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This study aimed to identify crosstalk genes and explore their potential roles in type 2 diabetes (T2D) 
and Sjögren’s syndrome (SS) using bioinformatic analysis. We analyzed multiple publicly available gene 
expression datasets and screened 16 crosstalk genes. Consequently, genes that may play significant 
roles in disease processes were identified. Thereafter, we used gene set variation analysis to assess 
the differences in gene sets among various samples. LASSO regression analysis was performed to 
determine the optimal diagnostic genes, and predictive models for T2D and SS were constructed. The 
classification accuracy of these models was evaluated using receiver operating characteristic curves. 
Among 16 identified crosstalk genes, 11 showed significant differences in expression. These genes 
were significantly enriched in biological processes. The predictive model generated from ALDH6A1 
and IL11RA demonstrated good classification accuracy for T2D and SS samples. Immune infiltration 
analysis revealed significant differences in specific immune cell types between the disease and control 
groups, demonstrating a significant correlation with the identified hub genes, highlighting their 
potential involvement in T2D and SS pathophysiology. This study revealed the crucial role of specific 
immune cells in T2D and SS pathology, providing new insights into both conditions and the potential 
targets for future immunotherapy design.
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Type 2 Diabetes (T2D) and Sjögren’s Syndrome (SS) are two major chronic diseases that pose significant threats 
to human health worldwide. T2D is a chronic metabolic disorder characterized by high blood glucose levels, with 
common symptoms including dry mouth, excessive thirst, and frequent urination1. It is typically accompanied 
by severe complications such as cardiovascular disease and kidney damage, resulting in substantial economic 
burdens for patients and society2–4. SS is an autoimmune disease primarily characterized by impaired function 
of the salivary and lacrimal glands, primarily manifesting as discomforting symptoms such as dry mouth and 
dry eyes5. Epidemiological studies indicate that both diseases have high incidence and prevalence rates, severely 
affecting the quality of life of affected individuals.

Although there is symptom overlap between T2D and SS in clinical settings, the common pathophysiological 
mechanisms underlying both conditions have not yet been clearly elucidated. Recent studies suggest that 
inflammatory responses6 and metabolic imbalances7 play significant roles in the development of both diseases, 
indicating potential cross-talk and mutual influence in their pathogenesis. However, existing literature regarding 
the molecular associations between T2D and SS, as well as their potential signaling pathways, remains relatively 
limited; moreover, a systematic investigation of the molecular interaction networks and key regulatory genes 
between both conditions has not been conducted8–14.

In this context, an in-depth exploration of the molecular associations between T2D and SS holds significant 
scientific importance. First, it will aid in understanding the shared pathological basis of complex diseases; 
second, it will provide a theoretical foundation for discovering new diagnostic biomarkers and targeted 
therapeutic strategies. Therefore, in this study, we used various bioinformatics methods (including weighted 
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gene co-expression network analysis [WGCNA]15), based on multiple publicly available gene expression 
datasets, to (1) systematically identify and characterize the key interactive genes common to T2D and SS and 
(2) analyze their biological functions and related signaling pathways. By revealing the molecular interaction 
mechanisms between these two diseases, we aim to provide new theoretical foundations and molecular targets 
for personalized diagnosis, treatment, and precise interventions.

Results
Technology roadmap
The technology roadmap is present in Fig. S1.

WGCNA
WGCNA was performed on the genes in the GSE18732 dataset to evaluate the co-expression module of the 
T2D dataset. First, the scale-free fit index (Fig. 1a) under different soft thresholds was calculated and displayed 
to render the constructed network more consistent with the scale-free topology. The results showed that at a 
fitting index of 0.80, the minimum soft threshold was 3, which is the optimal soft threshold for constructing 
a scale-free network. A co-expression network was constructed based on the optimal soft threshold, and 

Fig. 1.  Weighted gene co-expression network analysis (WGCNA) for type 2 diabetes (T2D) dataset. 
(a) Determination of optimal soft-thresholding power. Left panel: Scale-free topology fit index (y-axis, left) 
and mean connectivity (y-axis, right) plotted against soft-thresholding power (x-axis). Red line indicates 
the selected soft threshold power (β = 3). Right panel: Mean network connectivity (y-axis) at different 
soft-thresholding powers (x-axis). (b) Gene cluster dendrogram and module assignment. Genes clustered 
by topological overlap (y-axis); colored horizontal bars below denote co-expression modules identified 
by dynamic tree cutting. (c) Gene clustering results. Top: Hierarchical clustering dendrogram based on 
topological overlap dissimilarity (y-axis). Bottom: Color-coded assignment of genes to modules (y-axis). 
(d) Module-trait associations. Correlation analysis between gene module eigengenes (rows) and clinical 
traits (columns: T2D status). Color scale represents Pearson correlation coefficient (r) values: Red = positive 
correlation, Purple = negative correlation. Correlation strength: |r|< 0.3 (weak/none), 0.3–0.5 (weak), 0.5–0.8 
(moderate), > 0.8 (strong).
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the genes were clustered and labeled with grouping information using a clustering tree (Fig. 1b). The results 
showed that using a mergeCutHeight threshold of 0.2, the genes were clustered into the following 16 modules: 
MEmidnightblue, MEpink, MEblack, MEpurple, MEgreenyellow, MEblue, MEyellow, MEmagenta, MEgreen, 
MEsalmon, MElightcyan, MEred, MEtan, MEturquoise, MEbrown, and MEcyan. Thereafter, the genes were 
clustered, and the relationships between the genes and merged modules were visualized (Fig.  1c). Next, the 
correlation between all genes in the 16 modules and the T2D and control samples was determined according 
to the expression patterns of module genes (Fig. 1d). Finally, the modules MEmidnightblue and MEtan with 
p < 0.05, |r|> 0.30 were selected.

To evaluate the co-expression modules of the SS dataset, WGCNA was performed on the genes in the SS 
dataset, GSE40611. First, the scale-free fitting index (Fig.  2a) at different soft thresholds was calculated and 
displayed to ensure that the constructed network was more consistent with the scale-free topology. The results 
showed that at a fitting index of 0.80, the minimum soft threshold that conformed to the construction of the 
scale-free network was 12. Furthermore, a co-expression network was constructed based on the optimal soft 
threshold, and the genes were clustered and labeled with grouping information using a clustering tree (Fig. 2b). 
The results showed that at a screening criterion of 0.2, the genes were clustered into the following 16 modules: 

Fig. 2.  Weighted gene co-expression network analysis (WGCNA) for Sjogren’s syndrome (SS) dataset. 
(a) Determination of optimal soft-thresholding power. Left panel: Scale-free topology fit index (y-axis, left) 
and mean connectivity (y-axis, right) plotted against soft-thresholding power (x-axis). Red line indicates 
the selected soft threshold power (β = 12). Right panel: Mean network connectivity (y-axis) at different 
soft-thresholding powers (x-axis). (b) Gene cluster dendrogram and module assignment. Genes clustered 
by topological overlap (y-axis); colored horizontal bars below denote co-expression modules identified 
by dynamic tree cutting. (c) Gene clustering results. Top: Hierarchical clustering dendrogram based on 
topological overlap dissimilarity (y-axis). Bottom: Color-coded assignment of genes to modules (y-axis). 
(d) Module-trait associations. Correlation analysis between gene module eigengenes (rows) and clinical 
traits (columns: SS status (Control or SS)). Color scale represents Pearson correlation coefficient (r) 
values: Red = positive correlation, Brown = negative correlation. Correlation strength: |r|< 0.3 (weak/none), 
0.3–0.5 (weak), 0.5–0.8 (moderate), > 0.8 (strong).
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MElightcyan, MElightgreen, MEgrey60, MEpink, MEtan, MEmidnightblue, MElightyellow, MEpurple, MEcyan, 
MEgreen, MEsalmon, MEblue, MEblack, MEbrown, MEroyalblue, and MEgrey. Thereafter, the genes were 
clustered and the relationships between the genes and merged modules visualized (Fig. 2c). Next, the correlation 
between all genes in the 16 modules and the SS and control samples was obtained according to the expression 
patterns of the module genes (Fig. 2d). Finally, the modules MElightyellow, MEpurple, MEblue, MEblack, and 
MEbrown with p < 0.05 and |r|> 0.30 were selected.

Crosstalk genes for T2D and SS
We performed a differential analysis of the T2D dataset GSE18732 and SS dataset GSE40611, and a volcano 
plot was constructed (Fig. 3a, b). A total of 885 differentially expressed genes (DEGs) between T2D and control 
samples in the GSE18732 dataset met the |logFC|> 0 and p < 0.05 threshold; under this threshold, 451 genes were 
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upregulated (logFC > 0 and p < 0.05) and 434 genes downregulated (logFC < 0 and p < 0.05). In the GSE40611 SS 
dataset, 3326 DEGs met the |logFC|> 0 and p < 0.05 threshold between the SS and control samples. Under this 
threshold, 1526 genes were upregulated (logFC > 0 and p < 0.05) and 1800 genes downregulated (logFC < 0 and 
p < 0.05).

The intersection of the DEGs and module genes of the two datasets was obtained and Venn diagram was 
constructed to obtain the crosstalk genes of the two datasets (Fig. 3c). In the present study, “crosstalk genes” are 
defined as the intersection of DEGs and WGCNA-derived module genes that are associated with both T2D and 
SS; these are genes that are differentially expressed and located within the key co-expression modules in both 
diseases. The following 16 crosstalk genes were obtained: AK1, ALDH6A1, CHCHD10, CKB, EFEMP2, IL11RA, 
IL15, LARP6, LYSMD2, MSRB1, MYADM, NR3C1, SH3RF2, TMEM9, TXLNB, and UBE2Q2. In addition, heat 
maps were designed to show crosstalk gene expression in the GSE18732 and GSE40611 datasets (Fig. 3d, e).

Furthermore, we used the Mann–Whitney U test to screen crosstalk genes and construct group comparison 
plots (Fig. 3f, g), which showed that the following 11 genes were significantly different in the GSE18732 and 
GSE40611 datasets: AK1, ALDH6A1, CHCHD10, CKB, IL11RA, IL15, LARP6, LYSMD2, SH3RF2, TMEM9, and 
UBE2Q2.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis
The biological processes (BPs), cellular components (CCs), molecular functions (MFs), and biological pathways 
(KEGG) of the 11 crosstalk genes were further explored using gene ontology GO and KEGG pathway enrichment 
analyses, and the specific results are shown in Table S2. The 11 crosstalk genes were mainly enriched in BPs 
such as ATP metabolic process, regulation of protein catabolic processes, cytokine-mediated signaling pathway, 
and other BPs; CCs such as multivesicular body membranes, integral components of mitochondrial inner 
membranes, and intrinsic components of mitochondrial inner membranes; MFs such as ubiquitin-like protein 
transferase activity, ubiquitin-like protein transferase activity, sequence-specific mRNA binding, and other MFs. 
In addition, it was enriched in biological pathways (KEGG) such as the JAK-STAT signaling pathway, cytokine-
cytokine receptor interaction, thiamine metabolism, and other biological pathways. The results of the analyses 
were visualized using a bubble diagram (Fig. 4a).

A loop network diagram of BP, MF, CC, and biological pathway (KEGG) was constructed based on the results 
of the GO and KEGG pathway enrichment analyses (Fig. 4b–e). The lines indicate the respective molecules and 
annotations of the respective entries; a greater node size indicates a higher number of molecules encompassed 
by the entries.

Gene set enrichment analysis (GSEA)
GSEA was used to examine the expression and BPs of all genes in the T2D dataset GSE18732 to determine the 
effect of their expression levels on T2D. Associations between the affected CCs and their MFs (Fig. S2a) are 
shown in Table S3. The results showed that all genes in the GSE18732 dataset were significantly enriched in T2D 
(Fig. S2b), the insulin pathway (Fig. S2c), the MAPK signaling pathway (Fig. S2d), the IL6 pathway (Fig. S2e), 
the TGF beta signaling pathway (Fig. S2f), T2D (Fig. S2g), and other related biological functions and signaling 
pathways.

GSEA was used to analyze the expression and BPs of all genes in the GSE40611 dataset to determine the effect 
of their expression levels on SS. The relationships between the affected CCs and their MFs (Fig. S3a) are shown 
in Table S4. The results showed that all genes in the GSE40611 dataset were significantly enriched in the negative 
regulation of the PI3K AKT network (Fig. S3b), the IL18 signaling pathway (Fig. S3c), immune system diseases 
(Fig. S3d), Notch signaling (Fig. S3e), the inflammatory response pathway (Fig. S3f), the JAK STAT signaling 
pathway (Fig. S3g), and other related biological functions and signaling pathways.

Gene set variation analysis (GSVA)
To investigate the disparity in the h.all.v7.4. symbols.gmt gene set between the T2D and control samples within 
the T2D dataset GSE18732, GSVA was performed for all genes in the dataset. Detailed information is provided 
in Table S5. The five most significant pathways (p < 0.05) were screened and visualized using a heat map and bar 

Fig. 3.  Differential gene expression and crosstalk gene analysis. (a) Volcano plot of T2D versus Control 
differential expression. Type 2 diabetes (T2D) dataset showing differentially expressed genes (DEGs). X-axis: 
Log ~ 2 ~ -fold change (log ~ 2 ~ FC); Y-axis: − log ~ 10 ~ (adjusted P value). Colored dots: Red = up-regulated 
DEGs (log ~ 2 ~ FC > 0, adj. P < 0.05); Blue = down-regulated DEGs (log ~ 2 ~ FC < 0, adj. P < 0.05); Gray = non-
significant genes. (b) Volcano plot of SS versus Control differential expression. Sjögren’s syndrome (SS) dataset 
DEGs. Axes and color scheme identical to panel a. (c) Venn diagram of DEG-module overlaps. Intersections 
between DEGs and WGCNA module genes. Sets defined: Mistyrose circle = T2D DEGs; Lavender circle = SS 
DEGs; Silver circle = T2D module genes; Pink circle = SS module genes. Overlapping regions indicate 
crosstalk genes shared between datasets and analysis methods. (d) and (e) Crosstalk gene expression 
heatmaps. Normalized expression z-scores across samples. Columns: Samples (GSE18732 in d, GSE40611 
in (e); Rows: Crosstalk genes; Color scale: Red = high expression, Blue = low expression (scale bar shown). 
Sample groups labeled: Control (c) versus Disease (T2D/SS). (f) and (g) Crosstalk gene expression group 
comparisons. Violin plots showing expression distribution between groups. Y-axis: Normalized expression 
value; X-axis: Sample groups (Control vs. Disease). Central line: Median; Box: Interquartile range; Whiskers: 
1.5 × IQR. Dataset source: GSE18732 (f), GSE40611 (g).
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graph (Fig. S4a, b). The five pathways included oxidative phosphorylation, KRAS signaling dn, the Hedgehog 
signaling pathway, Wnt/beta-catenin signaling, and G2M checkpoint.

To investigate the disparity between h.all.v7.4. symbols.gmt gene set in the SS and control samples within 
the SS dataset GSE40611, GSVA was performed for all genes in the dataset. Detailed information is provided in 
Table S6. The following five most significant pathways (p < 0.05) were screened and visualized using a heat map 
and bar graph (Fig. S5a, b): interferon alpha response, interferon gamma response, allograft rejection, IL-6/JAK/
STAT3 signaling, and KRAS signaling up.

Identification of diagnostic genes
To identify the best diagnostic genes among the crosstalk genes of the two diseases, Least Absolute Shrinkage 
and Selection Operator (LASSO) regression analysis was performed, and LASSO regression model and variable 
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trajectory maps were constructed for visualization. The results showed four best diagnostic genes (Fig. 5a, b) in 
the T2D dataset GSE18732 (ALDH6A1, IL11RA, IL15 and LARP6) and five best diagnostic genes (Fig. 5c, d) in 
the SS dataset (AK1, ALDH6A1, IL11RA, LYSMD2, and SH3RF2). The best diagnostic genes of the two datasets 
were intersected and a Venn diagram (Fig. 5e) was constructed, and the following two diagnostic genes were 
obtained: ALDH6A1 and IL11RA. The group comparison diagram of the GSE18732 (Fig. 5f) and GSE40611 
(Fig.  5g) datasets showed that ALDH6A1 and IL11RA expressions were significantly different between the 
disease and control groups in both datasets.

Design of the prediction model
Based on two diagnostic genes (ALDH6A1 and IL11RA) and univariate and multivariate binary logistic 
regression, we constructed predictive models for the T2D and SS datasets. To further validate the predictive 
model in the T2D dataset, a nomogram demonstrating the relationship between these two genes was constructed 
(Fig. 6a). The results showed that ALDH6A1 expression had a significantly higher utility than IL11RA expression 
in the T2D prediction model. The clinical utility of the T2D prediction model was evaluated using decision curve 
analysis (DCA) (Fig. 6b). The results demonstrated that, within a specific range, the model’s line was stable at 
a higher level than that of all positive and negative values. Moreover, the model had a greater net benefit and 
superior effect. In addition, the R package pROC was used to construct the receiver operating characteristic 
(ROC) curve using the RiskScore in the T2D dataset. The ROC curve (Fig. 6c) showed that the RiskScore of 
the T2D prediction model in the T2D dataset had a certain accuracy (area under the curve [AUC] > 0.7) in the 
classification of T2D and control samples. The RiskScore was calculated using the following formula:

	 RiskScore = 23.775 + ALDH6A1 ∗ (−1.066) + IL11RA ∗ (−1.405)

Using the RiskScore formula, we calculated the RiskScore of the T2D dataset GSE29221 and plotted a diagnostic 
ROC curve (Fig. 6d). Furthermore, the RiskScore of the GSE29221 T2D prediction model had a level of accuracy 
(AUC > 0.7) in classifying the T2D and control samples.

To further validate the predictive value of GSE40611 in the SS dataset, a nomogram showing the relationship 
between the two genes was constructed (Fig.  6e). The results showed that IL11RA expression level was 
significantly higher than ALDH6A1 expression level in the SS prediction model. DCA was used to evaluate and 
present the clinical utility of the prediction model for SS (Fig. 6f). The outcomes indicated that, within a specific 
range, the model’s line was consistently higher than that of all positive and all negative, with a greater net benefit 
and superior effect. In addition, the R package pROC was used to construct the ROC curve using RiskScore 
in the SS dataset. The ROC curve showed (Fig. 6g) that the RiskScore of the SS prediction model had a level 
of accuracy (AUC > 0.7) in the classification of SS and control samples. The RiskScore was calculated using the 
following formula:

	 RiskScore = 25.281 + ALDH6A1 ∗ (−2.673) + IL11RA ∗ (−2.590)

Based on the RiskScore formula for the SS prediction model, we calculated the RiskScore for the SS dataset 
GSE154926 and plotted a diagnostic ROC curve (Fig.  6h). The results showed that the RiskScore of the 
GSE154926 SS diagnostic model was accurate in classifying SS and control samples (AUC > 0.7).

Construction of the protein–protein interaction (PPI) network and screening of hub genes
We used the diagnostic genes ALDH6A1 and IL11RA as hub genes and constructed an interaction network 
between the two hub genes and functionally similar genes using the GeneMANIA website (Fig. S6a). The lines 
with different colors represent co-expression and share information such as protein domains.

Thereafter, we then obtained miRNAs associated with hub genes using the ENCORI database and 
Transcription factors (TFs) combined with hub genes through the ChIPBase database. The miRNA-mRNA-TF 
regulatory network was constructed and visualized using Cytoscape software (Fig. S6b). In the network, there 
were two hub genes, 12 TFs, and nine miRNAs.

Immune infiltration analysis between disease and control samples
Using the gene expression matrix of T2D samples from the GSE29221 dataset, we quantified the immune 
infiltration abundance of 28 immune cell subtypes in both T2D and control groups through single-sample GSEA 

Fig. 4.  Functional enrichment analysis of crosstalk genes based on Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG). (a) Enrichment bubble plot. Significantly enriched GO terms 
(Biological Process [BP], Cellular Component [CC], Molecular Function [MF]) and KEGG pathways. X-axis: 
Gene ratio (Gene counts/Background genes); Y-axis: Enriched term name; Bubble size: Number of 
associated genes; Bubble color: − log ~ 10 ~ (adjusted P value) gradient (red = low P value [high significance], 
black = high P value [low significance]). Filter criteria: P < 0.05, False Discovery Rate (FDR) < 0.25. (b) 
BP enrichment network. Circular visualization of Biological Process (BP) terms and associated crosstalk 
genes. Red nodes: GO-BP terms; Black nodes: Genes; Gray lines: Gene-term associations. (c) CC enrichment 
network. Cellular Component (CC) term-gene interactions. Node and line schemes identical to panel b. 
(d) MF enrichment network. Molecular Function (MF) term-gene relationships. Node and line schemes 
identical to panel b. (e) KEGG pathway network. Kyoto Encyclopedia of Genes and Genomes pathway-gene 
interactions. Red nodes: KEGG pathways; Black nodes: Genes; Gray lines: Gene-pathway associations.
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(ssGSEA). First, the differences in the expression of infiltrating immune cells among the different groups were 
presented through a group comparison plot. The group comparison diagram (Fig. 7a) showed three immune 
cells with statistical significance (p < 0.05): macrophages, natural killer T cells, and neutrophils.

A correlation heat map was used to show the correlation results of the infiltration levels of the three immune 
cells in the T2D dataset (Fig. 7b). The results showed a positive correlation between the infiltration levels of the 
three immune cells.

Finally, the correlation between hub genes and immune cell infiltration levels was demonstrated using a 
correlation bubble plot (Fig. 7c). IL11RA showed the strongest positive correlation with macrophages (r = 0.390).

Fig. 5.  Diagnostic biomarker screening via LASSO (Least Absolute Shrinkage and Selection Operator) 
regression. (a) and (b) Diagnostic model (a) and variable trajectory plots (b) of the LASSO regression 
model for the T2D dataset GSE18732. (c) and (d) Diagnostic model (c) and variable trajectory plots (d) 
of LASSO regression model for the SS dataset GSE40611. (e) Diagnostic gene intersection. Venn diagram: 
Shared biomarkers between T2D and SS. Silver circle: T2D diagnostic genes (GSE18732, n = 4). Pink 
circle: SS diagnostic genes (GSE40611, n = 5). Overlap (darkgray): Crosstalk diagnostic genes (ALDH6A1, 
IL11RA). (f) and (g) Expression validation. (f) GSE18732 (T2D): Boxplot: ALDH6A1/IL11RA expression, 
Y-axis: Normalized expression value, X-axis: Sample groups [Control vs. T2D], Boxplot elements: Center 
line = median, box = interquartile range (IQR), whiskers = 1.5 × IQR, Black stars: P < 0.01 (vs. Control). 
(g) GSE40611 (SS): Configuration identical to f with SS cohort. Abbreviations: T2D = Type 2 Diabetes; 
SS = Sjögren’s syndrome; IQR = Interquartile range.
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The expression matrix of SS samples from the SS dataset GSE154926 was used to compute the immune 
infiltration levels of 28 immune cells in SS and control samples using the ssGSEA algorithm. Initially, the 
expression differences of the infiltration levels of immune cells in distinct groups were presented using a group 
comparison plot. The group comparison diagram (Fig.  8a) indicated that the following immune cell types 
showed statistical significance (p < 0.05): central memory CD8 + T cells, effector memory CD4 + T cells, and 
immature dendritic cells.

The correlation results of the three immune cell infiltration levels in the immune infiltration analysis of the SS 
dataset GSE154926 were presented in a correlation heat map (Fig. 8b). The results showed a positive correlation 
between the three immune cell infiltration levels.

Finally, the correlation between hub genes and immune cell infiltration levels was determined using a 
correlation bubble plot (Fig.  8c). The results of the correlation bubble plot showed that ALDH6A1 had the 
strongest positive correlation with immature dendritic cells (r = 0.438).

Discussion
In recent years, T2D and SS have attracted considerable attention owing to their clinical significance. T2D, 
a metabolic disorder, presently affects approximately 463 million people globally and the figure is expected 
to reach 700 million by 204516. Its complications, such as cardiovascular disease and kidney failure2,3, place a 
significant economic burden on global healthcare. Meanwhile, SS primarily impacts women, affecting 0.54.8% 
of the population. SS causes lacrimal and salivary gland dysfunctions, resulting in chronic dryness and fatigue17. 
Recent research has increasingly focused on the interaction between T2D and SS; however, substantial gaps 
persist in our understanding of the molecular mechanisms between these two chronic diseases.

Therefore, the present study used advanced multivariate statistical techniques, including GSVA and LASSO 
regression analyses, to conduct a comprehensive bioinformatics analysis of samples from the GSE18732 and 
GSE40611 datasets, which are related to T2D and SS, respectively. This large-scale systematic exploration 
enhanced the reliability and generalizability of the study findings. By performing an intersection analysis of the 

Fig. 6.  Construction and validation of diagnostic models for Type 2 Diabetes (T2D) and Sjögren’s syndrome 
(SS). (a) T2D diagnostic nomogram (GSE18732). Predicts T2D risk based on two biomarkers. Points scale (top 
axis): Score for each gene expression level; Total points (middle axis): Summed scores; Risk probability (bottom 
axis): Predicted T2D probability. Gray vertical lines: Projection path for sample calculation. (b) Decision 
curve analysis (DCA) for T2D model. X-axis: Threshold probability; Y-axis: Net benefit; Darkslateblue 
curve: Diagnostic model; Mistyrose line: “Treat all” strategy; Darksalmon line: “Treat none” strategy. (c) and 
(d) ROC curves for T2D validation: (c) T2D dataset (GSE18732) evaluation: X-axis: 1—Specificity; Y-axis: 
Sensitivity; Blue curve: Diagnostic model (AUC = 0.705, 95% CI 0.597–0.813), (d) Independent T2D cohort 
(GSE29221) validation: Components identical to (c) (AUC = 0.764, 95% CI 0.562–0.966), (e) SS diagnostic 
nomogram (GSE40611). Configuration identical to a with SS risk prediction. Pink vertical lines: Sample 
calculation path. (f) DCA for SS model. Component scheme identical to (b). (g) and (h) ROC curves for 
SS validation: (g) SS dataset (GSE40611) evaluation: Red curve: Diagnostic model (AUC = 0.807.X, 95% CI 
0.657–0.958), (h) Independent SS cohort (GSE154926) validation: Components identical to g (AUC = 0.738, 
95% CI 0.540–0.936).
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diagnostic genes for both diseases, we identified common candidate biomarkers that offer a novel perspective 
for cross-disease research.

The primary results of this study indicate that ALDH6A1 and IL11RA are common and important diagnostic 
genes for T2D and SS. This finding uncovers potential molecular connections between the two disorders and 
provides a basis for selecting cross-feature biomarkers. IL11RA, as the primary receptor for IL11, forms a signaling 
complex with gp130 that activates the JAK-STAT pathway, thereby affecting endocrine and immune responses. 
In T2D, IL11 signaling is associated with inflammation in metabolic syndrome; in SS, it affects immune cell 
functionality and tissue inflammation. Furthermore, IL11 modulates energy metabolism in adipocytes and 
myocytes, thereby affecting triglyceride metabolism, blood glucose levels, and insulin sensitivity. ALDH6A1, 
an aldehyde dehydrogenase, plays a critical role in amino acid metabolism and oxidative stress regulation. In 
addition, it helps remove harmful aldehydes, reducing oxidative stress-related cellular damage18,19. In both 
T2D and SS, oxidative stress correlates with cellular apoptosis and tissue damage. ALDH6A1 regulates immune 
responses in SS, and its dysfunction may exacerbate autoimmune inflammation. Notably, when constructing 
predictive models, the expression level of ALDH6A1 was significantly higher than that of IL11RA, indicating that 

Fig. 7.  Immune microenvironment analysis via single-sample Gene Set Enrichment Analysis (ssGSEA) 
in Type 2 Diabetes (T2D). (a) Immune cell infiltration comparison. Differential abundance of 28 immune 
cell types between T2D (n = 12) and Control (n = 12) samples in GSE29221. Y-axis: ssGSEA enrichment 
score; X-axis: Immune cell types; Boxplot colors: Crimson = T2D group, Darkslategray = Control 
group; Statistical indicators: *** = P < 0.001, ** = P < 0.01, * = P < 0.05, ns = P ≥ 0.05. (b) Immune cell correlation 
network. Pairwise Spearman correlations between immune cells. Rows/Columns: Immune cell types; Color 
scale: Crimson = Positive correlation (r > 0), Darkslategray = Negative correlation (r < 0); Color intensity: 
Correlation strength (|r|). (c) Hub gene-immune cell correlations. Bubble plot showing relationships between 
immune cells (X-axis) and hub genes (Y-axis). Bubble size: |Correlation coefficient (r)|; Bubble color: 
Crimson = Positive correlation, Darkslategray = Negative correlation.
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ALDH6A1 plays a more vital role in T2D pathogenesis. In addition, IL11RA expression was strongly correlated 
with macrophage infiltration, providing new insights into the pathology of SS. The effectiveness of these two 
genes in classifying T2D and SS was validated using a constructed predictive model and risk score assessment. 
The AUC value of the ROC curve exceeded 0.7, suggesting that the model had good classification performance. 
The innovation of this study lies in its comprehensive analysis and data mining, which uncovered the molecular 
mechanisms and clinical relevance of T2D and SS in multiple dimensions. These results enrich the biological 
context of these two conditions and provide guidance for future studies. Future studies should validate the 
functions of ALDH6A1 and IL11RA using animal experiments or clinical samples, thereby laying the foundation 
for the clinical application of these biomarkers.

In the present study, we conducted a comprehensive analysis of DEGs associated with T2D and SS. We 
identified 885 DEGs in the T2D dataset, including 451 upregulated and 434 downregulated genes, whereas the 
SS dataset revealed 3326 DEGs, including 1526 upregulated and 1800 downregulated genes. These significant 
differences in gene expression highlight the complex molecular underpinnings of both conditions and lay a 
crucial foundation for exploring their pathological mechanisms. Identifying DEGs is of the utmost importance 

Fig. 8.  Immune microenvironment analysis via single-sample Gene Set Enrichment Analysis (ssGSEA) in 
Sjögren’s syndrome (SS). (a) Immune cell abundance comparison. Differential infiltration of 24 immune 
cell types between SS (n = 42) and Control (n = 7) samples in GSE154926. Y-axis: ssGSEA enrichment 
score; X-axis: Immune cell types; Boxplot colors: Peru = SS group, Mediumturquoise = Control group; Statistical 
indicators: *** = P< 0.001, ** = P < 0.01, * = P < 0.05, ns = P ≥ 0.05. (b) Immune cell correlation network. Pairwise 
Spearman correlations between infiltrating immune cells. Rows/Columns: Immune cell types; Color gradient: 
Peru = Positive correlation (r > 0), Mediumturquoise = Negative correlation (r < 0); Color intensity: Absolute 
correlation strength (|r|). (c) Hub gene-immune cell relationships. Bubble plot showing interactions between 
immune cells (X-axis) and hub genes (Y-axis). Bubble size: |Spearman correlation coefficient (r)|; Bubble color: 
Peru = Positive correlation, Mediumturquoise = Negative correlation.
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for understanding the changes in T2D- and SS-related biological pathways. Notably, many genes upregulated in 
T2D are associated with insulin signaling and metabolic pathways, such as the PI3K-AKT signaling pathway, 
which plays an integral role in glucose metabolism and insulin response. Conversely, downregulated genes affect 
cellular stress response mechanisms, thereby worsening insulin resistance. In SS, the upregulated genes likely 
reflect enhanced immune responses and inflammation. This study corroborates previous findings that genes 
upregulated in insulin resistance and inflammation are often related20, supporting the reliability of our results.

Furthermore, our pathway enrichment analysis of the DEGs revealed critical signaling pathways such as 
the NF-κB pathway, which is essential for immune regulation. The presence of batch effects can introduce 
biases in differential expression characteristics, which complicate biological interpretation. Therefore, we 
used normalization techniques and principal component analysis to ensure that the observed gene expression 
differences accurately reflected biological signals.

In our study, we identified 16 crosstalk genes, 11 of which showed significant differences, including AK1, 
ALDH6A1, and CHCHD10. These genes share common pathogenic pathways under T2D and SS, indicating 
their potential in dual therapeutic strategies. The JAK-STAT pathway has previously been associated with 
inflammation and immune responses under autoimmune conditions21; this study provides novel insights into 
the interplay between these pathways.

Notably, our findings represent the first recognition of the exact roles of crosstalk genes within these processes. 
Validation using multicenter clinical samples is recommended to assess their diagnostic efficacy across diverse 
patient populations, thereby underscoring the significance of these results in enhancing our understanding of 
the interactions between T2D and SS and presenting new opportunities for therapeutic interventions.

This study introduced a predictive model based on ALDH6A1 and IL11RA. This model demonstrated strong 
classification accuracy in distinguishing T2D from SS, with an AUC > 0.7. However, ethnicity, sex, and age 
variations must be considered to ensure the generalizability of the model. This requires external validation and 
adjustments for subgroup-specific differences in gene expression.

In addition, the present study found significant changes in immune cells in T2D, including macrophages, 
natural killer T cells, and neutrophils. In addition, notable shifts in central memory CD8 + T cells were observed 
in the SS group. These findings indicate the critical role of these cells in disease development and provide 
insights into immunotherapy. Macrophages play a significant role in the onset and development of metabolic 
diseases, particularly in T2D. T2D is characterized by insulin resistance and chronic low-grade inflammation, 
which are closely related to the functional and phenotypic changes in macrophages. Studies have revealed that 
macrophages polarize to the M1 phenotype in the T2D environment, promoting inflammatory responses that 
lead to tissue damage and insulin resistance.

IL-11 is a pro-inflammatory cytokine that may play a critical role in T2D progression by binding to the 
IL-11RA. Its overexpression can lead to sustained activation of macrophages, exacerbating inflammation and 
affecting pancreatic β-cell function, resulting in inadequate insulin secretion. Studies have found that IL-11RA 
expression is significantly upregulated in macrophages from patients with T2D and animal models, indicating its 
important regulatory role in the inflammatory process22,23. Therefore, adjusting macrophage polarization may 
offer a novel treatment for T2D. Moreover, the activation of natural killer T cells and modulation of neutrophils 
can target insulin resistance and provide therapeutic opportunities.

This study provides support for the use of immune infiltration data in precision medicine. The study suggests 
the need for large-scale sequencing and single-cell transcriptomic analyses to create specific immune cell profiles 
for T2D and SS. In addition, it proposes the design of targeted immunotherapy strategies and establishment of 
dynamic monitoring systems for immune function assessment to aid personalized clinical decisions.

Overall, although the predictive model based on ALDH6A1 and IL11RA provides promising avenues for 
early screening of T2D and SS, further research is essential for broader applicability and optimization, along 
with careful consideration of ethical issues, to protect patient rights and promote sustainable model use. With 
ongoing refinement, this model holds substantial potential for enhancing clinical diagnostic efficiency and 
patient management, thereby advancing immunotherapy and therapeutic research on these diseases through 
improved understanding of immune cell changes.

Although this study reveals important molecular mechanisms between T2D and SS through systematic 
bioinformatics analysis, it is essential to acknowledge several limitations. First, the limited sample size may 
have affected the statistical power and reliability of the results, thereby restricting the generalizability of the 
study’s conclusions. Second, this research is based on publicly available databases and multi-cohort data, 
primarily focusing on molecular-level associations and mechanism exploration, without including experimental 
validation. Owing to practical constraints such as research timeline and available resources, relevant functional 
validation through animal experiments or clinical samples could not be completed in this study. This limitation 
partially affects the biological significance of the findings and the direct confirmation of their clinical application 
value. We aim to conduct in-depth functional and mechanistic validations targeting key genes and molecular 
pathways by integrating animal experiments and clinical samples in subsequent research to further enhance 
the scientific rigor and clinical translational potential of our study. Finally, because the data were sourced from 
specific public databases, there may be inherent biases; subsequent research should broaden the sample scope 
and integrate multiple datasets to improve the reliability and generalizability of the analysis results.

Through multilevel bioinformatics analysis, this study identified 16 genes involved in crosstalk (a phenomenon 
in which genes interact and affect their functions), including AK1, ALDH6A1, and CHCHD10. Among these 
16 genes, 11 showed significant differences in expression. Crosstalk genes are abundant in various biological 
processes and pathways, such as ATP metabolic processes and the JAK-STAT signaling pathway. A predictive 
model based on ALDH6A1 and IL11RA showed good classification accuracy for differentiating T2D from SS, 
with an AUC value > 0.7. Our research emphasizes the role of specific immune cells in disease progression and 
offers a new understanding of the pathophysiology of these two conditions. These findings not only improve the 
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comprehension of T2D and SS but also provide potential targets for the design of future immunotherapy. IL-11 
interacts with macrophages through IL-11RA, thereby affecting inflammatory response. The elevated expression 
of IL-11RA in T2D and SS may exacerbate inflammation. Thus, targeting IL-11RA represents a promising 
therapeutic strategy, potentially achieved through monoclonal antibodies that block IL-11 from binding to IL-
11RA, thereby reducing inflammation and improving insulin sensitivity. The effects of IL-11 involve the JAK-
STAT signaling pathway. JAK inhibitors, such as tofacitinib, have shown efficacy in various autoimmune diseases, 
suggesting their potential utility in T2D and SS. The PI3K-AKT pathway closely relates to insulin signaling, and 
IL-11 may affect insulin resistance through this pathway. Therefore, targeting this pathway with PI3K inhibitors 
may improve the pathophysiology of T2D. Dysfunction of ALDH6A1 in immature dendritic cells is related to the 
onset of SS. Enhancing ALDH6A1 expression or activity can promote the maturation and immune regulatory 
functions of these dendritic cells, thereby improving autoimmune responses. Gene editing technologies, such 
as CRISPR/Cas9, can be used to upregulate ALDH6A1 expression, providing a novel therapeutic target for SS.

Future studies should validate these results by using larger and more diverse samples to increase the external 
validity of the research. In addition, exploring the clinical application of these findings, such as leveraging 
immune infiltration information to promote personalized treatment, is an important direction for further 
research. Through such explorations, we anticipate achieving significant advancements in the management of 
these diseases and improving the quality of life of patients.

Methods
Data download
We used the R package GEOquery24 (Version 2.70.0) to download the T2D (GSE18732 and GSE29221) and 
SS datasets (GSE40611 and GSE154926) from the gene expression omnibus (GEO) database25 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​
n​c​b​i​.​n​l​m​.​n​i​h​.​g​o​v​/​g​e​o​/​​​​​)​. The GSE18732, GSE29221, GSE40611, and GSE154926 datasets contained data from 
Homo sapiens. Specifically, the GSE18732 dataset was on skeletal muscle, microarray platform GPL9486; the 
GSE29221 dataset was on skeletal muscle, microarray platform GPL6947. The tissue in the GSE40611 dataset 
was the parotid gland and the chip platform was GPL570. The tissue in the GSE154926 dataset was a minor 
salivary gland and the chip platform was GPL18573. The GSE18732 dataset contained 45 T2D and 47 control 
samples; the GSE29221 dataset contained 12 T2D and 12 control samples. The GSE40611 dataset contained 17 
SS and 18 control samples; the GSE154926 dataset contained 42 SS and seven control samples. These samples 
were all included in the analysis, and the specific details of the datasets are presented in Table S1.

Differential analysis
Based on the sample grouping of the T2D dataset, the samples were categorized into T2D and control samples. 
The R package limma26 (Version 3.54.2) was used to analyze the differences in genes between the T2D and control 
samples. We set the thresholds for DEGs to |logFC|> 0 and p < 0.05. Genes with logFC > 0 and p < 0.05 were 
considered upregulated DEGs; meanwhile, those with logFC < 0 and p < 0.05 were considered downregulated 
DEGs. The results of the differential analysis were displayed by generating a volcano plot using the R package 
ggplot2 (Version 3.4.4).

Furthermore, limma was used for the differential analysis of genes in the SS and control specimens. The 
threshold of DEGs was consistent with that of the T2D dataset.

WGCNA
WGCNA15 is a systems biology method for describing gene association patterns between different samples and 
identifying gene sets with highly synergistic changes. In addition, the method identifies candidate biomarker 
genes or therapeutic targets by evaluating intramodular connectivity and module-trait correlations. WGCNA 
was performed using the WGCNA package of R software27 (Version 1.72–5). First, the correlation coefficient 
between any two genes was determined, and the weighted value of the correlation coefficient was used to 
ensure adherence of the connections between the genes in the network to the scale-free network. Subsequently, 
hierarchical clustering trees were established based on the correlation coefficients between genes. Distinct 
branches of the cluster tree signified different gene modules, with diverse colors denoting different modules; 
thereafter, the module significance was computed. The scale-free fitting index was 0.80; the soft threshold 
values were the best soft threshold values; the combined shear height of the modules was set to 0.2; and the 
minimum distance was set to 0.2. The minimum module gene number for the WGCNA in GSE18732 was set at 
60; the minimum number of module genes for WGCNA in the GSE40611 dataset was set to 100. Afterward, the 
correlation between the two groups of disease and control samples and the different modules were measured, 
and the genes in each module were recorded. Finally, all modules with p < 0.05 and |r|> 0.30 were retained, and 
the genes in the modules were regarded as module genes.

GO and KEGG pathway enrichment analyses
GO analysis28 is commonly used for large-scale functional enrichment studies, including BPs, CCs, and MFs. 
Meanwhile, the KEGG29 is a widely used database that stores information on genomes, biological pathways, 
diseases, and drugs. We used the R package clusterProfiler30 (Version 4.4.4) for GO and genetic pathways 
(KEGG) enrichment analyses; item selection criteria for the value p < 0.05.

GSEA
GSEA31 is used to assess predefined gene sets and analyze trends in gene distribution related to phenotypic 
correlations. This approach facilitates the identification of the contribution of specific gene sets to the observed 
phenotypes. In the present study, the genes in the GSE18732 dataset were first ranked according to their logFC 
values; thereafter, the genes were evaluated using GSEA via the R package clusterProfiler30 (Version 4.4.4). The 
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parameters employed in the GSEA were as follows: seed number, 2025; number of calculations, 1000, minimum 
number of genes in each gene set, 10; and maximum number of genes in each gene set, 500. Through Molecular 
Signatures Database (MSigDB)32. For c2 gene set cp. All. V2022.1. Hs. Symbols. The GMT [all Canonical 
Pathways] (3050) was used for GSEA and the screening criteria was p < 0.05.

GSVA
GSVA33 is a nonparametric and unsupervised analysis approach. It is primarily used to assess the enrichment 
outcomes of gene sets in a microarray nuclear transcriptome by transforming the expression matrix of gene 
sets of different samples into an expression matrix of gene sets between samples. This allows the evaluation of 
the enrichment of distinct pathways in various samples. The h.all.v7.4.symbols.gmt gene set was obtained from 
the MSigDB32, and GSVA was performed on all genes in the dataset to compute the functional enrichment 
disparities between the two sample groups. The selection criterion for GSVA was p < 0.05. Five pathways with the 
most significant p-values were selected for presentation.

LASSO regression analysis
LASSO regression analysis is based on linear regression analysis with the incorporation of a penalty term 
(lambda × absolute value of the slope). This curtails overfitting of the model and enhances its generalization 
capability. In the present study, the outcomes of the LASSO regression analysis were presented visually using 
diagnostic model graphs and variable trajectory diagrams.

Construction of the prediction model
A generalized linear model was used for univariate and multivariate binary logistic regression analyses. The 
screening criterion of univariate binary logistic regression was p < 0.05, and genes that met the screening 
criterion were included in multivariate binary logistic regression for model construction. Thereafter, the R 
package rms (version 6.4–0) was used to construct a nomogram based on the results of multivariate logistic 
regression analysis, and a DCA plot was used to evaluate the diagnostic model.

The PPI network
The GeneMANIA database34 (https://genemania.org/) is used to generate hypotheses regarding gene function, 
analyze gene lists, and prioritize genes for functional analyses. Given a list of query genes, GeneMANIA identifies 
functionally similar genes by using a large set of genomic and proteomic data. In this mode, each functional 
genomic dataset is weighted according to the predicted query value. Besides, GeneMANIA has been used to 
predict gene function. Given a query gene, GeneMANIA identifies genes that are likely to share functions based 
on how the gene interacts with it. We predicted functionally similar hub genes using the GeneMANIA online 
website to construct a PPI network.

Construction of a regulatory network
miRNAs play a significant role in the modulation of biological development and evolution. Moreover, they 
regulate a variety of target genes, and the same target gene is regulated by multiple miRNAs. To analyze the 
relationship between hub genes and miRNAs, hub genes-related miRNAs were obtained from the ENCORI 
database35.

TFs control gene expression by interacting with hub genes at the posttranscriptional stage. We retrieved TFs 
from the ChIPBase database36 (http://rna.sysu.edu.cn/chipbase/) to analyze their regulatory effect on hub genes.

Immune infiltration analysis
ssGSEA37 measures the relative abundance of each immune cell infiltrate. Initially, each infiltrating immune cell 
type was marked, including activated CD8 + T cells, activated dendritic cells, gamma-delta T cells, natural killer 
cells, and various human immune cell subtypes such as regulatory T cells. Subsequently, the enrichment scores 
computed using ssGSEA were used to determine the relative abundance of immune cell infiltration in each 
sample, thereby obtaining the immune cell infiltration matrix. Afterward, R package ggplot2 (Version 3.4.4) 
was used to construct group comparison maps to illustrate the expression disparities in immune cells between 
the two groups. Subsequently, immune cells with notable differences between the two groups were selected for 
subsequent analysis, and the correlation between immune cells was calculated using the Spearman algorithm. 
The correlation between hub genes and immune cells was calculated using Spearman’s algorithm. The R package 
ggplot2 (version 3.4.4) was used to construct a correlation bubble plot to illustrate the correlation analysis results 
for the hub genes and immune cells.

Statistical analysis
All data processing and analyses in this study were conducted using R software (Version 4.2.2). In the comparison 
of continuous variables between the two groups, the statistical significance of normally distributed variables was 
evaluated using the independent Student’s t test, except otherwise stated. The Mann–Whitney U test (Wilcoxon 
rank-sum test) was used to assess the disparities among variables that did not follow a normal distribution. The 
Kruskal–Wallis test was used to compare three or more groups. Spearman’s correlation analysis was used to 
calculate the correlation coefficients between the different molecules. All statistical p values were two-sided if not 
specified, and p < 0.05 was considered statistical significance.

Data availability
The datasets analyzed during the current study are available at the GEO (https://www.ncbi.nlm.nih.gov/geo/) 
repository, including GSE18732, GSE29221, GSE40611, and GSE154926.
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