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The kidney is composed of heterogeneous groups of epithelial, endothelial, immune, and 
stromal cells, all in close anatomic proximity. Spatial transcriptomic technologies allow 
the interrogation of in situ expression signatures in health and disease, overlaid upon a 
histologic image. However, some spatial gene expression platforms have not yet reached 
single-cell resolution. As such, deconvolution of spatial transcriptomic spots is important 
to understand the proportion of cell signature arising from these varied cell types in each 
spot. This article reviews the various deconvolution strategies discussed in the 2021 
Indiana O’Brien Center for Microscopy workshop. The unique features of Seurat transfer 
score methodology, SPOTlight, Robust Cell Type Decomposition, and BayesSpace are 
reviewed. The application of normalization and batch effect correction across spatial 
transcriptomic samples is also discussed.

Keywords: spatial transcriptomics, visium gene expression, single nuclear RNA sequencing, nephron, 
acute kidney injury, biopsy specimen

INTRODUCTION

Spatial transcriptomics was selected as Nature’s Method of the year in 2020 (Marx, 2021). As 
presented at the 2021 O’Brien Center for Microscopy workshop, Spatial Transcriptomics (ST) 
represents a powerful tool to reveal in situ transcript expression associated with histopathologic 
features. Countless examples of ST in the development of human tissue atlases are available, 
identifying key features in breast cancer (Wu et  al., 2021), Alzheimer’s progression (Navarro 
et  al., 2020), and cardiovascular development (Asp et  al., 2019). In the kidney, ST has been 
applied to understand the regional expression differences in sepsis and ischemia reperfusion 
injury murine models (Janosevic et al., 2021; Melo Ferreira et al., 2021). A significant limitation 
of some ST techniques is their resolution. For example, Visium Spatial Gene Expression (VSGE) 
platform has a spot size of 55 μm and resolution of 100 μm, which invariably encompasses 
multiple cells within a single spot. Cell atlases of the kidney now include annotation of over 
100 different cell types and cell states from a diverse pool of epithelial, stromal, and endothelial 
cells (Lake et  al., 2021). These classes of cell types align very well with the underlying histology 
of the human kidney (Melo Ferreira et  al., 2021). The 55 μm spot size is approximately the 
size of a cross sectional proximal tubule and will often capture elements of the signature from 
neighboring peritubular capillaries, dendritic cells, and other stromal cells. To better appreciate 
the contribution of less represented cell types to a spot’s signature, strategies can be  employed 
to deconvolute the proportion of signature arising in a spot using single cell and single nuclear 
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RNA sequencing (sc/snRNAseq) cluster identities. This brief 
review outlines the unique features of several deconvolution 
tactics discussed in the O’Brien center workshop. Normalization 
and batch effect correction across ST samples are also discussed.

DECONVOLUTION TECHNIQUES

An example of the output from four deconvolution techniques 
is provided in Figure 1. A human deceased donor nephrectomy 
without evidence of kidney disease was scored to fit the capture 
area of the Visium slide and a high-resolution image of the 

Hematoxylin and Eosin (H + E) stained tissue was taken with 
a Keyence BZ-X810 microscope as mosaics of 10× fields and 
stitched (1A). The histological image of the nephrectomy had 
the glomeruli identified and a magnified region is provided. 
The tissue was permeabilized and mRNA was captured in 
barcoded spots that allowed downstream informatic localization 
of each read after sequencing. The resulting expression of 
NPHS2 (1B) is concentrated over the outlined glomeruli. Due 
to its 55 μm diameter, each spot generally covered multiple 
cell types. Below we present four methods designed to deconvolute 
the constituents of each spot. As a reference, we use a publicly 
available human kidney snRNAseq dataset (Lake et  al., 2019).

FIGURE 1 | Deconvolution techniques in spatial transcriptomics. (A) H + E image of a human nephrectomy sample, (B) NPHS2 (podocin gene) expression localizes 
over glomeruli. (C) Seurat deconvolution in the same nephrectomy field. (D) Magnified field of H + E image. (E) Cell type identity legend. (F) Zoomed image of the 
Seurat deconvolution. (G) SPOTlight deconvolution. (H) Robust cell type decomposition deconvolution. (I) BayesSpace Deconvolution. (J) Zoomed field of 
SPOTlight deconvolution. (K) Zoomed field of RCTD. (L) Zoomed field of BayesSpace. Each spot is 55 μm in diameter.
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SEURAT

Seurat is a popular tool to process sc/snRNAseq and ST 
data, with extensive documentation and support from several 
other analysis packages. In its version 3, Seurat introduced 
an anchor methodology to integrate multiple datasets (Stuart 
et  al., 2019) that was further adapted to transfer single-cell 
cluster information to ST. This procedure results in a transfer 
score and the highest score can be  used to label the spots. 
Alternatively, the relative scores can be  displayed in a pie 
chart including the components of cell signature arising 
from multiple single-cell clusters (1C). In the example 
provided, the more prominent scores in the glomeruli spots 
are derived from the podocyte, glomerular capillary 
endothelial cell, and mesangial cell clusters. In the magnified 
region, glomeruli are surrounded by enriched areas of various 
proximal tubule (PT), distal convoluted tubule (DCT), and 
collecting duct (CD) cell signatures, as expected. The Seurat 
pipeline for ST analysis is still under development. For 
example, version 3.6.3 presents remarkable agreement between 
the snRNAseq cell type signatures and the underlying kidney 
histopathology, with the expected proportion of cell signature 
correlating strongly with the quantitative proportions of 
cells in the histology (Lake et al., 2021; Melo Ferreira et al., 
2021). However, we  have noted reduced alignment between 
the histology and snRNAseq cluster identity in Seurat 
version 4.

SPOTLIGHT

The SPOTlight deconvolution method uses a negative matrix 
factorization regression algorithm to define topics as distributions 
of gene expression across cell types in the reference dataset. 
Those topics are then used to define the cell type composition 
of spots and is directly related to cell type expression profiles 
(Elosua-Bayes et al., 2021). The results are given in proportions, 
which are easily interpretable. Its source code was adapted to 
display deconvolution results in three of the four methods 
discussed in this review. In the example nephrectomy 
(Figure  1G), endothelial cell type signatures, both afferent and 
efferent arterioles (AEA) and descending vasa recta (DVR), 
dominated the mapping in the tissue, including spots overlaying 
glomerular histology. Other expected cell types, such as 
podocytes, glomerular capillary endothelial cells, and mesangial 
cells, contributed to the cell signature in a disproportionately 
smaller degree than the underlying histopathology would suggest. 
The macrophage signature also contributed to a large proportion 
of spots in the tubulointerstitium and across the tissue. This 
methodology may require further adjustment of parameters 
for the kidney because so many distinct functional structures 
(glomerulus, PT, DCT, etc.) are located in close proximity to 
each other. In the example provided, the technique identified 
a greater proportion of signature from components that are 
broadly distributed across the whole kidney (like endothelial 
cells and macrophages) rather than specific localized cell types 
(like podocytes or DCT cells). However, SPOTlight provides 

several tools to evaluate and correct the deconvolution method, 
and with adjustments, the alignment between the histology 
and snRNAseq cluster identity can be  improved.

ROBUST CELL TYPE DECOMPOSITION

Robust cell type decomposition (RCTD; Cable et  al., 2021) 
also defines cell type transcriptomic profiles. This approach 
considers each spot as a mixture of cells and fits a statistical 
model to determine each spot composition. Our results 
(Figure 1H) show a large contribution of endothelial cell types 
[afferent arteriole (AEA), DVR] in the glomerular spots, with 
podocytes and the glomerular capillary endothelial cells 
represented to a lesser extent. A very minor contribution is 
observed from the mesangial cell cluster. Across the nephrectomy, 
the contribution of proximal tubules to the signature is 
disproportionately low compared to the histology and the 
collecting duct signature is minor dominant. RCTD potentially 
performs better on other ST technologies (like slideSEQ) where 
more than two cell types are rarely seen underlying a single 
spot (Stickels et  al., 2021). The deconvolution method in the 
algorithm is designed to report the confidence of doublets or 
singlets underlying a spot.

BAYESSPACE

The BayesSpace method approaches deconvolution differently 
than the three previous examples. Instead of deconvoluting 
the cell types of each spot, it aims to increase the spatial 
resolution by interpolating the expression between spots 
(Zhao et  al., 2021). This method applies an unsupervised 
clustering algorithm to the data that requires an a priori 
definition of the number of clusters. It then interpolates 
expression and defines those clusters in higher resolution. 
As an example, we  present the interpolated expression of 
NPHS2 (Figure  1I). The expression interpolation could 
be  useful to predict gene expression in smaller structures. 
The interpolated clusters would be  an excellent target to 
apply cell type decomposition algorithms. However, the Seurat, 
SPOTlight, and RCTD methods are not currently compatible 
with BayesSpace because these methods would require either 
raw counts or method-specific normalized expression to 
integrate with BayesSpace.

NORMALIZATION AND BATCH 
CORRECTION

In an effort to create a spatially anchored atlas of the kidney, 
analysis of multiple ST samples is invariably expected. On the 
VSGE platform, four samples are run in parallel on a single 
slide which can lead to batch effects between slides. Furthermore, 
variations in sample quality can lead to downstream differences 
in the number of reads mapped to exons in each spot. Differences 
in permeabilization time, RNA quality, tissue thickness, and 
tissue sources all contribute to the between sample variability. 
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In sc/snRNAseq, technical variations are reduced through 
normalization and batch correction, typically through programs, 
such as ComBat-seq, Harmony, Liger, and Seurat 3 (Welch 
et  al., 2018; Korsunsky et  al., 2019; Stuart et  al., 2019; Zhang 
et  al., 2020).

To normalize and batch correct ST data, we  provide an 
example of the regularized negative binomial regression 
normalization technique, known as SCTransform (Hafemeister 
and Satija, 2019). To showcase its utility in human samples, 
nine samples across 3 batches were merged via the merge 
function and normalized or batch-corrected via SCTransform. 
Without normalization and batch correction, the ST samples 
exhibited inconsistent expression of the house-keeping genes 
ACTB and GAPDH, demonstrating a potential need for 
normalization when comparing across samples (Figure  2). 
Normalization with SCTransform yielded more comparable 
gene expression of ACTB and GAPDH across samples. The 
inclusion of batch as a variable in the SCTransform tool revealed 
only a minor additional improvement in gene expression 
alignment compared to normalization without a distinct batch 
effect variable. This indicates that technical variation in our 
samples can be  modeled by sequencing depth alone. Together, 

these results suggest SCTransform may be  a useful tool for 
removing intersample technical variation in ST datasets.

CONCLUSION

This brief review presents the result of four common 
deconvolution techniques and a common normalization 
procedure applied to the human kidney, as discussed in the 
2021 O’Brien Center for Microscopy workshop. The VSGE 
platform facilitates direct mapping of expression signatures over 
a H + E stained image. While every organ is different, the 
kidney has many small, functionally distinct parts of the 
nephron, all lying in close proximity to each other. Thus, 
deconvolution of larger spot sizes is essential to mapping the 
ST signatures. Further, normalization and batch effect correction 
are important because an atlas must integrate data from multiple 
sources. The results of the deconvolution methods varied 
considerably, even when interrogating the same field of tissue. 
Some methods yielded signatures approximating the underlying 
histology and others emphasized less abundant cell types. No 
judgment has been made as to whether the cell type proportions 

A B C

D E F

FIGURE 2 | Normalization and batch correction of spatial transcriptomic samples. (A) Uncorrected GAPDH expression across samples. (B) Normalized GAPDH 
expression with SCTransform. (C) Normalization and batch correction were performed by adding a batch as a variable in SCTransform. (D) Uncorrected expression 
of ACTB. (E) Normalized expression of ACTB. (F) Batch-corrected expression of ACTB. Sample A is batch 1, samples B–E are batch 2, and samples F–I are batch 3.
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of a spot signature should parallel the histologic cell type 
distribution or whether certain cell types may have an outsized 
influence on the signature. Differences may arise from how 
each technique handles cell type heterogeneity or variation in 
expression. Further, performance can vary based on the fine-
tuning of parameters; thus, this review is not intended to 
compare of each method’s value. Instead, it merely provides 
an example of the diversity of possible results, depending on 
the approach selected.
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