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It has been shown that conclusions about the humanmental state can be drawn from eye

gaze behavior by several previous studies. For this reason, eye tracking recordings are

suitable as input data for attentional state classifiers. In current state-of-the-art studies,

the extracted eye tracking feature set usually consists of descriptive statistics about

specific eye movement characteristics (i.e., fixations, saccades, blinks, vergence, and

pupil dilation). We suggest an Imaging Time Series approach for eye tracking data

followed by classification using a convolutional neural net to improve the classification

accuracy. We compared multiple algorithms that used the one-dimensional statistical

summary feature set as input with two different implementations of the newly suggested

method for three different data sets that target different aspects of attention. The

results show that our two-dimensional image features with the convolutional neural net

outperform the classical classifiers for most analyses, especially regarding generalization

over participants and tasks. We conclude that current attentional state classifiers that

are based on eye tracking can be optimized by adjusting the feature set while requiring

less feature engineering and our future work will focus on a more detailed and suited

investigation of this approach for other scenarios and data sets.

Keywords: convolutional neural network, eye tracking, classification, Imaging Time Series, Augmented Reality,

Gramian Angular Fields, Markov Transition Fields, attention

1. INTRODUCTION

Scientists’ fascination for human eye gaze behavior started as early as in the 19th century when it
was observed that the eyes don’t move in one fluent motion while reading. Instead, they stop and
focus often but only briefly. This observation led to many questions: When do they stop?Where do
they focus and how long? And most importantly, why? In 1908, Edmund Huey published the first
version of his book “The psychology and pedagogy of reading” (Huey, 1908) in which he discussed
these observations and introduced one of the first versions of an eye tracking device. It consisted of a
special contact lens that was connected to an aluminum pointer. Since then, the field of eye tracking
has flourished and continuously improved eye tracking devices. In 1980, Marcel Adam Just and
Patricia A. Carpenter proposed their Eye-Mind assumption, stating that “there is no appreciable
lag between what is being fixated and what is being processed” (Just and Carpenter, 1980). While,
this statement is restricted to eye fixations, it can be assumed that gaze behavior, in general, is closely
tied to mental processes. Our knowledge about saccades and fixations, their cause and reason, and
their connection to the current mental state of the observed person has increased immensely since
then and the practice of eye tracking has found many applications. In addition to the mentioned
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research interests, human gaze tracking is widely used in
consumer andmarketing research (Wedel and Pieters, 2008) or as
an input mechanism for technical devices, such as smartphones
(Paletta et al., 2014) and Augmented and Virtual Reality glasses
(Miller, 2020).

Some applications are mainly interested in the direction of the
gaze (i.e., to predict salient regions of web pages as in Buscher
et al., 2009). Others, however, make use of implications about the
mental state that can be drawn from the eye tracking data. One
famous and possibly life-saving use of eye tracking is to detect
a high cognitive workload (Palinko et al., 2010), or high level of
fatigue (Horng et al., 2004) in car drivers. Di Stasi et al. (2013)
suggested that ocular instability increases with mental fatigue,
meaning that saccadic and microsaccadic velocity decreases and
drift velocity increases. If this movement behavior is observed in
a driver, they can be advised to take a break from driving.

Another interesting application field for mental state
classification that is gaining interest in the current Covid-19
pandemic is digital learning settings. The learning system could
for example detect phases of mind-wandering. This information
about the mental state of the learner can then be used to
later present the corresponding content again during phases
of concentration and thus, improve the chances of a better
learning rate and greater learning success (Conati et al., 2013).
The aspects of the human mental state that can be classified
or detected are manifold. Besides the mentioned workload,
fatigue, and mind-wandering, further cognitive and affective
states can be modeled, such as internally and externally directed
attention, attentional shifts, emotions, the direction of attention,
goal-directed and task-related internal attention, or alertness.

In many studies, mental state classification is based on
data from other biosignals, such as brain activity. Often,
electroencephalography (EEG) is chosen for its good temporal
resolution and low cost (in comparison to fMRI), as for example
in Zeng et al. (2018), Dehais et al. (2018), Vézard et al.
(2015), Benedek et al. (2014), Ceh et al. (2020), and Vortmann
et al. (2019a). However, compared to eye tracking devices, the
setup time highly depends on the number of electrodes and
usually requires qualified assistance for the user. In comparison,
eye tracking has the obvious advantages of a fast setup, easy
calibration, and the fact that eye tracking glasses promise a better
usability experience in the wild than tight EEG-caps.

The movement of the eyes is typically recorded as a time
series of gaze point coordinates from both eyes. Some systems
additionally record pupil diameters or blinks. Once this data is
acquired, it needs to be processed so the important information
can be extracted and used to draw conclusions about the mental
state of the user. Typical features that are calculated on the
data include the number and length of fixations, saccades, and
microsaccades, the gaze velocity, the pupil size, the frequency of
blinks, or the covered gaze distance. With this set of features,
a supervised machine learning algorithm can learn to model
the mental states of interest and detect these states in the user.
One major challenge in improving the accuracy of mental state
classification based on eye tracking data is finding and optimizing
the right features and algorithms. In recent years, the machine
learning community has solved more and more problems using

deep learning approaches and neural nets because they require
less feature engineering and are thus more suitable if there is
a lack of domain understanding. They are used in a variety
of scenarios from forecasting to fraud detection and financial
services or image recognition.

Wang and Oates (2015) suggested that time series data could
be represented as images or matrices (Imaging Time Series,
ITS) and then these can be classified by Convolutional Neural
Networks (CNN) which have proven to be successful in image
classification in the past. To transform the variables from one-
dimensional time series to two-dimensional images, they suggest
two different algorithms: Gramian Angular Fields (GAF) which
represent the temporal correlation between time points, and
Markov Transition Fields (MTF) which calculate a matrix based
on transition probabilities (see section 2.2.2).

In this work, we compare one-dimensional (1D) statistical
summary feature set based approaches with ITS approaches for
the detection of attentional states on three different eye tracking
data sets related to attention. The first data set contains phases of
internally and externally directed attention during several screen-
based tasks (see section 2.1.1). The second data set is on the same
aspect of attention but was collected in an Augmented Reality
scenario (see section 2.1.2). Likewise, the third data set was
collected during anAugmented Reality task but consists of phases
on attention on real and phases of attention on virtual objects (see
section 2.1.3). The aim is to improve the classification accuracy
for multiple aspects of attention for both person-dependently
and person-independently trained models. To the best of our
knowledge, no previous study has performed such a comparison
with the suggested methods on eye tracking data.

1.1. Related Work on Mental State
Classification From Eye Behavior
Related studies that aimed at classifying mental states and
especially attentional states from eye tracking data guided us in
finding state-of-the-art features for our 1D statistical summary
feature set and gave us an overview over which algorithms
should be used for the comparison. Additionally, their results
show that it is possible to reliably detect these states in eye
tracking data.

The popular topic of eye movements during reading tasks was
picked up again in a study by Faber et al. (2018) who detected
phases of mind wandering based on fixations, saccades, blinks,
and pupil size. They mention that these content-independent
features work best for 12-s windows. Bixler and D’Mello (2016)
compared the same features in a reading task with more task and
content-specific features, such as repeated fixations on words.
However, the general features performed better which allows
for the conclusion that the general task-independent features
could reach a good performance in other mind wandering
and attention contexts as well. Several studies concentrated on
gaining a further understanding on how fixations (Foulsham
et al., 2013; Frank et al., 2015), saccades (Li et al., 2016), and
eye blinks (Oh et al., 2012) are influenced by mental states.
Features that were often extracted for the feature sets in the
respective time interval include the number of fixations, saccades,
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and blinks, as well as their average length, standard deviation,
median, minimum, and maximum of the length, as well as
angles between saccades and the ratio of fixations and saccades.
Additionally, mean, standard deviation, median, minimum, and
maximum were also calculated for the pupil diameter. However,
Bixler and D’Mello (2016) note that the pupil diameter is very
sensitive to luminance changes in the surroundings and requires
a very careful and controlled setup. Nonetheless, the connection
between mental states and the pupil diameter is also assessed
in the studies by Franklin et al. (2013), Pfleging et al. (2016),
Unsworth and Robison (2016), and Toker and Conati (2017).
Mills et al. (2016) extended the mind wandering experiments to
free viewing of films and found the same results for content-
independent features compared to content-dependent features.
The fixation and saccade features were also used in Hutt et al.
(2017) who classified mind wandering during lecture viewing
using a Bayes Net. In the mentioned studies by Faber et al. (2018)
and Bixler and D’Mello (2016) many different algorithms were
compared to find the best performance for the feature sets. For
Faber et al. (2018) the highest performance was achieved with a
Logistic Regression and for Bixler and D’Mello (2016) the best
results were achieved by a Bayes Net and aNaïve Bayes algorithm.

A different feature set was tested by Xuelin Huang et al.
(2019) who wanted to detect internal thought from eye
vergence behavior features in three different tasks (math,
watching a lecture video, and a daily activity like reading
or browsing the internet). They used information from two
different measures: pair-based vergence features and fixation-
based vergence features. Their vergence feature set was compared
to a feature set containing the previously mentioned features and
the performance reached a similar level or even better results.
If the features were combined, the best results were achieved.
A comparison of several classification algorithms showed that
a random forest yields the best results. It was suggested in
Puig et al. (2013) that distinguishable eye vergence features
are mainly related to covert visual attention tasks. In the
literature, eye vergence features were found to be related to
covert visual attention (Puig et al., 2013), imagination (Laeng and
Sulutvedt, 2014) and internally and externally directed cognition
(Benedek et al., 2017; Annerer-Walcher et al., 2020). Hence, eye
vergence features are interesting features for the classification of
attentional states.

Two of the data sets that are analyzed in this work focus on
the classification of internal and external attention. Internally
directed attention refers to attention that is independent of
stimuli from the surroundings such as memory recall or mental
arithmetic. Externally directed attention instead means focusing
on sensory input, for example, visual search tasks or auditory
attention to one of many speakers (Chun et al., 2011). Several
studies found differences in eye behavior between internally and
externally directed attention, especially for various features of
pupil diameter, eye vergence, blinks, saccades, microsaccades,
and fixations (e.g., Salvi et al., 2015; Unsworth and Robison,
2016; Benedek et al., 2017; Annerer-Walcher et al., 2020). Some
features were more consistently associated with internally and
externally directed cognition than others. It is hypothesized
that two mechanisms mainly lead to the differences in eye

behavior between internally and externally directed attention:
decoupling of eye behavior from external stimuli (Smallwood
and Schooler, 2006) and coupling of eye behavior to internal
representations and processes (e.g., luminance and distance,
Laeng and Sulutvedt, 2014). A detailed review of the general
occulometric features that werementioned before during internal
and external attention was described in Annerer-Walcher et al.
(2021). In Vortmann et al. (2019b), the authors implemented
a real-time system that classifies internal and external attention
based on multimodal EEG and eye tracking data. For the
eye tracking data they used the previously described standard
features (fixations, saccades, blinks, and pupil diameter), and
classified short sequences of 3 s using a Linear Discriminant
Analysis (LDA). This real-time classifier was later implemented
in an attention-aware smart home system to improve the usability
(Vortmann and Putze, 2020).

1.2. Related Work on Deep Learning for
Eye Tracking
In more recent advances, deep learning approaches are used to
improve different areas of eye tracking. Most of these studies
do not focus on differentiating mental states from the data
but rather improving the gaze estimation itself, unsupervised
feature extractions, or predictions about the demographics of the
participants. The use cases for the applications are many-fold,
such as websites (Yin et al., 2018) or Augmented and Virtual
Reality (Lemley et al., 2018).

As mentioned in the previous related work, the feature
engineering for eye tracking classification remains a main
research area. In Lohr et al. (2020), the authors explore
using a metric learning approach to extract eye gaze features.
They trained a set of three multilayer perceptrons to find
fixations, saccades, and post-saccadic oscillations and reached
benchmark performance for the detection. However, Bautista
and Naval (2020) argue that extracting features based on
fixations and saccades does not represent the richness of
information available in eye tracking data. They suggest using
deep unsupervised learning instead of feature engineering.
Two autoencoders (AE) are trained on position and velocity
information to extract macro-scale and micro-scale information
and fitted the representations using a linear classifier. Their
classification accuracy to discriminate gender and age groups
reaches competitive levels compared to supervised feature
extraction methods. Zhang and Le Meur (2018), instead,
classified scanpaths using a one-dimensional CNN to predict the
age of the participant.

Overall, using the scanpaths in the classification process
instead of extracted statistical features can be observed in several
recent studies. Assens et al. (2018) and Bao and Chen (2020)
predict visual scanpaths using GANs and a deep convolutional
saccadic model. In Fuhl et al. (2019), the scanpaths are
represented by emojis in the first step. These representations were
learned by a generative adversarial network (GAN). In a second
step, the emojis are classified using a Convolutional Neural
Network (CNN) to predict the stimulus. The authors argue that
by adding the intermediate step of the emoji representation, they
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increase the classification accuracy compared to classification
simply based on scanpaths.

Sims and Conati (2020) used a combination of a Recurrent
Neural Network (RNN) and a CNN to detect user confusion
from eye tracking data. They argue that the parallel use of
the neural nets allows keeping temporal information (using the
RNN) and visuo-spatial information (using the CNN) and that
their approach outperforms state-of-the-art classifiers. They used
a 1-layer Gated Recurrent Unit (GRU) for the sequential eye
tracking data and supplied the CNNs with scanpath images.

Another approach without explicit feature extraction was
implemented by Zhang et al. (2019). They used a Deep
Neural Network that was made up of several Long-Short-
Term-Memories (LSTMs) to accurately detect Fetal Alcohol
Spectrum Disorder in young children based on their natural
viewing behavior.

Moving away from designated eye tracking devices, several
studies have explored using other cameras for gaze detection.
Different deep learning strategies have been applied in these
studies to increase the tracking and classification accuracies of
such systems. For example, Meng and Zhao (2017) used webcams
and proposed to use five eye feature points for the tracking
instead of only the iris center. These five points are detected
using a CNN and afterward, another CNN is used to recognize
different eye movement patterns. The iTracker by Krafka et al.
(2016) is a CNN trained on a large-scale eye tracking dataset to
predict gaze points without calibration based on the camera of
a mobile device. It reaches state-of-the-art accuracy. CNN-based
feature extraction for eye tracking using mobile devices was also
assessed in Brousseau et al. (2020), where the authors suggest the
combination of the camera with a 3D infrared model.

As mentioned before, Wang and Oates (2015) proposed to
encode time series data as images and classify these images using
CNNs. The resulting images could be a well-suited alternative
to classical feature engineering for eye tracking, scanpaths,
or raw data. The authors suggest two different approaches:
Gramian Angular Fields and Markov Transition Fields. The
two approaches are described in more detail in section 2.2.2.
In their paper, they tested these two approaches as well as
their combination on the twelve standard benchmark time-series
datasets of language data and vital signs used in Oates et al.
(2012) and compared them to state-of-the-art classifiers. The
analysis showed that the new approaches reach similar results.
Since then, their suggested methods have been applied in several
other studies. In Thanaraj et al. (2020), the authors used the GAF
successfully to classify EEG data for epilepsy diagnosis and in
Bragin and Spitsyn (2019) GAF was used for motion imagery
classification fromEEG.We are not aware of eye tracking datasets
that have been analyzed with MTF or GAF images.

2. METHODS

Pursuing the goal of a general assessment of the usability of
the imaging time-series approach for eye tracking classification
of attentional states, we decided to compare multiple classifiers
on multiple data sets for their classification results. The datasets

cover different aspects of attention and were either recorded
for screen-based tasks or in Augmented Reality. Especially
Augmented Reality devices with head-mounted displays offer a
good opportunity to include an eye tracker in the headset and
add an explicit or implicit option for user interaction. The latest
generations of Augmented Reality devices even have built-in
eye tracking. Available relevant work was used as a guideline to
decide on the classifiers to compare. The general occulometric
features that were mentioned in section 1.1 in combination with
different classifiers that we found in earlier studies will be called
“Statistical Summary Approaches” (see section 2.2.1). These 1D
statistical summary approaches as classification algorithms will
be compared with each other as well as with two different neural
nets that were trained on a feature set that was generated by the
Imaging Time Series approach fromWang and Oates (2015) (see
section 2.2.2). Further, we evaluate different settings for the ITS
approach as well as person- and task-dependence.

2.1. Data Sets
The three chosen data sets are different with regard to evoked
attentional focus, mode of task presentation, tasks, number
of recorded participants, and total number of trials and trial
lengths. They were all recorded specifically targeting a binary
classification between two states of attention. Two of the data
sets were recorded during experiments that were controlled
for internally and externally directed attention—two modes of
attention that are usually alternated unconsciously in everyday
life. The third data set contains trials of only externally directed
visual attention. This visual attention is either directed toward
real objects or virtual objects that are displayed by an Augmented
Reality device. All three experimental tasks and setups will briefly
be described in the following. All experiments were approved by
their local ethics committees. Please refer to the original articles
for a more detailed description. An overview of the data sets can
be found in Table 1.

2.1.1. Switch-Task
The original research article of the switch-task data set was
published in Annerer-Walcher et al. (2021). It was recorded as a
cooperation of the University of Graz, Austria, and the University
of Bremen, Germany. During the experiment, the participants
were presented with 6 different types of tasks on a computer
screen (see Figure 1A for task types). Each task was either
numerical, verbal, or visuo-spatial and required either internally
or externally directed attention. Participants were advised to
keep their eyes open and focused on the screen, independent
of the task. A task description was displayed before each trial.
After a button press, a drift correction was performed while the
participants focused on a fixation cross. For external attentional
focus trials, it was necessary to attend the visual input on the
screen and count the number of times the task could be answered
with “yes.” The shown stimulus always consisted of the elements
necessary for all three external tasks and did not depend on the
current task type (see Figure 1B). The trials lasted 10–14 s each
and consisted of 8–11 stimulus screens of the same category.
The trial length and type were chosen randomly. The stimulus
screen (800 ms) was alternated with a masked screen (400 ms)
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TABLE 1 | Overview of the three data sets including information about the tasks and scope.

Data set Attention Task presentation Participants Total trials Trial length (s)

Switch Internal/external Screen-based 172 Approx. 15,000 10

Align Internal/external Augmented Reality 14 Approx. 900 15

Pairs Real/virtual Augmented Reality 13 Approx. 400 20

FIGURE 1 | The switch-task: (A) Categorization of the 6 different tasks with examples for each category. (B) Schematic description of the procedure of one trial,

including example stimuli and timing information. Taken from Annerer-Walcher et al. (2021).

between the single tasks. For example, for an external numerical
trial, the task was to count how many times the shown number
comparison was correct (i.e., 9 < 7). By always displaying a
very similar visual stimulus, the differences between trials were
minimized and restricted to the explicit task. Accordingly, the
same presentation of visual stimulus screens was chosen for
internal tasks even though their content was irrelevant for the
tasks. An exemplary internal task was to generate as many words
as possible starting with the letter D, without saying them out
loud. Performance checks were randomly presented in 1/4 of
the trials. A full data set of one participant consisted of two
experiment blocks with 8 trials of each task in a randomized order
(96 trials in total). Incomplete data sets were also included in
our analysis.

For the binocular eye data recording an SMI RED250mobile
system (SensoMotoric Instruments, Germany) with a temporal
resolution of 250Hz, spatial resolution of 0.03◦, and gaze position
accuracy of 0.4◦ visual angle was used. The participants’ heads
were stabilized using a chin rest.

2.1.2. Alignment-Task
In Vortmann et al. (2019a), the alignment-task of the second data
set was described. In this study, internally and externally directed
attention was evoked during an Augmented Reality scenario.
The task of the participants was to visually align a virtual ball
(red) and a virtual tube (green) that can be seen in Figure 2A.
During the trials with externally directed attention, the ball kept
moving in slow steady motions with direction changes every 5
s within a small distance from the center of the tube to keep the
participant focused for 20 s. The tube was in a fixed position while
the ball moved on a plane that was parallel to the surface of the
tube but closer to the participant than the tube. The alignment
was achieved by movement of the upper body and head. For
the trials of internally directed attention, the participants learned
to imagine the movement pattern of the ball based on a series
of numbers. In a tutorial, the ball and/or a number pad were
displayed in front of the tube (see schematic representation in
Figure 2B). In the real internal trials, this number pad and ball
had to be imagined by the participant. Before such a trial, a
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FIGURE 2 | The alignment-task: (A) Example scene from the HoloLens,

showing green tube and unaligned red ball in front of a white wall. (B)

Schematic display of the tube and the ball together with the imagined number

pad for internal trials. The blue line indicates a ball movement from 4 to 5.

Taken from Vortmann et al. (2019a).

sequence of 3 numbers between 1 and 9 was played as audio
(i.e., 1-6-8). This sequence described the motion pattern of the
imagined ball (i.e., upper left–middle right, lower middle). The
participant’s task was to imagine themovement and always slowly
adjust their current position to keep the ball and tube aligned.
They were advised to take approximately 5 s to imagine the
movement of the ball from one number to the next number,
resulting in a total trial time for internal trials of 15 s. Taken
together, the task was always to keep the visual or imagined ball
“inside” the tube by adjusting one’s position. This task design was
chosen to have two identical conditions regardingmovement and
visual input type while differing in the state of attention.

Participants performed 36 internal and 36 external alternating
trials in total, split up into 3 blocks with breaks in between.
The holograms and sounds were displayed using a Microsoft
HoloLens 1. A binocular PupilLabs eye tracker with a sampling
rate of 120 Hz was attached to the screen of the HoloLens to
record the eye gaze. The average eye tracker accuracy is not
available for this dataset.

2.1.3. Pairs-Task
The third data set was recorded during the performance of a
pairs-task that was described in Vortmann et al. (2021). For
this experiment, the participants had to play the children’s game
“pairs” with two different conditions in Augmented Reality.
During the game, the participants have tomemorize the positions
of several cards. Each picture is present twice. These two cards
are a pair and have to be identified as such while the cards are
turned over to their neutral side with no pictures on them. In
the first condition, the cards are real wooden cards while some of
the surrounding elements are augmented content. In the second
condition, the same cards with similar symbols are virtually
added to the scene (see Figure 3). During the “memory”-phase,
the participants see a deck of cards with the picture side up for
20 s and have time to memorize as many of the pairs as possible
(varying deck sizes for different difficulties). Afterward, in the
“remember”-phase, the participants can choose the pairs that
they remembered. For the classification task, only the “memory”-
phase will be regarded. During these 20 s, it can be assumed that
the participants exclusively pay attention to the real or virtual
cards, depending on the condition. Because the task is exactly

the same in both conditions, the same viewing strategy would be
assumed.With this data set, the goal is to see whether it is possible
to classify attention on real vs. on virtual objects in Augmented
Reality settings based on eye tracking data.

The same setup of the HoloLens 1 and the PupilLabs eye
tracker as in the alignment task was used in this setup. The
participants performed 20 trials of each condition. Trials with
technical problems were excluded from the analysis. The average
eye tracking accuracy after the calibrationwas 2.49± 0.51 degrees
and on average 0.4 trials were excluded.

2.2. Classification Algorithms
To classify the different trial conditions in the presented data
sets, different features, feature sets, and classification algorithms
can be combined to optimize the classification performance. The
goal of this study is to improve attentional state classification
accuracy based on eye tracking data by following a new Imaging
Time Series approach for the feature extraction. We will first
describe which features were extracted for the statistical summary
approach that was inspired by state-of-the-art related studies
and will be used as a benchmark to compare the new approach
to. This 1D feature set will be used to train several different
classification algorithms. The ITS approach will contain a feature
matrix of several generated images that will be used to train two
different convolutional neural networks, which we will describe
in section 2.2.2. No further preprocessing was applied to any
of the datasets and no trials were excluded, other than already
mentioned in section 2.1.3.

2.2.1. Statistical Summary Approaches
The general task-independent eye tracking features that are
usually extracted were described in section 1.1. Which features
can be extracted from the data sets is restricted by the format of
the variables and values that were recorded by the eye trackers
during the experiments. For some of the vergence features
suggested by Xuelin Huang et al. (2019) information about the
distance between the eyes and the distance between the focused
object and the eyes is necessary. However, these are not given for
all our data sets and thus we decided to combine the statistical
summary feature set from fixations, saccades, blinks, remaining
vergence features, and pupillometric data. For the extraction of
these features, the data sequences of X and Y coordinates were
evaluated for fixations, saccades, and blinks using the PyGaze
Toolbox (Dalmaijer et al., 2014). The threshold value for the blink
detection algorithm was 50 ms. Fixations were detected following
the dispersion threshold identification algorithm (I-DT) by
Salvucci and Goldberg (2000) (Implementation on github1).
The dispersion threshold was set to 1 degree, as suggested by
Blignaut (2009). The remaining vergence features were extracted
as described in Xuelin Huang et al. (2019) and the minimal
bounding circles were calculated with the python script from
the nayuki-project2. As a feature, we either used the total value
of the calculated variable, if possible (i.e., number of saccades),

1https://github.com/ecekt/eyegaze (assessed December, 2020).
2https://www.nayuki.io/page/smallest-enclosing-circle (assessed December,

2020).
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FIGURE 3 | The pairs-task: screenshots from the HoloLens showing the setup of the game. Virtual marbles and a deck of cards are always visible. On the left image

the pairs cards are virtual, on the right image the cards are real. Taken from Vortmann et al. (2021).

or calculated statistical measures to describe the variable during
the trial (i.e., mean, standard deviation, median, maximum,
minimum, range, kurtosis, and skewness of the distribution
of saccade lengths). For a complete list of all 76 features see
the Appendix.

After feature extraction, all features are normalized using a
z-score normalization. Features are ranked using an ANOVA
estimator and a non-parametric mutual information estimator.
These feature selection approaches were implemented using
the scikit-learn toolbox by Pedregosa et al. (2011). As a
hyperparameter optimization, we used the 10, 20, 30, 40, 50, 60,
and 70 highest ranked features of both estimators.

The classification algorithms were also implemented using
the default implementations from scikit-learn. We implemented
the pipeline with the following algorithms:

• Naïve Bayes (NB)
• Logistic Regression (LogReg)
• Random Forest (RF)
• k-Nearest-Neighbor (knn)
• Linear Support Vector Machine (linSVM)
• Multi Layer Perceptron (MLP)
• and AdaBoost

The best feature set was chosen for each classifier individually by
computing the average classification accuracy of all folds during
five-fold cross-validation. The whole pipeline can be seen in
Figure 8 in the counter-clockwise path. This approach is used
to gain optimal performance out of the classical approach, not
considering any side-effects that could be caused by multiple
testing of many classifier and feature set combinations (as they
can only be beneficial for the classifiers and you are mainly
interested in an upper bound).

2.2.2. Imaging Time Series
For the ITS approach, the continuous X and Y coordinate
variables were transformed into images and classified using a
neural net. In a preliminary step, phases during which blinks
were detected were filtered from the data, because no information
about the X and Y coordinates is available. A detailed description
of the methods can be found in Wang and Oates (2015).

We decided to generate the images separately for the right
and the left eye with one image representing the X coordinate
and one image representing the Y coordinate recorded by the eye
tracker. This way, we stay closest to visualizing the raw data and
give the neural net the additional possibility to detect and learn
from the differences and similarities between the eyes (following
the idea of using vergence features). The first algorithm used
for the transformation is the Markov Transition Field (MTF)
which generates a matrix using transition probabilities. Based on
the magnitude of the values, the data sequence S is split into Q
quantiles. Each data point xi is assigned to a quantile and a Q
× Q weighed adjacency matrix W is constructed by counting
the transitions from sample to sample between quantiles through
a first-order Markov chain along the time axis. This Markov
transition matrix W is then normalized and spread out among
the magnitude axis considering the temporal positions, resulting
in the MTF M. The main diagonal Mii shows the self-transition
probability at each time step (see Figure 4).

Additionally, we will work with two different versions of
the Gramian Angular Field transformation algorithm. The first
is called Gramian Angular Summation Field (GASF) and the
second is called Gramian Angular Difference Field (GADF).
For both methods, the data sequence X is rescaled to [−1, 1]
and then represented in polar coordinates by encoding the data
values x as the angular cosine and the according timestamp as the
radius. Thus, the data sequence is transferred from the Cartesian
coordinate system into the polar coordinate system which has the
advantage that for all points we preserve the absolute temporal
relation. In the final step, we calculate the trigonometric sum
(using cosine for the GASF) or the trigonometric difference
(using sine for the GADF) pairwise between the points to identify
the temporal correlation within time intervals. Accordingly, the
Gramian matrix G has a size of n x n with n = length of
raw time series. Each cell gij of G represents the trigonometric
difference/sum of the points xi and xj with respect to the time
interval. On the main diagonal, each cell gii contains the original
value/angular information and could be used to reconstruct the
original time seriesX. The steps of this algorithm are visualized in
Figure 5, where8 represents the time series in polar coordinates.

To reduce the size of the generated images, Piecewise
Aggregation Approximation (PAA) can be applied for blurring
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FIGURE 4 | Flowchart representing the main steps of the MTF algorithm. Adapted from Wang and Oates (2015).

FIGURE 5 | Flowchart representing the main steps of the GAF algorithm. Adapted from Wang and Oates (2015).

(Keogh and Pazzani, 2000). The effect of blurring will be
discussed in section 3.1.1.

The transformations of the data sequences into the MTF,
GASF, and GADF images were implemented using the pyts-
toolbox for python (Faouzi and Janati, 2020). The image size was
set to 48x48 pixels and all pixel values were normalized between
[−1, 1] for individual images. Afterward, all generated images (3
transformations × 2 eyes × X/Y-coordinates = 12 images) were
combined into an imagematrix of size 3x4. This image generation
process was applied to valid (non-blink) data of single trials per
condition. An example of the images representing the feature
matrix for an external trial of the switch-task data set can be seen
in Figure 6A.

For the classification of the resulting images, we chose two
CNNs with different complexities. The first CNN will be called
SimpleNet and was implemented following the suggestions of
Yang et al. (2020). It is made up of two convolutional layers
with a kernel size of 5x5, two Max Pooling layers with a window
size of 2x2 pixels, and two fully connected layers as well as the
output layer. The number of units of the output layer is identical
to the number of possible classification labels (in our cases:
2). Additionally, a dropout layer was included that temporarily

freezes learned weights to avoid overfitting (see Figure 7 for a
schematic representation of the SimpleNet).

The second CNN is the AlexNet (Krizhevsky et al., 2017) that
won the ImageNet Large Scale Visual Recognition Competition
in 2012 (trained from scratch). It is more complex than
the SimpleNet as it consists of 5 convolutional, 3 max-
pooling, and 3 fully connected layers that are initialized with
more channels/units. The learnable parameters in the AlexNet
(57,081,730) are 41 times as many as in the SimpleNet
(1,364,942). As in the statistical summary approach, the CNNs
were trained in a five-fold cross-validation.

2.3. Analysis
For the classification, all trials of one data set were cut to
the same length to avoid that the classifiers learn length-
related information instead of attention-related information.
That means, all trials of the switch data set were cut off after 10 s
(equal task contribution was given) and the alignment-task data
was shortened to 15-s windows for both conditions. The trials
in the pairs data set were all equal in length and were thus kept
at 20 s.
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FIGURE 6 | (A) Exemplary feature matrix (3 × 4) made up of 12 images generated during the ITS approach as described in section 2.2.2. An external numeric trial

from the switch-task is represented. Each row represents one of the transformation algorithms with one image for each eye/axis combination. (B) Heatmap of the

gaze points representing the same trial.

FIGURE 7 | Schematic description of the SimpleNet structure indicating layer size and number of channels/units.

The full pipeline—from the data sets to the comparison of the
classifiers—can be seen in Figure 8. The counter-clockwise path
shows the statistical summary approach and the clockwise path
shows the ITS approach. As a performance metric, we chose to
compare the resulting classification accuracies. This is possible
because the attentional states were represented equally in the
data sets. Accordingly, the chance level accuracy of guessing
the correct attentional state for the binary classification tasks
was 0.5.

For comparison of the classification accuracies, we want to
determine whether one algorithm offers a statistically significant
improvement over another approach. Therefore, we used a

Wilcoxon-Signed Rank Test with a significance level of α = 0.05.
Paired data sets were assured by using reproducible training-
test-splits across classifiers. Since we want to test whether one
algorithm is not just different, but actually better (in this case
returning lower values) than the other algorithm, we use the
one-tailed version.

In the following, all comparisons will be presented in tables
displaying the p-values of the one-tailed Wilcoxon-Signed-Rank
Test. If a p < 0.05 is reported, that means that the classifier
in that row performed significantly better than the classifier in
that column. All values were rounded to 3 decimal places, thus,
values of 1 and 0 are possible (0 meaning highly significant
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FIGURE 8 | Combined pipelines of the statistical summary and the ITS approach. Explaining step by step what was done to get from the continuous eye tracking

data to the performed comparisons. Clockwise, ITS approach; Counter-Clockwise, statistical summary approach.

improvement). It follows that, if there is no p < 0.05 in one
row, the classifier in that row did not perform significantly
better than any other classifier. A “better” performance means
a more accurate classification. Additionally, we report the mean
classification accuracies for all classifiers in the tables.

For the training and testing splits, we followed three
different strategies to answer three different research questions
regarding the generalizability of the data. First, we train and
test individually on data from the same participant (person-
dependent, section 2.3.1). Afterwards, we test how well the data
generalizes over participants (person-independent, section 2.3.2)
and over tasks (task-generalizability, section 2.3.3).

2.3.1. Person-Dependent Classification
A person-dependent classifier is trained on data from one person
and used to classify other data of the same person. For this
approach, we took a participant’s data from one dataset and
performed a five-fold cross-validation with each of the suggested
classification algorithms. For the statistical comparisons, the

mean classification accuracy over the folds per participant
was compared.

For reasons of computational time, only the SimpleNet was
used with the ITS features during this analysis. The results are
reported in section 3.2 and Table 2.

2.3.2. Person-Independent Classification
The person-independent version of the classifiers is trained on
data that is independent of the participants whose data it is tested
on. For this analysis, a combined data set over all participants
per task is split and trained/tested using a group-five-fold cross-
validation. That means the five-folds are chosen in a way that the
data from one participant can never be in the training and in the
testing data subset of that fold. The statistical comparisons are
performed on the accuracy results of the individual folds.

The results are reported in section 3.3 and Table 3.

2.3.3. Task-Generalization
The switch-task data set contains an equal share of trials from
6 different tasks, 3 of which require internally directed attention
and 3 of which require externally directed attention. As a final
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TABLE 2 | Person-dependent: Average classification accuracies over all participants if the classifier was trained in a person-dependent manner; bold and italic, highest

average accuracy for this task; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between this and the best performing

classifier.

simpNet knn linSVM RF MLP AdaBoost NB LogReg

Switch 0.694 0.609 0.619 0.58 0.571 0.559 0.612 0.604

Align 0.707 0.667 0.633 0.579 0.628 0.617 0.632 0.601

Pairs 0.662 0.589 0.647 0.585 0.614 0.524 0.652 0.582

TABLE 3 | Person-independent: Average classification accuracies over all folds of the group-five-fold cross-validation for the person-independent classifier; bold and

italic, highest accuracy for this task; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between this and the best

performing classifier.

simpNet alexNet knn linSVM RF MLP AdaBoost NB LogReg

Switch 0.743 0.73 0.642 0.685 0.674 0.688 0.69 0.619 0.689

Align 0.619 0.705 0.602 0.596 0.609 0.641 0.606 0.555 0.603

Pairs 0.52 0.5 0.778 0.783 0.793 0.806 0.802 0.715 0.808

TABLE 4 | Switch-task results, task-generalization: Average classification accuracies over all participants if the classifier was trained in using a LOOCV for each task in the

switch dataset; bold and italic, highest average accuracy; bold, p-value of the one-sided Wilcoxon Signed Rank Test above 0.05, thus no statistical difference between

this and the best performing classifier.

simpNet alexNet knn linSVM RF MLP AdaBoost NB LogReg

LOOCV 0.783 0.764 0.663 0.69 0.681 0.707 0.7 0.62 0.693

analysis, we wanted to test how the classifiers perform when
they have to generalize over tasks. Analogously to the person-
independent approach, we test the classifier on a task that it
has not been trained on in a leave-one-out cross-validation
(LOOCV). For example, we train the classifier using all trials, over
all participants from the three external tasks and the numeric
and verbal internal tasks but we test whether it correctly classifies
all trials from the internal visuo-spatial task as internal. To do
this, we chose a leave-one-task-out cross-validation. Again, the
statistical analyses are performed on the accuracies of the folds.

The results can be seen in section 3.4 and Table 4.

3. RESULTS

Before the final comparison of all classifier implementations as
described in section 2.3, we performed some preliminary tests
to verify our approach and test the configurations regarding the
optimal resolution of the images for the ITS approach.

3.1. Preliminary Tests
As suggested by Wang and Oates (2015), a blurring kernel can
be used to decrease the resolution of the resulting images of the
MTF, GASF, and GADF transformations. We were interested in
how far a smaller image would lessen the classification accuracy
because smaller images would lead to a reduced computation
time (see section 3.1.1). Additionally, aiming at explainable AI,
we had a look at the learned filters of the CNNs to assess
whether the learned information is comparable to what is learned
during image classification of real-world objects and whether

we can understand what the CNN learns (see section 3.1.2).
To test the hypothesis that the classifiers learn something about
the differences between the conditions simply from different
placements of the tasks in the visual field, we also trained our
SimpleNet using heatmaps of the gaze coordinates and compared
the results to the ITS approach (see section 3.1.3).

3.1.1. Image Resolution
To test the effect of the image resolution, we chose the same
training and testing approach as described to the person-
independent classifier (see section 2.3.2). We compared an image
size of 12 × 12, 24 × 24, 36 × 36, and 48 × 48 pixels on the
switch- and the alignment-task data sets as examples. Because the
overall results of the pairs-data set were not significantly better
than chance, we did not perform this comparison on this data set.

For both data sets, we find a better classification performance
for a higher image resolution. For the switch-task data set,
the classification accuracy improves significantly with a higher
resolution up to a resolution of 36 × 36 pixels (p = 0.0156
compared to 24 × 24 pixels). Images with a resolution of
48 × 48 pixels lead to a higher mean accuracy with a lower
variance, however, this improvement was not significant for
our comparison.

For the alignment-task data set, the classification performance
does not improve significantly for resolutions higher than 24 ×

24 pixels. However, the mean accuracy still increases and the
variance decreases with higher resolutions.

For the following analyses, we used an image resolution
of 48 × 48 pixels because our computation time was of
minor importance. However, if this approach is used in other
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FIGURE 9 | Excerpt from the visualization of the filters learned by the first convolutional layer of (A) the AlexNet trained on an image data set of real objects (i.e.,

animals and fruit) where X.0-X.2 represent the RGB-channels, and (B) the SimpleNet trained on ITS features, where X.0-X.3 represent the MTF images, X.4-X.7

represent the GASF images and X.8-X.11 represent the GADF images.

studies, smaller image sizes can be chosen without significant
performance loss.

3.1.2. Feature Analysis
The main reasoning behind using images that represent
information from the raw data is that the Neural Net can abstract
features that would not have been represented by an explicitly
defined feature set. However, this is often argued to be a black box
approach because it only tells us that there is a difference in the
data but not what that difference is. Learning from clearly defined
feature sets often allows for a detailed analysis on the importance
of single features and thus, which features contain information
about the differences between the conditions.

If a CNN is trained on images with real objects, the
learned features often represent lines, edges, and other shapes
(Krizhevsky et al., 2017). We visualized the features that were
learned by the SimpleNet and found no such clear shapes or any

other pattern that would explain what the CNN is learning from
the ITS feature matrices (see Figure 9).

3.1.3. Heatmap Analysis
To shine some light on the question of whether the CNN
abstracts pure spatial information from the ITS features, we
generated heat maps for all the trials of all data sets and compared
the achieved classification accuracies for the person-independent
approach using the SimpleNet. An exemplary heatmap can
be seen in Figure 6B. For the alignment- and the pairs-task
data set, the classification performance was not significantly
different from chance level (0.5). For the switch task data set the
classification reached an average over all folds of 0.631 which
suggests that there is some spatial information in the data set
that allows for a differentiation between the internal and external
condition. These results will be discussed further in section 4.
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3.2. Person-Dependence
For the switch-task data set, the person-dependent classifiers
were trained on approximately 70 trials in each fold. The highest
mean classification accuracy of 69.4% across all participants
was reached by the ITS-SimpleNet classifier. This result is
significantly better than all statistical summary approaches.
The second-best classification result was achieved by the linear
Support Vector Machine (SVM) classifier with 61.9%.

The training subsets for the alignment task contained
approximately 55 trials. Again, the highest classification accuracy
was reached by the SimpleNet with 70.7% correctly classified
trials on average. In this case, it was not significantly better than
the best performing statistical summary classifier, which was the
k-Nearest Neighbors approach with 66.7%. The SimpleNet is
significantly better than all other tested classifiers.

In the pairs-task data set, the training subset for the person-
dependent classifiers includes approximately 30 trials. As for the
other two data sets, the highest classification accuracy is reported
for the SimpleNet (66.2%) but with no significant improvement
compared to the Naïve Bayes algorithm (65.2%) and the linear
SVM (64.7%) (see Table 2).

Taken together, the SimpleNet reached the highest average
accuracy for all three data sets if tested person-dependently with
a significant improvement over all other statistical summary
classifiers for the switch-task.

3.3. Person-Independence
Due to the combined data of the participants, the training subsets
of the switch-task data set comprised approximately 12,000
trials for every fold in the person-independent approach. The
classifiers that were trained on the ITS feature set performed
significantly better than any of the statistical summary classifiers.
The SimpleNet outperformed the AlexNet significantly with an
accuracy of 74.3% compared to 73%. Of the statistical summary
approaches, the linear SVM, the Random Forest, the Multi
Layer Perceptron, the AdaBoost, and the Logistic Regression
all classified approximately 68% of the trials correctly with no
significant improvement over each other.

For the alignment data set, the combined trials result in
training subsets of approximately 720 trials. The AlexNet had the
highest classification accuracy of 70.5% on average over the folds.
Only the Multi Layer Perceptron was not significantly worse with
an accuracy of 64%.

The person-independent data set of the pairs-task resulted
in approximately 320 training trials for each fold. The
statistical summary approaches—except for the Naïve Bayes—
reached accuracies of up to 80% with no significant statistical
improvements over each other. The SimpleNet and the AlexNet
only reached accuracies around 50% which is comparable to
guessing (see Table 3).

The results show, that it is possible for all three data sets
to generalize over all participants. However, which feature set
captures the differences and similarities best is highly dependent
on the attentional states that are to be classified.

3.4. Task-Generalizability
For the last analysis, the task independence of the features was
tested by combining the switch-task trials of all participants and
testing on only one of the six tasks. This resulted in approximately
12,500 trials in the training set. The best classification accuracy
was achieved using the SimpleNet. It classified on average 78.3%
of the trials correctly as internal or external attention even
though it had never learned on trials from that task. This was
significantly better than all the other classifiers. The second best
classifier was the AlexNet with an accuracy of 76.4% which
was significantly better than all statistical summary approaches.
The best statistical summary approaches were the Multi Layer
Perceptron, AdaBoost, and the Logistic Regression with up to
70.9% (see Table 4).

4. DISCUSSION

To optimize the accuracy of attentional state classification based
on eye tracking data, different methods of feature extraction
for various feature sets in combination with several classifiers
have been tested in the past. In this work, we followed a new
path by using an Imaging Time Series approach to visualize
the raw eye tracking data and to classify the resulting images
using convolutional neural networks. We compared the results
with classical state-of-the-art approaches and found that our
ITS approach outperforms the other classifiers. This difference
can not be an advantage of deep learning in general, because
the Multi Layer Perceptron that was trained on the statistical
summary feature set was also significantly worse than the ITS
approaches. However, a comparison between different image
generation algorithms as features for the same deep learning
classifier has yet to be assessed.

Even though the smallest amount of training data was
used for person-dependently trained classifiers, the CNNs
outperformed the general feature set classifiers in all three
data sets. Interestingly, for the pairs data set, the CNNs that
were trained person-independently on the ITS features did not
achieve accuracies better than chance level, despite the bigger
training data set. Since the classification was significantly better
for the person-dependent classification, we assume that the ITS
approach captures some characteristics of the eye gaze behavior
that are different between the attention on real and virtual
objects. However, the bad person-independent results suggest
that the information that is captured in the ITS features is very
individual between participants regarding viewing behavior. The
statistical summary features and classifiers reached accuracies up
to 80% for this task, thus, there are person-independent eye gaze
feature differences during attention on real and virtual objects,
these are just not learned in the ITS approach. Understanding
this result requires further insight into the information that is
encoded into the images and which filters were learned by the
convolutional neural net. So far, the only conclusion we can
draw from this is that the statistical features contain information
that is missing in the ITS approach but would be important
to classify attention on real and virtual objects in a person-
independent manner. We excluded poorly randomized training
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and testing data as the reason for the low classification accuracy
by using the same splits across classification approaches. Also,
the comparatively small amount of available data has a low
probability of causing the low performance because the person-
dependent classification for the pairs task was performed on even
fewer data and reached a better performance.

For the two internal/external data sets the highest accuracy for
the approach that generalizes over participants was again reached
by one of the suggested new classification approaches over the
statistical summary approaches. What can be noted is that in
the switch data set, the SimpleNet performs significantly better
than the AlexNet, while for the alignment data set it is the other
way around. The results between the two CNNs are similar for
the pairs- and the switch-task (< 2%) but the accuracy for the
SimpleNet used on the alignment data set is almost 9% worse
than the AlexNet.

An interesting question that could be followed here is in
how far the different complexities of the two models require
different amounts of training data to reach similar results. The
effect of more training data for CNNs was also discussed in
Zhu et al. (2016) where they investigate the saturation threshold
for the models. They conclude that while bigger data sets are
almost always better, the real improvement happens when the
representations of the data and the learning algorithms improve
and are capable of profiting from larger data sets. While, a more
complex model with more learnable parameters is more prone to
overfitting if the amount of data is too small, it is also capable of
capturing more complex structures. However, adding parameter
complexity beyond the optimum reduces model quality. More
training data is desirable because it reduces the variance in the
model and displays more accurately which aspects of the data are
general and which are the noise of specific trials. In our current
analysis, we have not yet identified which characteristics of the
two compared CNNs are responsible for the differences in the
achieved classification accuracies. We assume, that the required
complexity of the model is dependent on the attentional or in
general mental states that are to be classified. This topic will need
further investigation.

A very noticeable achievement is that the classification
accuracies with the ITS approach for internal and external
attention do not decrease for person-independent classification
(74.3 and 70.2%) compared to person-dependent classification
(69.4 and 70.7%) and for the pairs dataset it even increased
(80.8% compared to 66.2%) when the Logistic Regression was
chosen. For user applications that make real-time use of the
classification results, a person-independent classifier eliminates
the need for a long session of recordings just to train the classifier.
This helps to develop real-time training-free use case scenarios
where eye tracking data can be used to detect internally and
externally directed attention in the user and if the attention
is directed externally in Augmented reality settings, it can be
classified whether the focus lies on real or virtual objects.

Another promising result is the high accuracy achieved for
the task generalizability analysis. Using the ITS features together
with the SimpleNet resulted in 78.3% correctly classified trials
on average even though the classifier was not trained on data
from that task. In Annerer-Walcher et al. (2021), the authors

reported an accuracy of approximately 61% for their task
transfer classification approach using an LSTMwith the standard
features. One difference is that they trained on two internal and
two external tasks and tested on the remaining two. However,
the classification accuracy reached by our approach is remarkably
higher and we assume that not all of this difference can be
explained by the different test/training split. We propose that the
characteristics of the gaze behavior that are represented in the
Imaging Time Series features are a good representation of what
is shared over tasks during certain attentional states.

The trial lengths that were analyzed in this study (10–20 s)
were adopted from the original studies for better comparability.
To use the proposed methods in an online real-time system
or for a temporally detailed offline classification, the approach
should be adapted to either use smaller windows or sliding
windows. While, smaller windows also reduce the available data
for each decision, this is not the case for overlapping sliding
windows. Appropriate window lengths or window overlaps for
sliding windows highly depend on the context. While, some
research questions might require a fine-grained analysis of
attention switches (e.g., to study the exact steps of a single
cognitive process), most applications would rather benefit from
the detection of robust attention changes for longer periods
(e.g., adapting a user interface to the attentional state, where too
frequent changes would be more distracting than helpful).

Our study was the first to assess this classification approach for
attentional states based on eye tracking. We were able to show
an improvement in classification accuracy and are optimistic
that further optimization can be achieved. A shortcoming of the
presented analysis is that all the implemented classifiers were
implemented in their default settings. Our goal was to use the
same classifiers on all data sets and thus not optimize each
classifier independently for each data set and classifier training
variant. We are aware that the classification accuracy of the
statistical summary approaches could be increased by performing
further hyperparameter optimization additionally to the feature
selection criteria. On the other hand, the CNNs that were used
to classify the ITS features were also taken “out of the box” and
were not optimized and designed specifically for this analysis.
Typically, neural nets require a large amount of training data,
which could be assessed in further experiments. We conclude
that their results could be improved in the same dimensions
that the statistical summary algorithms could be improved. Our
goal was to show that this feature set is an interesting alternative
that requires further attention because it might lead to better
classifier performances.

A bigger challenge for the new approach is the interpretation
of the model. While, the feature importance and differences
can easily be analyzed for the statistical summary features,
the parameters that are learned during the training of the
CNNs with the images are harder to interpret. A pitfall of
the ITS approach is its dependency on the gaze coordinates if
these are the main difference for the learned conditions in the
training data set. In the switch-task there seem to be differences
between the conditions regarding the gaze heatmaps. A classifier
should not learn that internally directed attention is present
whenever the participants look to the left and externally directed
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attention is present whenever the participants look to the right
because it is not task and location independent. The statistical
summary features do not fall for this information. In our case,
the results of the person-independent ITS classification (74.3%)
are significantly better than the results using a heatmap of
the gaze coordinates (63.1%) which shows that the classifier
learns significantly more from the Imaging Time Series than
the “location.”

All in all, the results of this first exploration of Imaging Time
Series for eye tracking classification show that it is promising to
further test and optimize in this direction, exploring other feature
extraction and combination methods.

4.1. Future Work
In this work, the Imaging Time Series approach was tested on
three different datasets. In the next step, other available eye
tracking data sets of attentional states will be classified using this
feature set. If possible, these data sets should contain other tasks
and attentional states. The analyses will focus on understanding
and optimizing the necessary complexity of the CNNs while
keeping task- and person-independence inmind as a central goal.

After comparing the ITS approach to classical statistical gaze
features, future comparisons will focus on other deep learning
approaches that have been used on eye tracking data by related
studies. In particular, we would be interested in a comparison of
our suggested ITS approach with the approach from Sims and
Conati (2020) where the CNNswere trained on the scanpaths and
the temporal dimension was analyzed using GRUs.

Further, we want to investigate how well a combination of
the statistical summary features and the ITS techniques mix.
The statistical summary features contain a lot of information
that is well-understood and can be explained by results from
cognitive science research. However, with the statistical summary
feature extraction and generation algorithms, a lot of information
about the data is lost, especially with regard to the temporal
dynamics within a trial. One idea would be to visualize some
of the statistical summary features using Imaging Time Series.
For example, the statistical summary features that describe the
length of the saccades within a trial are often represented by
statistical values that describe their distribution: Mean, standard
deviation,minimum, andmaximum. The saccade lengths are also
a time series that could be transformed into an image with less

information loss than the descriptive statistics. This could be an
efficient combination of both approaches.

One last topic that was not addressed until now in this study is
the window length of the classified data. With follow-up studies,
we want to examine which effect the chosen time interval has on
the classification accuracy. Precisely, shorter windows are desired
if the accuracy loss is not significant because shorter trials would
allow attentional state detection closer to real-time.

The overall goal will be an end-to-end system that can classify
multiple aspects of the attentional state of a user without person-
dependent training as fast and accurate as possible and use the
information for adaptations of the interface or as implicit input.
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APPENDIX

Complete list of features for the statistical summary feature set.
sd, standard deviation; min, minimum; max, maximum.

• Distance between gaze points of both eyes mean
• Distance between gaze points of both eyes sd
• Angle between gaze points of both eyes mean
• Angle between gaze points of both eyes sd
• Distance between centroids of both eyes
• Angle between centroids of both eyes
• Distance between minimal bounding circles of both eyes
• Angle between minimal bounding circles of both eyes
• Normalized distance between minimal bounding circles of

both eyes
• Minimal bounding circle radius left eye
• Minimal bounding circle radius right eye
• Fixation duration mean
• Fixation duration sd
• Fixation duration median
• Fixation duration min
• Fixation duration max
• Fixation duration range
• Fixation duration kurtosis
• Fixation duration skewness
• Fixation quantity
• Fixations total duration
• Saccade duration mean
• Saccade duration sd
• Saccade duration median
• Saccade duration min
• Saccade duration max
• Saccade duration range
• Saccade duration kurtosis
• Saccade duration skewness
• Saccade length mean
• Saccade length sd
• Saccade length median
• Saccade length min
• Saccade length max
• Saccade length range

• Saccade length kurtosis
• Saccade length skewness
• Saccade velocity mean
• Saccade velocity sd
• Saccade velocity median
• Saccade velocity min
• Saccade velocity max
• Saccade velocity range
• Saccade velocity kurtosis
• Saccade velocity skewness
• Saccade quantity
• Saccades total duration
• Angles between saccade and x-axis mean
• Angles between saccade and x-axis sd
• Angles between saccade and x-axis median
• Angles between saccade and x-axis min
• Angles between saccade and x-axis max
• Angles between saccade and x-axis range
• Angles between saccade and x-axis kurtosis
• Angles between saccade and x-axis skewness
• Angles between saccades mean
• Angles between saccades sd
• Angles between saccades median
• Angles between saccades min
• Angles between saccades max
• Angles between saccades range
• Angles between saccades kurtosis
• Angles between saccades skewness
• Fixation/saccade duration ratio
• Blink duration mean
• Blink duration sd
• Blink quantity
• Blinks total duration
• Pupil diameter mean
• Pupil diameter sd
• Pupil diameter median
• Pupil diameter min
• Pupil diameter max
• Pupil diameter range
• Pupil diameter kurtosis
• Pupil diameter skewness
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