al., 2014;
Treutlein et al., 2014; Yan et al., 2013). New methods are needed
for determining the mechanisms behind the regulation and timing of
development, utilizing the data produced by single-cell techniques
(Briggs et al., 2018; Cao et al., 2017; Farrell et al., 2018; Wagner
et al., 2018). In our meta-analysis, we attempted to identify any
time correlation present in gene activity in the EPIC dataset.

2 Materials and methods

2.1 Dataset preprocessing
We obtained the EPIC dataset (http://epic.gs.washington.edu/), com-
prising image data (obtained using 4 D confocal microscopy of
developing C.elegans embryos) as well as gene expression data for
127 developmentally related genes at single-cell resolution up to the
point at which the embryo gains motor control.

We parsed the available data, discarding genes and cell pedigree
subtrees with significant numbers of missing values (i.e. where gene
expression had not been recorded for significant numbers of cells).
We selected the largest possible dense subset of the data, i.e. the
largest subset for which there were no missing values in the table

consisting of genes in the columns and cells in the rows. We trun-
cated the timeline after 686 unique cell identities had appeared in
the cell pedigree, because the data sparsity increased sharply after
that point, as a result of tracking difficulty once the nematode begins
to move within its egg sac.

We found the maximum expression level of each gene across the
lifetime of each cell, using the ‘global’ intensity measurement
method (out of ‘global’, ‘local’, ‘blot’ and ‘cross’, as described in the
original paper), and binarized gene expression to 0 or 1, in order to
prevent outliers (genes with very high activation levels) from skew-
ing the results (since we were only interested in whether or not a
gene was active at a given point in development, not in the magni-
tude of activity, beyond a minimal threshold). We used the reporter
intensity threshold of 2500 as the boundary between active and in-
active, which was conservatively chosen based on Murray et al.
(2006), where it was stated that spurious gene activity was not
observed below a measured reporter intensity value of 2000, and
that strong expression signals were observed at values over 4500.
Our chosen intensity threshold of 2500 errs more toward false posi-
tives than false negatives in classifying gene activity, but we found
that this threshold provided an adequate balance between the gene
expression matrix tending toward being filled with zeroes (for a
threshold value set too high) and being filled with all ones (for a
threshold value set too low). We discarded a number of genes that
were expressed in all (or nearly all) cells at this threshold level, as
well as genes that were not expressed in any (or almost any) cells at
this threshold level. As can be seen in Supplementary Figure S3, the
number of positive (green) and negative (red) gene activations is
roughly balanced across all cells for the remaining genes.

The resulting binarized gene expression matrix (Supplementary
Table S3) consists of the binarized gene expression values (0 or 1) for
102 genes, measured across the lifespan of 686 cell identities. The 686
cells can be broken down into 341 internal nodes in the cell pedigree
(cells that divide within the measured developmental timeline) and
345 leaf cells (cells that are either terminally differentiated, die through
apoptosis or divide later than the end of the recorded timeline).

2.2 Timescale correction
We extracted cell birth times from the dataset by finding the time
point for each cell at which reporter intensity level data first became
available. Despite the claim in Murray et al. (2006) that the EPIC
data was sampled ‘with �1-min temporal resolution’, the raw data
was quite clearly sampled at a wide range of different time intervals
for each gene, with time scale factors including at least 1.0, 1.35,
1.4, 1.5 and 2.0 min per 3D scan, and with the datasets listing only
scan indices, not timestamps. There is no available data source on
the EPIC website that indicates the time scale for a given run, and in
correspondence, the original authors stated they were not able to
easily retrieve the timescales used for each run. Therefore, to get all
data on the same timescale, we had to perform some careful time
series analysis to recover a best-fit time scale factor for each run. We
used a custom multiple-alignment regression technique to linearly
stretch the timeline such that the birth time and division or death
time of each cell best fit a consensus cell pedigree [the canonical
Sulston pedigree (Sulston et al., 1983)]. The sample interval was
known for some genes, which was used as a cross check of the time-
line fitting method. In this process, we also discovered that not only
was a multiplicative offset needed to scale the data samples to fit the
timeline of the canonical Sulston pedigree, but a varying additive
offset was also required to normalize the ‘zero point’, averaging
�45 min between the Sulston time zero and the dataset index zero
(i.e. the sample indices in the raw datafiles are zero-indexed, but the
sampling started at a developmental age of �45 min).

The EPIC data includes multiple runs for some genes, sometimes
with non-trivial variation in gene expression between runs. After
adjusting for the unspecified time dilation as described above, we
combined data from these different experiment repetitions by aver-
aging, across all runs for a gene, the maximum reporter level
achieved by the gene during the lifetime of each cell. For a discussion
of sources of noise and variability between runs for the same gene,
we refer the reader back to the original publication.
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2.3 Principal component analysis
PCA was run on the binarized gene expression matrix, by mean-
centering the gene expression matrix (adjusting the expression levels
to have a mean expression level of zero for each gene), calculating
the covariance matrix, finding the eigenvalues and eigenvectors of
the covariance matrix, and then sorting the eigenvectors into
decreasing order of corresponding eigenvalue. This produced
Supplementary Table S4a and b, the PCA eigenvalues and eigenvec-
tors, respectively. We then projected the gene expression matrix
onto the first 10 principal component axes to produce the principal
components PC1–PC10, shown in Supplementary Table S5, and
depicted in many of the figures. [Note that it is the raw (non-mean-
centered) data that was projected onto the eigenvectors, not the
mean-centered gene expression matrix. This choice results in only a
translation of the data in all axes, it does not change the shape of the
projected data.] Columns 1–3 of Supplementary Table S5, plotted in
3D, yielded Figure 1. All 2D pairings of principal component axes
PC1–PC10 yielded Figure 2. (The figures in this paper were all ren-
dered using custom 2D and 3D visualization software.)

To examine the contribution of the principal axes toward overall
dataset variance, we produced a scree plot (Supplementary Fig. S1)
from the binarized gene expression matrix (Supplementary Table
S3), showing the eigenvalues of gene expression sorted into decreas-
ing order. Most of the variance in the expression patterns of the 102
genes is embodied in the first 10 principal components and in par-
ticular by the first three principal components.

2.4 FDA for identifying genetic basis of differentiation
Figure 3 and Supplementary Figure S4 were generated by imple-
menting FDA. This method employs Fisher’s linear discriminant to
provide a closed-form solution for maximizing inter-class variance
while minimizing intra-class variance between two classes of inter-
est. The data matrix A is separated into two matrices A0 and A1,
each containing the subset of rows (representing cells) for the corre-
sponding class of interest. For example, the rows of A representing
cells in the MS lineage can be placed in A0, and the other rows (rep-
resenting cells in other lineages) can be placed in A1. The maximum
class separation occurs when the data are projected onto the vector

x ¼ ðR0 þ R1Þ�1ðl1 � l0Þ; (1)

i.e. the inverse of the sum of the covariance matrices of the data
matrices for each class, A0 and A1, multiplied by the vector differ-
ence in class means. The data matrices can be projected onto x by
simple matrix-vector multiplication (A0 x and A1 x, or projected

collectively as Ax) to obtain a 1D representation of the data points,
maximally separated into the two classes.

In our use case, the matrices A0 and A1 have cells of their re-
spective class in the rows and genes in the columns, i.e. they are of
dimensions ðncell

0 � ngeneÞ and ðncell
1 � ngeneÞ, respectively. The col-

umn covariance matrices R0 and R1 are both of dimension
ðngene � ngeneÞ. The mean gene expression vectors l0 and l1 are both
of dimension ðngene � 1Þ, derived from the column means of A0 and
A1, respectively (i.e. these vectors are the mean expression level for
each gene within the class). The resulting FDA projection vector x is
of dimension ðngene � 1Þ.

The vector x gives the set of gene weightings that maximally sep-
arates two classes of cells when expressed as a linear combination
(A0x and A1x). Each component of x is the weight of a specific
gene, and therefore the absolute magnitude of these weights is
directly related to how differentially expressed a gene is between the
two classes, relative to other genes.

FDA does not yield an innately optimal class separation bound-
ary along its projection vector, x. For Figure 4 and the figures in
Supplementary Table S6, we plotted as the decision boundary the
line which equalized the percentage of cells in Class 1 above the line
and the percentage of cells in Class 0 below the line.

2.5 Cylindrical projection of gene expression manifold
The manifold swept by the cell pedigree through the space spanned by
the first three principal component axes was roughly semi-cylindrical.
We flattened out this ‘principal manifold’ of the data (Gorban and
Zinovyev, 2009) using a cylindrical projection. This involved radially
projecting cell positions in principal component space outwards from
a central axis onto the surface of a cylinder, and then flattening out
the cylinder (Supplementary Fig. S2). Supplementary Table S6 gives
the 2D coordinates (h, y) of the cells in the cylindrical projection.

This cylindrical projection can be used to visualize the cell pedi-
gree in two dimensions rather than three, while eliminating most
problems with occlusion and perspective distortion. We plotted the
binarized expression data for each gene using the cylindrical projec-
tion in Supplementary Figure S3, so that large-scale patterns of gene
expression can be examined across the developmental timeline, and
across the surface of the principal manifold traced through the first
three principal components.

3 Results

We present a meta-analysis and visualization of a subset of the EPIC
dataset, which suggests a global mechanism governing the timing of
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Cell division depth 2-9
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Fig. 1. Projection of binarized gene expression profiles onto the first three principal component axes. Each node represents a cell, and the edges between the nodes connect a

cell with each of its two daughter cells. The color of each node indicates the division depth in the cell pedigree. (a) A perspective view of the first three principal components.

(b) A top-down view of PC3 versus PC1, showing the curved path of the manifold relative to the first principal component axis
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development in C.elegans. This subset of EPIC consists of the ex-
pression levels of 102 developmentally relevant genes (out of 127
genes total) across the first 686 cell identities in the C.elegans cell
pedigree (i.e. all ancestral cell identities up to approximately the
350-cell stage). We did not include genes or cells with incomplete
data. Significant work was required to prepare the EPIC data for
meta-analysis (see Section 2). Producing the complete gene expres-
sion matrix for these genes and cells has allowed us to apply analysis
techniques to the dataset as a whole, including principal component
analysis (PCA), which allowed us to discover that gene expression
follows a sweeping manifold shape through expression eigenspace
as the developmental timeline proceeds.

We discovered a strong linear correlation (R2 ¼ 0:94) between
the first principal component of gene expression and wall-clock time
during cell proliferation. Over the entire available timeline, we
observed multiple apparent sinusoidal oscillations in gene expres-
sion, with different frequencies of oscillation manifest in different
principal components, indicating that our observation of linear

monotonic correlation between gene expression and wall-clock time
have been an observation of the nearly linear part of a sinusoidal
graph around the zero-crossing point (it is difficult to know without
the availability of data from later in development).

We devised a novel technique from Fisher’s Discriminant
Analysis (FDA) for uncovering the relative contributions of genes to
an attribute of interest, and used this method to study lineage-
specific gene expression patterns, and the separability of lineages
based on gene expression profiles. By applying this technique,
remarkably we were able to find simple linear weightings of gene
activation that were able to produce sinusoidal oscillations of any
desired frequency and phase in the weighted sum of gene expression.
This result suggests that oscillatory mechanisms may be used exten-
sively to regulate the timing of development.

To determine the functionality of developmental genes of
interest, we also applied our FDA technique to the cross-linked
EPIC dataset with the gene ontology (GO) and anatomy ontology
from Wormbase (Stein et al., 2001) to identify weightings for each

Cell division depth 2-9

(b)

(a)

Fig. 2. (a) The projection of gene expression onto the first 10 principal component axes, PC1–PC10, shown as 2D projections. (b) Larger views of PC3 versus PC1, PC6 versus

PC1 and PC6 versus PC3, showing what appears to be sinusoidal oscillation of two different frequencies. Plotting PC6 against PC3 causes the cell pedigree to trace an a-shaped

path as development proceeds
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gene that specify how strongly a gene appears to be correlated
with the presence or absence of a given phenotypic trait or
developmental process in each cell. These gene weightings
provided a large number of previously unknown implications
about the functioning of various genes across a wide range of
developmental processes.

Individual specific results are discussed inline as they are pre-
sented in the relevant Sections 2 and 4.

The methods described in this paper are simple to apply, but
have the potential to be broadly useful in understanding single-cell
experimental data. The specific results we produced from our
meta-analysis of the EPIC C.elegans data, cross-linked with
Wormbase ontologies, presents strong evidence for global control
of developmental timing, suggesting numerous opportunities for fur-
ther research into the time-correlated and oscillatory mechanisms of
developmental regulation.

4 Discussion

4.1 The cell pedigree monotonically sweeps a curved

manifold through gene expression space
To understand how patterns in gene expression changed in relation
to cell division, we produced a 3D plot of the cell pedigree directly
overlaid on the first three principal components of gene expression
(Fig. 1). In this plot, nodes represent the 686 unique cells in the data-
set (specifically, the unique identities of cells between cell division
events), and edges indicate the relationship between a cell and its
two daughter cells. The color of a cell in this plot indicates the
cell division depth. The position of a cell in the 3D space is the pro-
jection of that cell’s gene expression profile (the binarized expression
levels of the 102 genes for the cell) onto the first three principal com-
ponents, i.e. the cell’s position in this 3D plot is a simple linear com-
bination of the activity levels of the cell’s genes.

phase
wavelength
   (= 1/freq)

(a)

(b) class 0 class 1class 1

cell birth time

ge
ne

 e
xp

re
ss

io
n

(c)

class 0
class 1

FDA decision boundary

pr
oj

ec
tio

n 
of

 g
en

e 
ex

pr
on

to
 F

DA
 ω

-v
ec

to
r

cell birth time class 0            class 1

frequency f

ph
as

e 
p

(d)

(e)freq

ph
as

e

FDA weights for gene, given freq and phase (    negative weight,    positive weight)

Fig. 3. Identification of simple linear weightings of gene expression levels that can produce oscillations across a range of sinusoidal frequencies and phases. (a) A target sine

wave is generated. (b) Cells are assigned to Class 0, at developmental times when the sine wave is positive, or Class 1, at times when the sine wave is negative. (c) FDA is used
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Because the edges that connect each non-leaf cell to its two
daughter cells clearly show the cell pedigree, trends in gene expres-
sion can be clearly seen as development proceeds. Remarkably, the
cell pedigree sweeps across a curved manifold surface embedded in
the 3D ‘eigengene’ expression space. The sweep direction of the cell
pedigree across the manifold is monotonic, in the sense that pedigree
edges between cells and their daughter cells all follow the same ap-
proximate sweep direction; there are no pedigree edges directed op-
posite to this general sweep direction after the first two or three cell
divisions. It has been observed previously that gene expression can
follow a trajectory over time through expression space (Qiu et al.,
2017), a concept that has been referred to as ‘pseudotime’ (Trapnell
et al., 2014), but in Figure 1, we rather show that the observed cell
lineages all collectively trace not a single path, but a set of paths
lying approximately on the surface of a manifold, suggesting the ex-
istence of a strong and globally coordinated developmental control
mechanism.

The strongest vector component of this sweeping manifold path
is aligned with the first principal component of gene expression
(PC1), indicating that movement along the manifold in the direction
of the pedigree is monotonically correlated with the most significant
orthogonal direction of variance in gene expression. The implication
of this is that the largest variation in gene expression across all cells
is time-correlated, and this time correlation is monotonic – in other
words, variations in gene activation is collectively coordinated and
sequenced such that development moves in a specific direction.

As cells divide during development, and as gene expression
trends in the direction of PC1, the cloud of cells at a given cell div-
ision depth (indicated by a given node color) expands in width along
PC2 relative to the previous cell generation, most plausibly corre-
sponding to a general diversification in gene expression, consistent
with lineage-specific differentiation. The total spread in PC2 is less
than half the distance swept through PC1 as development proceeds,
suggesting that variation in expression levels of genes in this dataset
is more strongly associated with the progress of development than
with tissue-specific differentiation.

4.2 Gene expression is correlated with developmental

age of the organism
Remarkably, since each cell pedigree edge from a cell to its two
daughter cells follows the arrow of time, and since the cell pedigree
sweeps a ‘monotonic’ manifold shape through gene expression space
as development proceeds, the expression patterns of the selected
genes must be related to the developmental age of the organism.
Figure 5a shows PC1, the first principal component of gene

expression, plotted against b, the birth time of each cell in minutes
since fertilization. For much of the recorded development time, a
striking linear correlation is evident (R2 ¼ 0:94 from 100–200 min).
This correlation is notable, because projection of the data onto the
PC1 axis represents a simple weighted linear combination of the
binarized gene expression levels, which indicates there is a weighting
of the gene expression levels that is directly predictive of the wall-
clock developmental age in minutes. This linear weighting can be
obtained directly from the eigenvector for the first principal compo-
nent (i.e. the eigenvector multiplied by the square root of the corre-
sponding eigenvalue—Supplementary Fig. S4 and Table S4).

This strong correlation between PC1 and developmental age
appears to be independent of the cell division rate, in particular
implying that the gene expression profiles of cells are all similarly
correlated with developmental age regardless of cell division depth
within the cell pedigree. This finding can be seen by the skew in cell
division depth in Figure 1, evidenced by the increased mixing of cell
colors, representing cell division depth, as development proceeds.
Each of the major cell lineages MS, C, D and E have successively
slower cell division rates relative to the AB lineage (the difference in
cell division rates between the lineages can be seen in Figure 4, but
gene expression is not correlated with cell division depth as strongly
as with developmental age). The finding that wide-scale gene expres-
sion patterns are decoupled from cell division rate agrees with the
findings in Nair et al. (2013), who found that expression and prolif-
eration are independently linked to separate clock-like processes.
Whereas Nair et al. found that the relative timing of cell division
was not directly correlated with large-scale transcriptional regula-
tion, in our analyses we observed that the depth of cell division was
not directly correlated with large-scale transcriptional regulation,
since lineages with dramatically different cell division intervals ex-
hibit similar expression trends.

Before 100 min and after 200 min, however, PC1 diverges from
being linearly correlated with the cell birth age b (Fig. 5a). It is pos-
sible gene expression is linearizable across the entire developmental
timeline, but that PCA does not recover the optimal set of gene
weights to expose the direct linear correlation, and for this purpose
we consider below a linear regression method for fitting a linear
model to the data. Another possible explanation for the observed
distribution is that the underlying gene expression is fundamentally
sinusoidal, not linear, and that we merely observed the section of
the sinusoid that is most linear, around the zero-crossing point (dis-
cussed below). It is also possible that entirely different developmen-
tal programs or processes are active before 100 min, between 100
and 200 min, and after 200 min: one plausible explanation for the
difference in gene activity before and after 100 min is the maternal-
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Fig. 5. (a) The projection of gene expression onto the first principal component, PC1, versus b, the cell birth time (i.e. the cell onset time) in minutes. The plot is strongly linear

from 100 to 200 min. (b) After solving the linear equation Ax ¼ b, where A is the binarized gene expression matrix and b is the vector of cell birth times, this plot shows the

best-fit linear estimator mapping birth time to gene expression
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to-zygotic transition (Lee et al., 2014). Whether what we observed is
linear or sinusoidal in nature, the correlation we observed between
the first principal component of gene expression and wall-clock time
is remarkable, since a simple linear projection of gene activation pat-
terns can accurately predict the age of the organism across much of
the studied developmental timeline.

To find the extent to which gene expression can be linearly cor-
related with time, we reformulated the relationship between gene
expression and cell birth time as a linear system Ax ¼ b, where A is
the binarized gene expression matrix (i.e. Supplementary Table S3,
with cells in the rows, and genes in the columns) and b is the vector
of birth times for each cell. We then solved this linear system for x, a
set of gene weights that map the expression matrix onto cell birth
times. (A small amount of random noise was added to the binarized
gene expression levels for regularization.) The resulting vector of
gene expression weights x (Supplementary Table S8) gives us the lin-
ear weighting of genes that maps the gene expression profile of a cell
onto the developmental age of the cell with the minimum squared
error. Given this set of weights, gene activity was close to linearly
correlated with cell birth time for all cells in the pedigree (not just
from 100 to 200 min), retaining approximately the same linear cor-
relation strength of R2 ¼ 0:94, but across the entire developmental
timeline (Fig. 5b). If PC1 is evidence of a linear correlation with de-
velopmental age, rather than a sinusoidal correlation, then the genes
with high-magnitude positive or negative weights in this table would
be indicated as important in the timing of development. The gene with
the largest negative weight in Supplementary Table S5, med-2, is ne-
cessary for endoderm specification (Goszczynski and McGhee, 2005).
Other genes with high negative weights include sdz-28, an SKN1-
dependent zygotic transcript active only in early development, trig-
gered by the SKN1 maternally deposited transcription factor, and
glp-1, which encodes a transmembrane protein essential for mitotic
proliferation of germ cells and maintenance of germline stem cells, and
important in many differentiation decisions in somatic tissues. Genes
with strong positive weights include egl-5, a Hox gene (Nicholas and
Hodgkin, 2009), as well as a number of genes that are expressed near-
ly ubiquitously across the entire developmental timeline.

Supplementary Table S9 lists, for each cell, the cell birth time,
the PC1 projection of gene expression for the cell and the linearized
gene expression for the cell, and compares these with the Sulston
onset time of the cell.

4.3 Sinusoidal oscillation observed in the principal

components of gene expression
Figure 1 shows that gene expression in the third principal compo-
nent, PC3, traces half a sinusoidal cycle with respect to PC1.
The EPIC technique is not able to reliably track development once
the organism begins to move, so the end of the current dataset is
not the end of the developmental timeline. It is unclear whether a
complete sinusoid would be traced in PC3 if more of the develop-
mental timeline were captured—in other words, it is not clear
whether the semi-sinusoidal oscillation in PC3 relative to PC1 is in
fact half of a sinusoidal oscillation.

Figure 2a shows all pairings of principal components between
PC1 and PC10, as a way of visualizing the first ten principal compo-
nent dimensions in two dimensions. Interestingly, PC6 traces a com-
plete sinusoid with respect to PC1 across the same time period that
PC3 traces half a sinusoid. The presence of a complete and clear si-
nusoidal oscillation in PC6 relative to PC1 lends strength to the
hypothesis that the apparent curve of PC3 relative to PC1 is in fact
the first half of a sinusoidal oscillation with half the frequency com-
pared to the oscillation in PC6. However, without data for the entire
developmental timeline of the organism, this cannot be confirmed.

These oscillations of different frequency are concurrent and
mutually orthogonal (hence the reference to ‘multi-frequency oscil-
lation’ in the title of this paper). If PC6 is paired with PC3, the half
sinusoid paired with the higher-frequency complete sinusoid causes
the developmental path to trace a spiraling alpha shape (a), as
shown enlarged in Figure 2b.

Principal components other than PC1, PC3 and PC6 did not ex-
hibit strong linear or sinusoidal structure, but may capture variation
in gene expression due to tissue-specific variation. The widening of
the point cloud in all principal components other than PC3 and PC6
when plotted against PC1 is consistent with cells differentiating as
development proceeds. See for example the widening in PC2 versus
PC1 in Figure 1.

We have not identified a plausible biological mechanism behind
the apparent sinusoidal or semi-sinusoidal oscillations observed in
PC3 and PC6 (and perhaps also in PC10) relative to PC1, other than
that they may be related to the coordination of global developmental
timing, rather than some specific developmental process itself. We
believe this question deserves further study.

4.4 Connection to previous observations of oscillatory

patterns during development
Circular oscillatory paths in gene expression have been previously
observed with PCA dimension reduction on whole-organism RNA-
Seq profiles in frog, mosquito, fly and zebrafish, by applying the
traveling salesman algorithm to a series of RNA-Seq profiles to
arrange the samples into approximate order of developmental
age, finding a minimum-distance simple path between all samples
(Anavy et al., 2014). This is significant, as it lends credence to the
presence of a global clock mechanism coordinating development.
The expression levels of individual mRNAs were also observed to
oscillate over time (Hendriks et al., 2014; Lee et al., 2014). Both os-
cillatory and temporally gradated activity has been observed in tran-
script levels (Kim et al., 2013). Some key regulators of the timing of
heterochronic miRNA expression have been discovered, including
lin-4 and let-7-family miRNAs, under control of lin-42 (McCulloch
and Rougvie, 2014), however data on these miRNAs was not avail-
able in the EPIC dataset for comparison.

A range of new techniques have been proposed to track gene ex-
pression trajectories over time (Domany, 2014). Robust oscillation
in transcription has been observed previously at multiple temporal
scales (Hendriks et al., 2014; Kim et al., 2013), involving ultrara-
dian cycles affecting �1/6th of the transcriptome, with changes in
expression of up to an order of magnitude during the cycles. The
authors identified several periodic developmental phenomena, such
as cuticle development and cuticle molting, and speculated that the
timing of other developmental processes are similarly controlled by
one or more of these transcriptional cycles.

What is unique about our findings is that the patterns of oscilla-
tion in gene expression that we observed were not limited to specif-
ic cell types, or to specific cell lineages, and were not affected by
the cell division rate of different lineages. Our observations were
not made by taking samples of transcripts or other genetic activity,
averaged across the whole organism at specific time points. Rather,
we observed oscillations occurring separately and simultaneously
within each individual cell at single-cell resolution, as part of a glo-
bally synchronous oscillatory pattern exhibited by all cells in exist-
ence at each point in the developmental timeline of the organism.
Also notable is our observation of multiple superposed oscillations
of different frequency and phase. This superposition of time-
correlated oscillation was contemporaneous with non-oscillatory
patterns of gene expression involved with cell differentiation: the
observed patterns of gene activation simultaneously and collective-
ly encoded multiple oscillatory mechanisms, in an almost ‘holo-
graphic’ sense, based on gene activations at individual cells—and
yet each gene simultaneously and separately also served its own
unique role in development, unrelated per se to the oscillation to
which it contributed.

4.5 Generation of sinusoidal oscillation as a linear

weighting of gene activations
To understand the extent to which linear combinations of gene acti-
vation could give rise to a sinusoidal oscillation, we temporally div-
ided cells into two classes based on the cell birth time in the
developmental timeline, corresponding to peaks (Class 0) or troughs
(Class 1) in a target sinusoidal function of a given frequency and
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phase (Fig. 3a). FDA was used to find the hyperplane that separates
Class 0 and Class 1 with minimum intra-class variance and max-
imum inter-class variance, which effectively created a square wave
approximation of the target sine wave. The projection of gene ex-
pression onto the normal vector x of the separating hyperplane was
plotted against the cell birth time to produce a best fit of gene ex-
pression to the original sinusoidal wave (Fig. 3b and c).

Figure 3d shows that a simple linear combination of gene activa-
tions can produce an approximate sinusoidal wave of any desired
frequency or phase. This result lends support to the idea that the pat-
terns of sinusoidal oscillation that we found in our PCA, as a simple
linear projection onto the principal component axes, were not an
anomaly, but may have been due to an underlying process that relies
upon the combined activation of positively weighted genes and the
combined inactivation of negatively weighted genes to measure os-
cillation during development, with several important frequencies
being tracked by the developmental processes of the organism. The
fact that we could recreate this phenomenon for any desired fre-
quency or phase may indicate a deeper pattern—that oscillatory tim-
ing of developmental processes as a simple function of gene
activations may be a mechanism that is heavily relied upon for or-
chestration of development.

One possible explanation for the ability to generate oscillations
of any phase and frequency lies in the fact that the different genes
studied become active and inactive at different times during develop-
ment (Supplementary Fig. S3). As long as the predominant time-
spans of the activity of different genes do not perfectly overlap, an
appropriate weighting of genes could select a subset of genes that
demonstrate activation during the peaks of a sine wave, and do not
demonstrate activation during the troughs of a sine wave, as a func-
tion of time. This raises a ‘chicken or egg’ question about whether si-
nusoidal oscillations may control gene expression, or whether gene
expression collectively gives rise to sinusoidal oscillation.
Conceivably both processes occur, and are interrelated. This ques-
tion deserves further research.

4.6 Genes differentially expressed between E lineage

and other cells
Supplementary Table S1 lists the gene weights required to produce
maximum class separation in the projection of the gene expression
of cells onto the axis of maximum class separation, x, for the E lin-
eage versus all other cells. Gene weights that maximally separate
each major cell lineage from the other cells are given in
Supplementary Table S7. Note that end-1, the top-weighted gene in
the FDA weightings for the E lineage, is well known as an important
developmental gene for the E lineage (the intestine) (Robertson
et al., 2014). Heat shock-driven expression of END-1 has been
found to cause a majority of embryonic cells to express intestine-
specific genes and form intestinal structures (Zhu et al., 1998). It has
also been discovered than mutations in the second-highest ranked
gene, nob-1, along with pgp-3 (ranked in the top 25% of gene
weights for the E lineage), both posterior-group Hox genes, results
in gross posterior embryonic defects (Van Auken et al., 2000).
However, not all of the highly weighted genes have been previously
linked to intestinal development in C.elegans. More importantly, the
negatively weighted genes for the E lineage or most other develop-
mental processes, body structures or phenotypic traits, have rarely
been examined. This table raises the question as to whether strongly
negatively weighted genes such as isw-1 (chromatin-remodeling
complex ATPase chain) are specifically not expressed in the E lin-
eage—but similar questions could be asked about negative gene
weights for each cell lineage, or each cell attribute, tested using
FDA.

Of note, elt-1, which has been identified as a master regulator of
epidermis specification, is strongly weighted in separating the AB
epidermal lineage from the rest of the cells, but not as strongly
weighted in separating the C epidermal lineage from the rest of the
cells (Supplementary Table S6). This is consistent with the observa-
tion that these two lineages rely on different developmental

regulators (Shao et al., 2013). Also, several factors are weighted
more highly than elt-1 in separating the AB lineage from the rest of
the cells (sdz-38, tlp-1, hlh-26, hlh-3, pax-3), and several factors are
weighted similarly highly in separating the C lineage from the rest
of the cells (nob-1, cwn-1, C25D7.10, tbx-9, rad-26). Some of
these genes are known to play a central role in epidermal develop-
ment, including nob-1 (Chen et al., 2004), pax-3 (Thompson
et al., 2016) and tbx-9 (Andachi, 2004), confirming the utility of
this FDA method for identifying genes relevant to developmental
processes. However, the other highly weighted factors for the AB
and C lineages do not appear to have yet been closely studied in re-
lation to their broader role in epidermal development. The same is
true of the highly weighted genes for each of the major lineages—
some but not all of the highly positively weighted genes have
documented roles in the development of these lineages, and, im-
portantly, most of the strongly negatively weighted genes have not
previously been identified as specifically being inactive only in a
given lineage.

4.7 Insights into roles of genes in development
We next sought to identify overall patterns in the weightings of each
gene in the FDA results, given known functions of each gene. To this
end, we cross-linked the FDA results with the Wormbase (Stein
et al., 2001) GO terms for each of the 102 genes under study. Given
a set of gene weights, we looked up the GO terms for each gene, and
contributed the weight of the corresponding gene into an accumula-
tor for the GO term. The sum of the gene weights for all genes asso-
ciated with each GO term, for the E lineage FDA weightings, are
presented in Supplementary Table S2. These aggregate weightings
give an idea of which biological processes are more characteristically
active during intestinal development compared to the development
of the rest of the organism. There are RNA polymerase II terms at
both the high positive and low negative ends of the scale, which
could be related to inconsistent application of GO terms to genes in
the GO database, or the inconsistent application of multiple related
and similar but differently-coded terms. Either way, there are nu-
merous strong developmental signals at the positive and negative
ends of the scale, as would be expected, and specifically, ‘endoder-
mal cell fate specification’ is predictably highly weighted for gut de-
velopment (the E lineage). Other terms stand out as interesting, such
as ‘nematode male tip morphogenesis’—indicating that development
of the male tail tip is coordinated with development of the gut, or
that development is regulated by some of the same genes in both
cases.

Note that Figure 4 and Supplementary Tables S1 and S2, consti-
tute the FDA results for just one attribute, where Class 1 is com-
prised of cells in the E cell lineage and Class 0 is comprised of all
other cells in the cell pedigree. For comparison, we also applied
FDA analysis to each of the other major lineages in C.elegans (AB,
MS, C and D) versus the other cells in the pedigree (also visible in
Fig. 4), and found that all the major lineages were cleanly separable
from cells not in that lineage, indicating that each lineage had a dis-
tinctive gene expression profile. We also tested a couple of hundred
other cell attributes, derived from Wormbase anatomy ontology
terms, including tissue type and cell function, as well as division
depth, and other attributes. The full set of FDA result can be seen in
Supplementary Table S6.

We also applied the FDA technique to a number of cell features,
including anatomy ontology terms from Wormbase, as well as devel-
opmental stage, tissue types, etc. For each, we generated a figure
indicating the separation of cells that were labeled with the trait
from cells that were not labeled with the trait, as well as FDA gene
weightings and GO term weightings for each FDA result
(Supplementary Table S6). We also produced variants of each case,
for cells that were parent cells or daughter cells of cells that possess
each given trait. In each case, we measured the ratio of inter-class to
intra-class variance, as a measure of separability of the two classes.
This ratio is given in the filename of the FDA results.
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4.8 Examination of principal component weights
The principal component weights (i.e. the gene weights that project
the gene expression data onto the principal component axes) indi-
cate which genes are the strongest sources of variance in a given
principal component axis (Supplementary Table S4b and Fig. S4).
If variance in a principal component axis is only due to a small
number of genes, the weights corresponding to those genes will
be large in positive or negative value, and the other genes will be
close to zero. However, the distribution of PC1 weights in
Supplementary Figure S4 demonstrates that the contribution to-
ward variance is close to zero for very few of the 102 genes in this
dataset, indicating that most or all of the 102 genes under consider-
ation are involved in establishing the linear correlation with devel-
opmental age. If the time-correlated nature of PC1 is indeed due to
a global developmental clock mechanism, then the fact that many
genes are involved in this mechanism could indicate a redundancy
in the temporal functioning of these genes, affording the opportun-
ity for adaptation in the function of developmental regulators with-
out disrupting the global developmental clock. Redundancy adds
resilience and flexibility, giving a system more degrees of freedom
over which to adapt.

However, comparing the sorted weights in Supplementary
Figure S4 to the gene expression patterns in Supplementary Figure
S3, it can be seen that the strongest negative weight (egl-5) corre-
sponds to gene expression in all cells excluding the last generation
measured, whereas the strongest positive weights (lin-26,
K02G10.1, ceh-41, etc.) correspond to high levels of gene expres-
sion commencing later during development. Consequently, the
sorted PC1 weights roughly correspond to a time ordering of gene
activation. It is possible then that the apparent time-correlatedness
of PC1 is due to a sequential pattern of gene activation. However,
cross-comparison with Supplementary Figure S3 suggests that the
situation is not as simple as the genes being switched on in a specific
ordered sequence.

4.9 Possible conflation of similarity in cell function with

co-temporality
In a wide array of gene expression research, in order to gain insights
into the functioning of genes, cells have been clustered according to
similarity in their gene expression profile [e.g. Liu et al. (2009)].
However, Figure 1 illustrates a possible important caveat to under-
standing these clustering results: cells with the most similar gene ex-
pression profiles may be more strongly temporally related than they
are functionally related. This is true at least of the dataset we
studied: the greatest source of variance in gene expression that we
observed (PC1 in our PCA results) was time-correlated. This implies
that, at least for the genes selected for this dataset, differential gene
expression is more strongly affected by developmental age than it is
by tissue-specific differences in expression arising from differenti-
ation processes.

Note however, as a caveat, that in correspondence, Murray et al.
(2006) pointed out that the genes selected for analysis in the EPIC
dataset may have been biased for temporal patterns, as opposed to
spatial patterns. Therefore, a larger study, involving a wider array of
genes, would be needed to determine whether or not the observed ef-
fect was due to the selection of genes.

If however the above observations are generally true of larger
sets of genes, across longer spans of the developmental timeline,
then many previous research conclusions about cell clustering and
cell similarity may need to be revisited in the light of how gene ex-
pression is globally coordinated across all cells at each stage of de-
velopment, e.g. by the oscillatory processes we observed in PC3,
PC6 and PC10, and in particular, by the highest-variance compo-
nent, the monotonic progress of the gene expression manifold
through gene expression space that we observed in PC1. The magni-
tude of the correlated variance observed in these principal compo-
nents cannot be discounted in the analysis of cell similarity based on
gene expression similarity alone.

4.10 Effects of gene selection and reporter mechanism

on results
Gene activity data were collected by Murray et al. using the follow-
ing criteria and methodology: ‘We identified a list of transcription
factors and other regulatory proteins for which prior microarray or
phenotype data suggested embryonic function and targeted these for
expression analysis. For these, we constructed stable C. elegans
strains expressing a histone-mCherry reporter under the control of
the gene’s upstream intergenic sequences. We analyzed expression
of reporter strains whose expression begins before the last round of
embryonic cleavage (the 350-cell stage) by crossing in a ubiquitous
histone-GFP marker, collecting three-dimensional confocal time-
lapse movies, and tracing the cell lineage as described previously’
(Murray et al., 2006).

In correspondence, Murray suggested the use of histone-
mCherry reporters may impact analysis, because these reporters
tend to persist and even increase in the descendants of expressing
cells, even if the endogenous gene is degraded (the reporter mRNA
has a ‘stable’ let-858 30 UTR, and the histone-mCherry itself has a
halflife that is likely to be longer than the length of embryogenesis).
It is unclear what the effect of gene selection and reporter mechan-
ism may be on our results, and further work is needed to determine
whether other gene sets and/or different reporter methods for
obtaining single-cell-resolution gene expression data exhibit the
same properties.

5 Conclusion

We have presented a comprehensive meta-analysis of the C.elegans
single-cell resolution EPIC gene expression dataset of Waterston
et al. Our analyses show multiple temporal patterns in the expres-
sion data, including oscillatory and/or linear correlations versus de-
velopmental age, hinting at a global regulatory mechanism or
developmental clock. We show that a simple linear weighting of
gene expression can be chosen to exhibit roughly sinusoidal oscilla-
tion of any desired phase or frequency, suggesting that sinusoidal
oscillations may be employed pervasively by developmental proc-
esses. We presented a number of novel techniques, and novel appli-
cations of existing statistical techniques to whole-organism
developmental data, yielding novel insight into regulatory genes and
regulatory control mechanisms. These techniques are broadly ap-
plicable to similar single-cell or whole-organism datasets. Our
results highlight the value of the EPIC technique for continuously
tracking gene expression over the developmental timeline, and the
value of the published EPIC dataset, and of meta-analysis of previ-
ously published results in general.
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