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Abstract: Conducting polymers (CPs) have received much attention in both fundamental and
practical studies because they have electrical and electrochemical properties similar to those of both
traditional semiconductors and metals. CPs possess excellent characteristics such as mild synthesis
and processing conditions, chemical and structural diversity, tunable conductivity, and structural
flexibility. Advances in nanotechnology have allowed the fabrication of versatile CP nanomaterials
with improved performance for various applications including electronics, optoelectronics, sensors,
and energy devices. The aim of this review is to explore the conductivity mechanisms and electrical
and electrochemical properties of CPs and to discuss the factors that significantly affect these
properties. The size and morphology of the materials are also discussed as key parameters that affect
their major properties. Finally, the latest trends in research on electrochemical capacitors and sensors
are introduced through an in-depth discussion of the most remarkable studies reported since 2003.

Keywords: conducting polymers; conductivity; electronic properties; electrochemistry;
pseudocapacitors; sensors

1. Introduction

Over the past several decades, conducting polymers (CPs) have gained increasing attention
owing to their strong potential as alternatives to their inorganic counterparts, leading to significant
fundamental and practical research efforts. In the late 1970s, many scientists considered CPs
(or ‘synthetic metals’) to be intractable and insoluble. Since the discovery of polyacetylene in
1977 by Hideki Shirakawa, Alan MacDiarmid, and Alan Heeger, various important CPs have been
investigated continuously, including polypyrrole (PPy), polyaniline (PANI), polythiophene (PT),
poly(3,4-ethylenedioxythiophene) (PEDOT), trans-polyacetylene, and poly(p-phenylene vinylene)
(PPV) [1]. In general, CPs possess alternating single (σ) and double (π) bonds, and these π-conjugated
systems lend the CPs their inherent optical, electrochemical, and electrical/electronic properties. It is
known that the parameters that most affect the physical properties of CPs are their conjugation length,
degree of crystallinity, and intra- and inter-chain interactions.

CPs provide the advantages of chemical diversity, low density, flexibility, corrosion resistance,
easy-to-control shape and morphology, and tunable conductivity over their existing inorganic
counterparts [2,3]. However, the development of the properties of CPs has not been completely
commensurate with those of their metallic and inorganic semiconductor counterparts. Consequently,
CPs have been modified or hybridized with other heterogeneous material components to overcome
their inherent limitations in terms of solubility, conductivity, and long-term stability. Judicious coupling
of CPs with other materials can result in materials with attractive properties and new application
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opportunities in diverse fields ranging from electronics to energy devices. Researchers in this field
have reported a variety of strategies to obtain CP-based composites and hybrids with novel structures
and improved properties. As a typical example, CP nanocomposites containing carbon nano-species
such as graphene, carbon nanofibers, and carbon nanotubes have been developed [4–7]. These carbon
nano-species improved the structural ordering of the CP chains and facilitated delocalization of
the charge carriers, resulting in enhanced conductivity. A rich spectrum of conductivities has been
achieved, ranging from insulating to metallic [2,3,8].

Successful preparations of CP composites with high mechanical stabilities, flexibilities,
and conductivities have proven that CPs can serve as key material components in light emitting
diodes [9,10], transistors [11,12], electrochromic devices [13,14], actuators [15,16], electrochemical
capacitors [17,18], photovoltaic cells [19,20], and sensors [21,22]. The most crucial factor for progress
in such fields is achieving control of the electrical or electrochemical properties of CPs. Consequently,
this review presents a discussion of the electrical and electrochemical properties of CPs, and the latest
trends in research on the applications of CPs have been summarized.

2. Conductive Mechanism

2.1. Inherent Molecular Structure

The electrical conductivity of a material is mainly determined by its electronic structure.
The energy band theory is a useful way to visualize the differences among conductors, insulators, and
semiconductors. The band gap is the energy difference between the valence and conduction bands of a
material. When the valence band overlaps the conduction band, the valence electrons are free to move
and propagate in the conduction band. This is an intrinsic characteristic of conductors. Semiconductors
possess small energy gaps that electrons can cross upon excitation to reach the conduction band, leaving
behind a hole. This allows both hole and electron charge transport, which allows the conduction of
current. In the case of insulators, the band gap is too large to be crossed by electrons, and therefore
they do not conduct electricity.

However, the energy band theory does not clearly explain why CPs, being organic materials,
conduct electricity. Many studies have addressed the transport properties of CPs at the molecular
level [23,24]. Here, polyacetylene is used as an example to illustrate the principles of conduction in
CPs (Figure 1) because of its simple chemical structure and remarkably high electrical conductivity.
From the perspective of chemists, the common electronic feature of pristine CPs is the presence of
conjugated single and double bonds along the polymer skeleton. Both single and double bonds include
a localized σ-bond, which forms a strong chemical bond. Additionally, each double bond also contains
a localized π-bond, which is weaker [25,26].
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Figure 1. The structure of polyacetylene: The backbone contains conjugated double bonds.

The π-bond between the first and second carbon atoms is transferred to the position between
the second and third carbon atoms. In turn, the π-bond between the third and fourth carbon travels
to the next carbon, and so on. As a result, the electrons in the double bonds move along the carbon
chain (The pz-orbitals in the chain of π-bonds overlap continuously and the electrons in the π-bonds
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thus move along the carbon skeleton). Thus, conjugated double bonds allow electric flow. However,
conjugated bonds do not render polymeric materials highly conductive. A breakthrough by Shirakawa,
Heeger, and MacDiarmid was achieved by exploiting the complementary ways in which chemists
and physicists think about conductance. Their work concerned a system in which a halogen dopant
removes an electron from a delocalized bonding arrangement creating a hole. Then, an electron at a
neighboring position jumps and fills that hole, generating a new hole and allowing charge to flow
through the polymer chain. Since the publication of this pioneering work, many theories regarding the
conductivity of CPs have been developed, the overwhelming majority of which attribute changes in
the conductivity of CPs to the formation of nonlinear local excitations (e.g., solitons, polarons, and
bipolarons) as charge carriers [24,27,28].

2.2. Doping

CPs have been doped using different methods in order to achieve high conductivities [29].
Un-doped polymers have been reported as insulators but, upon doping, their conductivity can change
from insulating to metallic. Owing to their unique chemical structures, however, the doping mechanism
for CPs is completely different to that for their inorganic counterparts. Dopants in the polymer undergo
redox processes in which charges are transferred with subsequent formation of charge carriers [30].
The role of the dopant is not only to withdraw electrons from the CP but also to add electrons to the CP
backbone. A simple explanation of the effect of doping is that electrons are extracted from the highest
occupied molecular orbital (HOMO) of the valence band (oxidation) or transferred to the lowest
unoccupied molecular orbital (LUMO) of the conduction band (reduction). This oxidation/reduction
process creates charge carriers in the form of polarons (radical ions), bipolarons (dications or dianions),
or solitons in the polymer. CPs can be categorized into degenerate and non-degenerate systems based
on their bond structures in the ground state. Degenerate polymers possess two identical geometric
structures in the ground state while non-degenerate polymers exhibit two different structures with
different energies in the ground state (e.g., benzenoid and quinoid structures, where the energy of the
benzenoid is lower than that of the quinoid). Solitons are known to be the charge carriers in degenerate
systems such as polyacetylene. Conversely, polarons and bipolarons serve as the charge carriers in
both degenerate and non-degenerate systems such as PPy and PT [31,32]. The movement of these
charge carriers along polymer chains produces conductivity. In solid-state physics terminology, the
oxidation and reduction processes correspond to p-type and n-type doping, respectively [10]. In p-type
doping, the electron moves directly from the HOMO of the polymer to the dopant species and creates
a hole in the polymer backbone. Conversely, in n-type doping, electrons from the dopant species move
to the LUMO of the polymer, resulting in increased electron density. Hence, the density and mobility
of charge carriers can be tuned by doping [33–36].

CPs can undergo both p-type doping and n-type doping, as shown in Figure 2. The doping
process generates positive or negative polarons/bipolarons. These charge carriers are delocalized over
the polymer chains, which facilitates the electronic conductivity. Generally, the negatively charged
carriers in n-doping are not as stable as positively charged forms, which makes p-doping more popular
in academic research as well as for practical applications. Representatively, the conductivity in PPy
is an outcome of p-type doping. The PPy chain exhibits four distinct electronic band structures with
different doping levels. In the undoped state, PPy is an insulator with a large band gap of approximately
3.16 eV (Figure 3a). Upon oxidation, a π-electron is removed from the neutral PPy chain, and a local
deformation from the benzenoid structure to a quinoid one occurs to form a polaron [24,37]. This gives
rise to two localized electronic levels within the band gap while the unpaired electron occupies the
bonding state (Figure 3b). Upon further oxidation, a second electron is removed from the PPy chain,
resulting in the formation of a doubly charged bipolaron (Figure 3c). The benzenoid-to-quinoid
deformation is stronger in the bipolaron than in the polaron. As the polymer is further oxidized,
an overlap between bipolarons occurs, leading to the formation of two narrow bipolaronic bands
(Figure 3d) and a decrease in the energy gap from 3.16 to 1.4 eV.
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Figure 3. Electronic bands and chemical structures illustrating (a) undoped; (b) polaron; (c) bipolaron;
and (d) fully doped states of polypyrrole (PPy).

Trans-polyacetylene is a typical CP with a degenerate ground state. When the chain comprises an
odd number of carbons, the single and double bonds can exchange electrons, leading to two geometric
structures (A and B phases) with the same energy (Figure 4a). A radical form generated between the
two structures contains an unpaired π electron (Figure 4d). This defect has been called a (neutral)
soliton. The soliton possesses a certain mobility that allows its delocalization along the polymer
backbone. When the neutral solitons move along the chain and meet one another, they can be
destroyed by forming a double bond. If the solitons have charge, they become more stable as they
can be delocalized over the polymer chain. A neutral soliton can be oxidized or reduced by a dopant
to form a positive or negative soliton. Positive and negative solitons possess positive and negative
charges with no unpaired spin (S) (Figure 4c,e). In the polymer backbone, the π electron travels over
a long distance and the regions of individual charged solitons can overlap. The interaction between
charged solitons leads to a band-like feature called the soliton band [38]. The soliton band is located in
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the middle of the HUMO and LUMO of the polymer and can become larger with an increase in doping
level (Figure 4b). Both solitons and polarons act as charge carriers that facilitate electronic conductivity
in trans-polyacetylene [24].Polymers 2017, 9, 150 5 of 31 
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There are significant extrinsic, environmental factors that influence the conductivity of CPs,
such as temperature, as well as intrinsic ones such as the degree of doping. We will discuss these
factors in Section 3.

3. Electrical Properties

3.1. Tunable Conductivity

In polyconjugated systems, the behavioral properties of the π-electrons, such as their
delocalization and polarization, play significant roles in determining the electrical properties of the
system. In first-generation CPs the maximum conductivity was limited because of pronounced disorder
in the polymer matrix. Structural and morphological disorder inhibits π-electron delocalization, thus
retarding charge transport [27,39]. As a result, the metallic charge conduction of first-generation CPs
was rather weak.

As discussed in previous sections, the formation of a metallic state in CPs upon doping has
been reported. When π-conjugated systems are doped, their structural and morphological disorder
is reduced. This helped to create a new generation of CPs in which the conductivity of the pristine
polymer can be raised from the insulating to the metallic regime. Charges generated through doping
exist as solitons, polarons, and bipolarons, which can be accompanied by lattice distortion [40].
The conductivity of undoped polymers is 10−6–10−10 S·cm−1, lying at the boundary region between
semiconductor and insulator (Figure 5). The conductivity of undoped polymers can be increased by 10
or more orders of magnitude through doping. For instance, Tsukamoto et al. [41,42] reported the doping
of polyacetylene with iodine and achieved a conductivity of more than 104 S·cm−1, which is comparable
with the conductivity of lead at room temperature (4.8 × 104 S·cm−1). With the achievement of such
high conductivity, CPs became a promising candidate material for electronic applications.
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3.2. Charge Carrier Transport Models

The charge transport properties of CPs are strongly governed by the disorder stemming from sp2

defects in the polymer chain and chain ends, chain entanglement, voids, and doping defects. In 1958,
Anderson introduced the concept of localization to describe electronic transport in a homogeneously
disordered material. In a perfect crystal with periodic potentials, the wave functions form Bloch
waves delocalized throughout the material. However, disorder can alter the wave function. More
specifically, in disordered systems, impurities and structural defects introduce substantial scattering of
the electronic wave function, which may lead to localization. In the presence of strong disorder, the
overlap of the wave functions decreases exponentially and the system moves towards the insulating
regime. The localized wave function has the form

Ψ(r) ∞ exp (− r− r0

ξ
) (1)

where ξ is the localization length of the state. Mott, years later, pointed out that states at the center
of the band are delocalized, while states at the band tail are more easily localized since these states
are formed from localized orbitals [43,44]. The term “mobility edge” was coined to refer to the critical
energy (Ec) separating the extended and localized states. The mobility edge is associated with the
transition between a metal and an insulator. The electronic properties of materials depend on the
position of the Fermi level (EF) and Ec. When EF lies in the region of localized states, the material shows
nonmetallic behavior, even though there is a finite density of states at the Fermi level. In contrast,
when EF lies in the region of extended states, the material has a finite DC conductivity (σ) and exhibits
metallic behavior at low temperature (when the temperature (T) tends to zero K). The DC conductivity
is found from Drude or Boltzmann theory, as electrical conductivity is mainly determined by

σ =
ne2τ

m
(2)

where n is the carrier density, τ = l
vF

is the relaxation time, m is the effective mass of the carrier, and e
is the electron charge [27,44–46]. However, Equation (2) only applies for weak disorder. Weak disorder
means that the mean free path l is much greater than the Fermi wavelength kF

−1, i.e., kFl � 1, in the
metallic system.

kFl =
[h
(
3π2) 2

3 ]

e2ρn1/3 (3)

where ρ is the electrical resistivity. The Anderson concept does not clearly explain the dielectric
response behavior of highly doped CPs. Epstein et al. [47] proposed an inhomogeneous disorder model
involving 3D metallic crystalline domains separated by a disordered quasi-1D medium to explain the
delocalization of charges in CPs [48,49]. This model agrees with the frequency-dependent results of
studies on PANI and PPy [47–49]. Another model, termed ‘variable range hopping’, explains charge
transport based on the hopping of charge carriers in disordered systems or charging energy-limited
tunneling between domains [50,51]. In fully doped CPs, charge-carrier density is of the order of
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1021 cm−3, l is around 10 Å, and kFl ≈ 1−10 at room temperature. To date, a metallic state has been
observed in six different CPs, as listed in Table 1.

Table 1. CPs in which a maximum metallic state has been observed in the doped state [45].

CP Repeat Unit Chain Orientation Conductivity (S·cm−1)

Polyacetylene C2H2 High 104–105

PPV C6H4–C2H2 High 104

PPy C5H2N Low 400
PANI C6H4–NH Low 400

Poly(3-methylthiophene) C5H2S–CH3 Low 400
PEDOT C7H4O2S Low 300

The strength of the conductivity is reported to strongly depend on the nature and concentration
of the dopant and doping time, suggesting a complex mechanism for the doping process. A great
deal of research has attempted to increase the conductivity of CPs by varying the dopant. Based on
their molecular size, dopants can be categorized into small cations/anions (e.g., Na+, Cl− and ClO−4 )
and large polymeric species (e.g., polystyrene sulfonate and polyvinyl sulfonate). Typical examples of
dopants used for CPs and the conductivity values obtained therefrom are listed in Table 2. The nature
of the dopants affects not only the conductivity but also the surface and structural properties of CPs.
Large dopants can change the polymer density and thus affect the surface topography and physical
properties of the polymer. In addition, large dopants can be strongly bound to the polymer, which
prevents the leaching of the dopant molecules from the polymer matrix, even under extreme conditions.
Small dopants, in contrast, can be readily inserted/de-inserted or exchanged with other ions existing
in the surrounding environment [52].

For most CPs, conductivity increases with increasing doping level. An increase in the electrical
conductivity resulting from an increase in the dopant concentration was described in detail by
Tsukamoto et al. for stretched polyacetylene doped with controlled amounts of I2 [41,42]. They
observed that the conductivity of the polymer increased stepwise owing to the formation of ordered
stacking structures. The conductivity became saturated after several hours of doping. This extended
doping time indicated the slow diffusion of the dopant ions into the polymer, suggesting that the
polymer had dense, ordered structures [41,42]. The electrical conductivity of CPs increases with the
dopant concentration and becomes saturated at high doping levels. The doping/de-doping process is
reversible, i.e., de-doping usually reproduces the original, undoped CP without degradation of the
polymer backbone.

A number of methods have been explored for doping CPs. The available methods are summarized
in Table 3, and include electrochemical doping, chemical doping, photodoping, non-redox doping, and
charge-injection doping [53–55]. The first two techniques are widely used because of their low cost
and convenience. Chemical doping may take the form of vapor-phase doping and solution doping.
In vapor-phase doping, polymers are exposed to the vapors of dopant compounds such as iodine,
bromine, AsF5, and SbF5. The level of doping is determined by the vapor pressure and reaction time.
Solution doping uses a solvent in which the dopant and the products formed during doping are soluble.
Electrochemical doping is accomplished by applying a DC power source between a CP-coated positive
electrode and a negative electrode. This electrochemical approach offers precise control of the doping
level by monitoring the current passed. In this system, the electrode supplies the redox charge to the
polymer, and ions diffuse from the electrolyte into the polymer to compensate the charge. Compared
with chemical approaches, electrochemical doping is easy to control and more readily reversible.

Over time, improvements in the processing of these CPs have led to greater conductivity being
achieved, and both n-type and p-type dopants have been used to enhance the electrical conductivity
of CPs.
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Table 2. Typical examples of dopants for CPs and the conductivities obtained therefrom.

CP Type Dopant Chemical Source Doping Method Conductivity References

Trans-polyacetylene Na+ (C10H8)Na Solution doping 80 [56]

Poly(p-phenylene) AsF5 AsF5 Vapor phase doping 1.5 × 104 [57]

Poly(p-phenylene vinylene) CH3SO3H CH3SO3H Non-redox doping 10.7 [58]
AsF5 AsF5 Vapor phase doping 57 [59]

Poly(3-vinylperylene) Cl−4 (C4H9)4N(ClO4) Electrochemical doping 10−5 [60]

PPy

AsF−6 , PF−6 , BF−4 C16H36AsF6N, (CH3)4N(PF6), (C2H5)4N(BF4) Electrochemical doping 30–100 [61]
NSA 2-naphthalene sulfonic acid (NSA) Electrochemical doping 1–50 [62]
Cl−4 LiClO4 Electrochemical doping 65 [63]
Cl− NaCl Electrochemical doping 10 [64]

PSS/Cl− PSS/FeCl3 Solution doping 4 [65]
MeOH MeOH Vapor phase doping 0.74 [66]
HSO−4 (C4H9)4N(HSO4) Electrochemical doping 0.3 [61]

C20H37O4SO3
− C20H37O4SO3Na Solution doping 4.5 [67]

PANI

C10H15OSO3
− C10H16O4S Solution doping 300 [68]

HC1 HC1 Non-redox doping 10 [69]
I3
− I2 Vapor phase doping 9.3 [70]

BF4
− HBF4 Solution doping (2.3 × 10−1) [71]

PBTTT 1 FTS 2 C8H4F13SiCl3 Vapor phase doping 604–1.1 × 103 [72,73]

Poly(2-(3-thienyloxy)ethanesulfonate) Na2SO3 Na2SO3 Solution doping 5 [74]

PT Cl− FeCl3 Vapor phase doping 10–25 [75]

PANI-PPy ASPB Anionic spherical polyelectrolyte brushes (ASPB) Electrochemical doping 8.3 [76]
1 Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene); 2 Tridecafluoro-(1,1,2,2-tetrahydrooctyl)-trichlorosilane.
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Table 3. Different methods used for doping CPs.

Doping Method Controlled Variables Advantages Disadvantages

Chemical doping
Vapor pressure,
Exposure time to dopant

Simple way to obtain doping upon
exposure of the sample to a vapor of
the dopant or immersion into a
solution with the dopant

Performed as slowly as possible to avoid
inhomogeneous doping

The doping levels obtained are not stable
with respect to time

Unexpected structural distortion may cause
electrical conductivity decay

Doping/de-doping shows low reversibility

Electrochemical
doping

Amount of
current passed

Doping level can be easily
controlled by using an
electrochemical cell with a
controlled amount of current passed

Unexpected structural distortion may cause
electrical conductivity decay

Doping/de-doping is highly
reversible and clean polymer can
be retrieved

Can be achieved with many
dopant species

Photo doping Radiation energy of light
beam

Charge carrier is formed without
chemical compound (dopants) The electrical conductivity disappears

rapidly when irradiation is discontinued
due to recombination of electrons and holes

No distortion of the
material structure

Non-redox doping Protonic acid strength Number of electrons generally does
not change

Depends on the degree of oxidation of CPs
and degree of protonation of the material

Low conductivities are observed for
some CPs

Charge-injection
doping

Applying an appropriate
potential on the polymer
structure

Does not generate counter ions.
Minimized distortion

Coulombic interaction between charge and
dopant ion is very strong and can lead to
change in the energetics of the system

3.3. Temperature Dependence

The conductivities of fully doped polymers are comparable to those of conventional metals.
The critical temperature dependence of several CPs, including polyacetylene, PPy, PPV, and PANI,
has been investigated. For all of these polymers, the characteristic temperature dependence of the
electronic conductivity has been explained by dividing these materials into three regimes according to
their reduced activation energy (W), identified using Zabrodski plots:

W(T) = −T[dlnρ(T)]
dT

=
d(ln σ)

d(ln T)
(4)

In the insulating regime, the resistivity is activated and σ follows a Mott variable range
hopping mode:

σ = σ0 exp (
T0

T
)

1/(n+1)
(5)

W(T) has a negative temperature coefficient and can be determined as [77]

log10 W(T) = A− x log10 T (6)

where A = x log10 T0 − log10 x [77]. From a plot of log10 W against log10 T (as represented in
Equation (6)), the slope x and dimensionality of the sample can be obtained.

In the case of the critical regime, W(T) is independent of temperature, and the slope of the W(T)
plot is zero. The resistivity is not activated; however, the conductivity is given by a power law

σ (T) = aTβ (7)

In the metallic regime, W(T) has a positive temperature coefficient and resistivity (ρ) is finite
(T→0). Therefore, the electronic conductivity in the metallic regime is calculated by
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σ = σ0 + mT1/2 + BTp/2 (1.7) , m = α[
4
3
− γ

(
3Fσ

2

)
] (8)

where σ0 is the zero-temperature conductivity, B is a constant depending on the localization effects,
α is a parameter depending on the diffusion coefficient, γFσ is the interaction parameter, and p is
determined by the scattering rate (for electron-phonon scattering, p = 3; for inelastic electron-electron
scattering, p = 2 in the clean (weakly disordered) limit or 3/2 in the dirty (strongly disordered) limit).
The term “mT1/2 + BTp/2” is mainly determined by the interaction and localization contributions to
the conductivity [27,45,78]. In disordered materials, electron-electron interactions play an important
role in transportation at low temperatures. The temperature dependence of conductivity in the three
regimes of the metal-insulator transition for CPs has been reviewed in detail by Ahlskog et al. [77]
(Table 4).

Table 4. The σ (300K) and ρr = [ρ(1.3K)/ρ(300K)] values for several representative CPs in the metallic,
critical, and insulating regimes [77].

CP Type
Metallic Critical Insulating

ρr σ (S·cm−1) ρr σ (S·cm−1) ρr σ (S·cm−1)

Polyacetylene-I2 <10 >5000 10–20 3–5 × 104 >20 <3000
Polyacetylene-I2 <5 >5 × 104 9.8–165 2–5 × 104 >400 <2 × 104

Polyacetylene-FeCl3 <2 >2 × 104 2.6–11.4 1–2 × 104 >27 <104

PPV-AsF5 <5 300–2400 9.7–34 100–300 >50 <100
PPV-H2SO4 <2 >4 × 103–104 4.7–27 1000–4000 >60 <1000

PPy <2 300–400 2–10 200–300 >10 <200
PANI <2 250–350 2–5 200–250 >10 <200

In general, the conductivity of doped CPs decreases with decreasing temperature, in contrast
to the conductivity of conventional metals which increases with decreasing temperature. Precedent
studies have found that the conductivity of CPs at higher doping levels shows weaker temperature
dependence [79,80]. This characteristic suggests that the conductivity is still limited by phonon-assisted
hopping between localized states resulting from material imperfections or tunneling between metallic
regions [41]. The relationship between the DC conductivity and temperature for highly and moderately
doped polyacetylene samples has been investigated by Roth et al. [81]. For a highly doped sample, the
conductivity changes little with increasing temperature, while the change is dramatic for moderate
doping levels. Aleshin et al. [82] reported the metallic behavior of PF6-doped PEDOT upon their
studies of its temperature-dependent behavior. Its resistivity increased monotonically with falling
temperature down to 10 K. When the temperature was lower than 10 K (ρr =

[
ρ(1.4 K)
ρ(300 K)

]
< 2.1), the

temperature coefficient of resistivity changed from negative to positive. This is a feature specific
to conventional metals, and the transition can be explained by the contribution of electron-electron
interactions at low temperatures. Recently, Lee et al. [83] discovered that camphor sulfonic acid
(CSA)-doped PANI exhibits conductivities of more than 1000 S·cm−1 at room temperature, and
that the resistivity exhibits the features of a conventional metal over a large temperature range
below room temperature. The resistivity decreased as the temperature rose from 5 to 300 K with
ρr =

[
ρ(5 K)

ρ(300 K)

]
≈ 0.4. This feature of CPs behaving like conventional metals over a large temperature

range had never been reported in the literature before. These samples were on the metallic side of the
insulator-metal transition. Thus, the use of these metallic polymers could be expanded to a range of
important applications.

4. Electrochemical Properties

4.1. Reversible Oxidation/Reduction

As described in Section 2.2, doping typically leads to the formation of charge carriers, which is
accompanied by changes (e.g., from benzenoid to quinoid) in the geometric structure of the CP.
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The original geometric structure can be recovered by reducing the polymer back to its pristine
(undoped) state. The reversible doping/de-doping of the polymer corresponds to charge/discharge,
which forms the basis of the principles behind polymer-based sensors and capacitors. The p-doping or
electro-oxidation of CPs can be rationalized mechanistically as electrons in the π-bond being extracted
and moving along the polymer skeleton while counter-anions from the electrolyte insert into the
polymer chain to balance the electronic charge. The mechanism of n-doping or electro-reduction of
CPs involves electrons being transported to the polymer backbone and counter-cations intercalating
into the polymer backbone from the electrolyte solution in order to balance the overall charge.

The most powerful electrochemical technique used to study redox processes in CPs is cyclic
voltammetry (CV). CV measures the current resulting from an applied potential with a fixed scan
rate (in mV·s−1). During redox reactions, reduction makes polymer chains negatively charged while
oxidation produces positively charged polymer chains. When doping and de-doping are performed,
ions move in and out of the polymer matrix. The current peak for a reversible system is then
calculated by

i = n2F2 AΓv[
exp θ

RT(1 + exp θ)
] (9)

where θ = (nF/RT)(E − E◦), n is the number of electrons, and A is the electrode area (cm2). The current
peak is directly proportional to the surface coverage (Γ) and potential scan rate (v), which is valid only
for thin CP films with dopant ions that have small diffusion coefficients. This phenomenon has been
discussed in studies on the electrochemical properties of BF4-doped PPy undertaken by Diaz et al. [84].
The cyclic voltammograms in such cases show completely symmetrical redox peaks (one-electron
redox processes) in the range between the points on the curve at −0.4 and +0.3 V. The current
increases proportionally with v and the voltammograms do not change when the solutions are stirred.
The color of the film changes from yellow to black, corresponding to the neutral and oxidized states,
respectively. With the use of very large or sluggish dopant ions for thick films, the electrochemical
charging/discharging process becomes diffusion controlled. Current is then proportional to v1/2 and
the voltammogram changes from symmetrical to asymmetrical. It is clear that the reduction peaks
shift negatively and the oxidation peaks shift positively with an increase in the scan rate (Figure 6) [85].
As the potential scan rate is increased, the voltage application becomes faster and the electrode material
may not have enough time to undergo oxidation and reduction reactions completely. Hence, there
may be severe kinetic limitations to charge transfer at high voltages.
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For multi-electron transfer processes, the cyclic voltammograms reveal several redox couple
peaks. A typical voltammogram exhibiting reversible p-doping for PANI is shown in Figure 7. It shows
that two pairs of peaks appear at a scan rate of 50 mV·s−1. Two oxidation peaks for PANI are observed
at 0.72 and 0.31 V. The reverse scan features reduction peaks at 0.48 and 0.09 V corresponding to
de-doping of the polymer. Interestingly, the cyclic voltammetric behavior of the PANI electrode is
dependent of the kind of acid electrolyte used, which may be caused by the different sizes and charges
of the dopants. Sulfuric and hydrochloric acid dissociate in water to produce protons and anions. Since
protons are formed in both acids, the different cyclic voltammetric behaviors may be attributed to a
difference between the SO2−

4 and Cl− anions. The ionic radius increases with increasing number of
electron shells. Therefore, the larger ion (SO2−

4 ) is considered less diffused into the PANI electrode
than the smaller ion (Cl−). Similarly, the conductivity of the PANI can be also affected by the kind of
dopant. PANI doped with hydrochloric acid exhibits higher electrical conductivity, indicating that the
effective migration of anions (dopant ions) into the electrode material is a crucial factor affecting both
the electrical and electrochemical characteristics of the CP electrodes.

Doping processes clearly affect the electrochemical properties of CPs. It is also important to
note that the morphology of a CP, particularly at the nanometer scale, can have a critical effect on its
electrochemical properties. For example, Figure 8a shows the voltammograms of three different PANI
nanostructures, i.e., nanospheres, nanorods, and nanofibers, recorded in sulfuric acid solutions (SO2−

4
dopant anion) [86]. While the voltammograms all exhibit a similar shape, the integrated area of each
voltammogram increases in the order nanospheres < nanorods < nanofibers. More specifically, the
effect of the potential scan rate on the peak current was monitored, as seen in Figure 8b. Both anodic
(Ipa) and cathodic (Ipc) peak currents are linearly proportional to the scan rate, indicating that electrode
kinetics is subject to a surface-controlled redox process. Figure 8c shows the anodic (Epa) and cathodic
(Epc) peak potentials as a function of the log of the scan rate. The electron transfer coefficient (α) and
electron transfer rate constant (ks) can be calculated using the Laviron theory. The α values are found
to be 3.6 × 10−1–3.7 × 10−1. The ks value (4.3 × 10−1 s−1) of PANI nanofibers is higher than that of
the other PANI nanostructures (nanorods: 3.1 × 10−1 s−1; nanospheres: 2.6 × 10−1 s−1), indicating
that the electron transfer capability of PANI is highly dependent on the structural characteristics.
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Figure 8. CV analysis of PANI nanostructures with three different shapes (nanosphere, NS; nanorods,
NR; and nanofibers, NF) performed in a 1 M sulfuric acid solution. (a) Cyclic voltammograms of
electrodes consisting of PANI nanostructures at the same scan rate (25 mV·s−1); (b) plots of the peak
current (the anodic peak current, Ipa; the cathodic peak current, Ipc) vs. the scan rate; and (c) plots of
the peak potential (the anodic peak potential, Epa; the cathodic peak current, Epc) vs. the log of the
scan rate. With permission from [86]; Copyright 2012, American Chemical Society.

The redox processes of CPs are stable and reversible in an established potential range. However,
when a CP electrode is scanned at higher potentials, the CP undergoes rapid structural degradation
and loss of electroactivity (irreversible oxidation). These phenomena have been reported to be
because of so-called overoxidation [87]. The mechanism of overoxidation is quite complex and the
irreversible structural change upon overoxidation is not fully understood. Beck et al. [88,89] found that
overoxidation is strongly influenced by the presence of nucleophiles such as OH− and Br−. In other
studies, overoxidation also showed a dependence on the pH of the electrolyte. In some cases, no
detectable overoxidation occurred at pH < 0.1 [90,91]. Therefore, the choice of solvent and electrolyte
as well as the electrochemical potential play important roles in avoiding irreversible structural change
during the application of CPs.

4.2. Pseudocapacitance

Recently, significant attention has been dedicated to the application of CPs in electrochemical
capacitors. Electrochemical capacitors can be divided into two device types according to the mechanism
of charge storage: electrochemical double layer capacitors (EDLCs) and pseudocapacitors. EDLCs are
based on non-Faradaic phenomena. They store charge using reversible adsorption of electrolyte ions
onto large-surface-area electrodes. Various materials have been extensively examined and utilized
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for EDLCs. Representatively, porous carbon materials with high surface-to-volume ratios have been
widely used as electrode materials for EDLCs [92]. In contrast, charge storage in pseudocapacitors
is based on a Faradic mechanism, which takes advantage of redox reactions to store charge in the
electrode. This feature makes pseudocapacitors exhibit battery-like behavior in charge/discharge
processes. In general, pseudocapacitors provide higher specific capacitance and energy density than
EDLCs. The reversible redox capability of CPs allows pseudocapacitive charge storage. During
charging, anions from the electrolyte are inserted into the polymeric chain and electrons are released
from the CP. In other words, the charging is accompanied by an oxidation process. Conversely,
discharging proceeds through a reduction process. For instance, the charge/discharge process for
PANI in sulfuric acid solution (p-doping) can be expressed as follows:

Charging process (oxidation) : PANI + nSO2−
4 → PANI2n+ : nSO2−

4 + 2ne

Discharging process (reduction) : PANI2n+ : nSO2−
4 + 2ne→ PANI + nSO2−

4

To study the electrochemical performance of pseudocapacitors, CV may be performed in a
three-electrode cell to determine the capacitance. Under redox cycles, the specific capacitance is
obtained from CV curves according to the following equation [93]:

C =
1

mv(Vb −Va)

∫ a

b
idV (10)

where i is the discharge current corresponding to the reduction peak in the case of p-doping (and
the oxidation peak in the case of n-doping), v is the potential sweep rate, m is the mass of deposited
material, and Va and Vb are the high and low potential limits of the CV tests, respectively.

The mechanical stress in CP films has already been proven to be associated with the cycle life of
pseudocapacitors. Hu et al. descried the cycle stability of HCl-doped PANI film in 1 M H2SO4 at a rate
of 20 mV·s−1 [94]. The reduction peak had nearly disappeared by the 500th cycle, which indirectly
implies instability of the capacitor electrode. Upon redox switching, volume change occurs because
of insertion/extraction of dopants into and from the polymer chain. The large volumetric swelling,
shrinkage, and cracking of CPs during charge/discharge (doping/de-doping) processes often lead to
mechanical deterioration of the polymer structure, degradation of electrochemical performance, and
rapid decay of capacitance [95]. Thus, achieving long-term cycle stability is a significant challenge for
high-performance pseudocapacitors based on CPs. Conversely, the performance of energy storage
devices including pseudocapacitors is evaluated mostly by measuring energy density and power
density. The energy density is the maximum energy that a device of a given size or mass can store.
The power density measures how quickly the battery can deliver energy for a given size. The power
density (P) and energy density (E) of a CP electrode material are normally derived from galvanostatic
charge/discharge cycles and can be calculated using the following equations:

E =
1
2

C∆V2 (11)

P =
E
∆t

(12)

where C = i∆t/m∆V is the specific capacitance derived from galvanostatic tests, ∆t is the discharge
time, and ∆V is the potential window (or the voltage range for two electrode cells). To enhance
the power density and energy density of pseudocapacitors, it is very important to maximize the
specific capacitance and potential window. Currently, most studies are focused on developing
advanced materials to improve the conductivity, charge/discharge rate, effective surface area, and
redox capability of pseudocapacitors. For example, CPs have been combined with other functional
materials, which has provided opportunities for ameliorating conductivity (particularly at the
more negative/reducing potentials), cycling stability, mechanical stability, specific capacitance, and
processibility [96,97].
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4.3. Swelling and De-Swelling

The insertion/de-insertion of ions/solvent to CP matrix during redox processes can lead to
extensive changes in the dimensions of the polymer [98–100]. CPs undergo swelling and de-swelling
(volumetric change) as their redox state is changed. This swelling/de-swelling can be separated into
two components: an intrinsic part due to changes in bond lengths and conformation of the polymer
backbone, and osmotic expansion of the polymer phase [101]. This phenomenon has been proposed to
be exploitable for a new generation of actuators. CP actuation can be chemically and electrochemically
controlled [102]. Representatively, the mechanism of the electrochemical actuation in CPs is illustrated
in Figure 9. Polymer chains become positively charged when electrons are extracted by oxidation.
Small anions are inserted into the polymer matrix in order to maintain overall charge neutrality. Ionic
crosslinks are formed between polymer chains and anions, resulting in an increase in the total volume.
The dopant anions can be expelled during electrochemical reduction by the application of negative
voltages (Figure 9a–c). Essentially, this anion-driven actuation causes swelling upon oxidation and
de-swelling upon reduction [103].
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In other cases, when the anions that are incorporated during polymerization are large enough,
they become immobilized and are thus trapped inside the polymer structure. The CPs then show
further swelling on addition of cations from the solution for charge compensation during reduction
(Figure 9c–e). This type of actuation can be defined simply as cation-driven actuation. Electrochemical
quartz crystal microbalance studies have shown that the expansion decreases as the electrolyte
concentration increases. The total volume change caused by solvent molecules and ions can be
explained by the osmotic effect [101]. Free-standing films of PPy doped with dodecylbenzene sulfonate
were investigated to examine the effects of the solvent molecules and electrolyte ions. As the electrolyte
concentration increased from 0.1 to 1.0 M, the expansion decreased by around 30%. This result
agrees with the observations made by Maw et al. [104] and Aydemir et al. [105], which indicated that
solvent molecules move in and out of the film associated with the electrolyte [99]. There are many
significant parameters affecting this actuation, such as the chemical/physical properties of the CP
and the size/type of dopant and electrolyte ions. In addition to tailoring the properties of the main
components, such the CP and electrolytes, it is very important to design efficient actuating systems for
significant improvement of the performance of CP-based soft actuators. Several remarkable actuating
systems have been designed, such as bilayer-trilayer actuators, out-of-plane actuators, and linear
actuators [102].
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4.4. Electrochromism

It is known that reversible doping/de-doping of CPs is mediated by oxidation/reduction
processes. Visible color change of CPs can be effected by reversible redox processes, a phenomenon
known as electrochromism. This interesting property makes CPs attractive candidates for
electrochromic applications such as electrochromic displays [106], smart windows [107], and rearview
mirrors. It is believed that this color change depends on both the energy gap of the CPs and the
dopants. The mechanism of electrochromism is due to insertion/de-insertion of dopant ions through
doping/de-doping processes. The doping induces reorganization of the electronic structure of the
polymer, resulting in reduced energy gap for the π–π* transition. The formation of sub-bands by charge
carriers such as polarons and bipolarons modulates the absorbance of the CPs, which causes changes
in their color. Normally, the energy gap for pristine CP thin films is higher than 3.0 eV, and the films
are colorless and transparent in the undoped state. Thin films can also show the strongest absorption
spectra in the doped state in the visible region. If pristine CPs have an energy gap around 1.5 eV, they
strongly absorb visible light and produce high-contrast colors in the undoped state. However, after
doping, the absorption wavelength moves to the near-infrared region [107].

The colors of CPs may be different in different redox states. For instance, electrochromic properties
of PANI (p-doping) have been widely studied in acid, salt, and organic media by CV. Various forms of
PANI related to pronation/deprotonation and insertion/de-insertion of anions have been reported.
Nitrogen atoms in PANI chains are responsible for the injection of protons or anions to form radical
cations [108–110]. The different redox/protonation states of PANI are presented in Figure 10. PANI
exhibits color changes from transparent yellow to green, blue, and violet. The absorption spectra can be
extended from the visible to the infrared region using the complexation of CPs [111]. The electrochromic
properties of CPs depend on chemical structures, redox capability, temperature, and the pH of the
electrolyte solution. In particular, the switching time of the color changes strongly depend on the
speed of migration with which protons/dopant ions move in and out of the polymer matrix. Therefore,
the morphology and microstructural properties of CPs, such as their dimensions and porosity, should
be controlled to enhance the rate of color change. For extended application of CPs to electrochromic
devices, it is necessary to further enhance their properties to ensure long life cycle time, rapid color
change switching, and high color contrast.
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5. Applications

5.1. Electrochemical Capacitors

Pseudocapacitive CPs exhibit high conductivity, structural flexibility, and chemical stability in
corrosive electrolytes. In this section, the development of CP-based pseudocapacitive materials is
reviewed in reference to the remarkable studies undertaken recently [112,113].
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The electrode materials most widely used for pseudocapacitors are CPs and metal oxides such as
MnO2 [114] and NiO [115]; metal chalcogenides such as TiS2 [116], MoS2 [117], and Co0.85Se [110]; and
metal hydroxides such as CoSn(OH)6 [118]. In particular, metal oxides have been intensively studied for
pseudocapacitors because they exhibit high theoretical capacitances. However, their poor conductivity,
inflexibility, and high cost prevent them from being widely applied. In contrast, CPs such as PANI
and PPy not only show high energy storage capacity but also present the possibility of fabricating
flexible electrodes. However, a serious drawback of CPs in practical application lies in their poor
cycling stability. To resolve this issue, many researchers have developed new methods for preparing
electrode materials with improved microstructures and morphologies based on hybridization and the
fabrication of well-designed nanostructures. These materials show enhanced cycling stability, power
density, and energy density. As an interesting example, the relationship between the morphology of
PANI nanostructures and their capacitance has been investigated by Park et al. [86]. PANI nanospheres
were synthesized in an acidic aqueous solution. They were then evolved into nanorods and nanofibers
by varying the concentration of the steric stabilizer. The morphologies of the PANI nanostructures
are exhibited in Figure 11. The discharging capacitance and cycling stability of the three different
nanostructures were examined under the same conditions. The specific capacitances were measured
to be 71, 133 and 192 F·g−1 for nanospheres, nanorods, and nanofibers, respectively. In other words,
the higher the aspect ratio of the nanostructure, the higher the specific capacitance. This is because the
oxidation/protonation level of PANI increased with increasing aspect ratio. Better structural ordering
in the PANI chains is believed to contribute to the outstanding oxidation level of the nanofibers.
Furthermore, the nanofiber electrode had faster electrode kinetics than the nanorod and nanosphere
electrodes. Thus, the morphology or aspect ratio of the nanostructure is a significant factor affecting
the performance of the related pseudocapacitor. A year later, Chen et al. [119] continued to investigate
PANI nanostructures of different shapes (i.e., nanofibers, nanospheres, and nanotubes) prepared using
MnO2 reactive templates for pseudocapacitor applications. The nanotubes showed the best capacitance
owing to its higher surface area. In a redox active electrolyte, the nanotubes showed an improved
specific capacitance of 896 F·g−1@10 A·g−1, which is the maximum value achieved for a PANI capacitor
cell reported so far. Finally, the cycling stability of the PANI nanotubes over 5,000 cycles was much
better than those of the other two nanostructures [120–122].
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Figure 11. Field-emission scanning electron microscope images of PANI nanostructures with different
aspect ratios synthesized under the same stirring conditions (200 rpm) and histograms showing their
size distribution (D, diameter; L, length): (a) nanospheres; (b) nanorods; and (c) nanofibers. With
permission from [86]; Copyright 2012, American Chemical Society.

The dependence of pseudocapacitance on the size of CP nanoparticles has also been investigated.
It was expected that the size of the CP nanoparticles would proportional to the pseudocapacitance
because the redox process is mostly confined to the surface of the polymeric nanoparticles. However,
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nanoparticles must pack together to form bulky electrodes for applications, and the packing of the
nanoparticles significantly affects the performance of these pseudocapacitive electrodes. Lee et al. [123]
examined the random packing effect for binary mixtures comprising two of three different diameter
PPy nanospheres (20, 60, and 100 nm) on the pseudocapacitance of macro-scale electrodes. The packing
of the binary nanosphere mixtures showed diverse and complicated behavior in terms of effective
surface area and porosity. Importantly, they found that the use of nanosphere mixtures with lower
diameter ratios (20 nm/100 nm) at an optimized composition led to more dense and efficient packing,
which in turn contributed to better device performance (enhanced specific capacitance and coulombic
efficiency) (Figure 12). Although PPy is a soft material, as mentioned earlier, most of the faradaic redox
reaction for pseudocapacitance is confined to the PPy surface. Therefore, geometrical factors like the
surface area and porosity depending on the packing of nanospheres could determine the performance
of the nanosphere-assembled electrodes.
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Figure 12. Effect of binary nanoparticle packing on electrode performance. Ternary diagrams for
nanospheres of three different diameters showing the distribution of (a,b) specific capacitance and
(c,d) coulombic efficiency as a function of the mixed weight fraction (f m) measured at (a,c) 0.1 A·g−1

and (b,d) 1.0 A·g−1. A three-electrode system was used with 1 M sulfuric acid solution. The Ec

values were calculated from the charge/discharge curves. Reprinted with permission from [123].
Copyright 2016, Royal Society of Chemistry.

However, it has been noted that control of the size and morphology of a CP material does
not improve its performance beyond an intrinsic limit. A number of heterogeneous components
have been introduced into CPs to overcome this intrinsic limit. For example, a combination of three
organic additives (D-glucitol, dodecylbenzenesulfonic acid, and CSA) has been used as a complex
dopant for improving the adhesive properties and conductivity of PANI [124]. Hybridizing CPs
with carbon nanomaterials is also believed to improve the electrical, electrochemical, and mechanical
properties of the corresponding electrodes [125]. Hybrid nanomaterials can be obtained by physical
and chemical methods. For instance, Choi et al. [126] have described a simple physical method to
prepare graphene/PANI multilayered nanostructures (GPMNs) for flexible electrochemical capacitor
application. PANI was spontaneously intercalated between the graphene sheet layers without
deterioration of the sp2-hybridized bonding structure under sonication (Figure 13). Compared with
PANI alone, the GPMNs exhibited greatly improved charge/discharge cycling stability, retaining
82% of their initial specific capacitance after 5000 cycles. Graphene imbued the material with
prodigious mechanical properties and aided formation of the charge-transfer complex, which
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mitigated the rapid capacitance degradation of PANI caused by volume changes or mechanical
issues. Interestingly, the micromorphology of the PANI between the graphene layers was highly
dependent on the dispersion medium. The GPMNs were produced from N-methyl-2-pyrrolidone
(NMP) (GPMN-N). When the NMP was replaced with water (GPMN-W), the PANI chain agglomerated
to form larger granular clusters. GPMN-Ws had a more porous structure, leading to different
electrochemical properties. Yu et al. [127] showed that reduced graphene oxide (RGO)-sheet-wrapped
PANI nanowire arrays grown on a nitrogen-doped carbon fiber cloth (NCFC) exhibited excellent
mechanical, physical, and chemical properties. The RGO layer accommodated volume changes and
mechanical deformation of the coated PANI nanowire arrays during long-term charge/discharge
processes. The RGO/PANI/NCFC composite electrode had a large surface area and superior
conductivity, providing a high specific capacitance of 1145 F·g−1. Furthermore, this material
retained over 94% of its initial capacitance after 5,000 cycles. The use of carbon nanomaterials
is extremely interesting. Consequently, many hybrids such as PANI/carbon nanotubes [128],
PPy nanowires/carbon cloth [129], carbon nanofiber/graphene oxide/PANI [130], PPy/rGO and
PANI/rGO bilayers [131], PANI/graphene nanosheets [132], and PANI or PPy/carbonaceous
films [133] have been reported.
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Figure 13. (a) Schematic illustration of the formation of graphene/PANI multilayered nanostructures
(GPMNs) by direct physical exfoliation of graphite with PANI glue; (b) photographs showing the
long-term colloidal stability of a GPMN dispersion solution in the absence (left) and presence (right)
of PANI glue. GPMNs showed outstanding colloidal stability in both NMP and water. Reprinted with
permission from [126]. Copyright 2015, John Wiley & Sons.

To obtain improved properties, a large number of recent works regarding CP nanocomposites
have focused not only on using carbon nanomaterials but also on using metal compounds. For instance,
CPs may be coated onto metal nanostructures to improve their electrochemical performances.
A heterojunction structure composed of a conductive metal core and a nanoscale CP sheath presented
enhanced specific capacitance and maintained good cycling stability [134]. Jabeen et al. [134] combined
PANI with mesoporous NiCo2O4 (NiCo2O4@PANI) into a hybrid electrode material. Figure 14 shows
that NiCo2O4 nanorod arrays were first grown on the carbon cloth by a hydrothermal process, followed
by coating PANI on the NiCo2O4 by electrodeposition at an applied potential of 0.8 V (vs. Ag/AgCl).
The products possessed a unique core–shell heterostructure that was favorable for the full exertion
and utilization of the pseudocapacitive PANI layer. In addition, the porosity of the NiCo2O4 facilitated
ion transport and accommodated structural deformation of the hybrid electrode. Consequently, the
electrode material exhibited a high specific capacitance of 901 F g−1 and an outstanding cycling stability
of approximately 91% after 3,000 charge/discharge cycles. As another recent example, PANI-coated
hexagonal molybdenum trioxide (h-MoO3) hollow nanorods were obtained through a bottom-up
approach [135]. Briefly, h-MoO3 hollow nanorods were formed using the cation-exchange-assisted
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Kirkendall effect. Chemical oxidation of aniline monomers on the active h-MoO3 surface resulted in the
formation of a PANI sheath. Compared with PANI or h-MoO3 hollow nanorods alone, the combination
of the heterogeneous redox-active components (PANI@h-MoO3) reinforced the pseudocapacitive
performance of the nanocomposites over a wide range of current densities. The hollow structures can
accommodate higher strain produced by a large volume change during the charge–discharge process.
Moreover, the presence of a PANI shell around the h-MoO3 core could significantly improve the
cycling stability of the nanocomposite electrodes. Therefore, the nanocomposite electrode showed an
improved specific capacitance maximum of 270 F·g−1 when compared to that of the pristine h-MoO3

hollow nanorods (126 F·g−1) and PANI only (180 F·g−1), and enhanced cycling stability.
Furthermore, the performance of CP-based electrochemical capacitors also depends on the

parameters of the capacitor cells, such as the symmetric/asymmetric electrode configuration,
membrane, electrolyte, and electrode mass ratio. Therefore, it is highly important to optimize the cell
system for practical applications.
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5.2. CP Sensors

A sensor is a device that converts an input parameter (e.g., temperature, humidity, or chemical
and biological species) into a signal that can be measured. The output signal of the sensor is normally
based on changes in electrical or optical properties. CPs show reversible changes in conductivity, color,
and volume, which makes them suitable materials for sensing. Since CPs can interact with organic
compounds and moisture present in the surrounding environment, they are sometimes unstable and
consequently may exhibit low sensitivity and selectivity to a target analyte, which needs to be improved.
There have been many efforts to improve the sensitivity and selectivity of CP sensors by tailoring
their properties [22,136,137]. A variety of functional heterogeneous materials have been introduced to
CPs for modifying their electronic, chemical, and microstructural properties, resulting in interesting
findings [125,137]. Regarding heterogeneous functional components, current interests focus on use of
chalcogenides, carbon nanotubes (CNTs), graphene, metal oxide particles, metal particles, and other
polymers. CP sensors have been realized by exploiting conductometric, potentiometric, amperometric,
voltammetric, gravimetric, pH-based, and incorporated-receptor-based sensing modes [22,138,139].

5.2.1. Chemical Sensors

First-generation pristine CP film sensors (un-doped) were used to detect gas/vapor species
(including NO2, SO2 and I2) by directly exposing the sensors to the target environment and
monitoring changes in conductivity. However, this method faced the limitation of poor selectivity
because the surrounding environment normally contains many interferences including humidity.
Forzani et al. [140] developed a chemical sensor based on both amperometric and conductometric
modes. The dual-mode sensor used PANI to detect an analyte through both individual and
simultaneous changes in the electrochemical current and conductance of the polymer. This sensor
showed improved selectivity for the detection of target analytes in complex samples and even in the
presence of high concentrations of unexpected elements by control of the applied potential. Many
researchers have developed metal/CP nanocomposites for rapid, selective CP chemical sensors.
Athawale et al. [141] used a Pd/PANI nanocomposite as a component for selective methanol sensors.
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The resulting nanocomposite was highly sensitive and selective to methanol vapors in the air. Fourier
transform infrared spectroscopy analysis demonstrated that the Pd nanoparticles catalyzed the
reduction of the imine nitrogen of PANI to an amine by methanol, contributing to the enhanced
selectivity of the nanocomposite. Various metal or metal compounds/CP nanocomposites have been
employed to detect different chemical targets, as listed in Table 5.

Table 5. Metal or metal compound/CP nanocomposites for chemical sensors.

CPs Metal Compounds Target Detection References

PANI Pd Methanol [141]
PANI Ag Ethanol [142]
PANI Cu Chloroform [143]
PPy ZnO Liquefied petroleum gas [144]
PPy Fe2O3 CO2, N2, CH4, H2S, NH3 and humidity [145,146]
PPy Lead phthalocyanine (PbPc) NO2 [147]

To enhance the performance of CPs in chemical sensors, Kwon et al. [148] investigated the
effect of PPy nanoparticle size on chemical sensing behaviors in the detection of volatile organic
compounds and toxic gases. PPy nanoparticles with diameters of 20, 60 and 100 nm were chemically
fabricated using a soft-template approach in aqueous solution. It was found that the conductivity and
surface-to-volume ratio increased with decreasing nanoparticle sizes. The chemical sensor based on
the smallest PPy nanoparticles (20 nm) showed the best sensing performance, i.e., excellent sensitivity,
rapid response time, reversibility, and reproducible responses. A large surface area promotes effective
contact with analytes, which leads to high sensing performance. Furthermore, multidimensional PPy
nanotubes with surface substructures have been fabricated and used to develop highly sensitive and
selective chemiresistive sensors for monitoring volatile organic compounds and toxic gases in human
breath. The lowest detection limit was 10 ppm for gaseous ammonia, which is the most sensitive
recognition of ammonia by such sensors so far. The important point in this discovery is that the unique
morphology of the multidimensional nanotubes was advantageous for sensor application by virtue of
their improved charge transport behavior and enlarged effective surface area [149,150]. Furthermore,
PPy nanotubes functionalized with carboxylic acid were used to fabricate a chemiresistive gas sensor
for detecting dimethyl methylphosphonate, a nerve agent [151]. The presence of carboxylic groups on
the surface of PPy nanotubes through intermolecular hydrogen bonding enhanced their sensitivity
to dimethyl methylphosphonate. The result showed that the sensitivity of the chemiresistors was
strongly dependent on the degree of functionalization with the carboxylic group.

Hybridizing carbon nanomaterials with CPs is not only popular in electrochemical capacitors but
also has applications in sensing applications. PPy/cellulose (PPCL) composite membranes have been
demonstrated to be a potential material for detection and removal of metal ions in flow systems [152].
PPy was coated onto a cellulose membrane without any significant loss of microstructural integrity via
vapor deposition polymerization. In the resulting PPCL composite membranes, PPy gave excellent
electrochemical properties while cellulose provided high mechanical strength for enduring solution
flow. Remarkably, the PPCL membranes revealed different electrochemical properties under different
applied potentials, which led to differentiable signal responses and adsorption efficiencies, even
in the flow system (Figure 15). Principal component analysis, a statistical technique for finding
covariances among multivariate data, was used to study the ability of the PPCL membrane to
discriminate between seven metal ions. In particular, the PPCL composite membranes exhibited
high recognition and enormous adsorption efficiency for Hg(II), Ag(I) and Cr(III). This result implies
that the sorption of metal ions on the PPCL membrane influences the electrochemical properties of the
membrane, leading to the change in current. The composite membranes showed unique signatures
for the three metal ions even in a real sample (groundwater). Recently, random layer-by-layer
graphene/PANI films were exploited as transducer electrodes to detect NH3 gas based on resistometric
action (Figure 16) [153]. As illustrated in Figure 16b, a series or parallel connection-like configuration
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of intercalated PANI layers was made when a voltage was applied perpendicularly or parallel to
the stacked graphene plane. The graphene/PANI film contained numerous interfacial contacts
between the highly conductive graphene and the semiconductive graphene, which provided unique
anisotropic properties. Interestingly, the series connection-like configuration exhibited better sensing
performance, particularly in terms of sensitivity. With an increase in demand for flexible, low-cost, and
environmentally friendly devices, these fascinating studies on hybridizing carbon nanomaterials and
CPs provide excellent opportunities for the next generation of sensors.Polymers 2017, 9, x 23 of 31 
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Figure 15. Real-time response of PPy/cellulose (PPCL) composite membranes in a flow cell measured
at different applied potentials: (a) Hg(II); (b) Ag(I); (c) Pb(II); (d) Ni(II); (e) Cd(II); (f) Cr(III); and
(g) Zn(II). Reprinted with permission from [152]. Copyright 2014, Royal Society of Chemistry.
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Figure 16. Schematic illustrating (a) the alternating layered structure of graphene/PANI; (b) the
series connection and parallel connection-like structures formed by different orientations of the
graphene/PANI film between the electrodes; and (c,d) the resistometric sensor setup for measuring
the electrical response of the graphene/PANI films (electrode, blue; PANI, green; graphene, black).
Reprinted with permission from [153]. Copyright 2016, American Chemical Society.
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5.2.2. Biosensors

A rise in the number of people affected by disease has prompted researchers to develop suitable
devices for the fast and accurate diagnosis of biological target species. A number of researchers have
used CPs and CP composites for biosensor applications because of their high compatibility with
biological systems. Yoon et al. [154] developed a glucose biosensor based on enzyme-functionalized
PPy nanotubes using a liquid-ion gated field-effect transistor (FET) configuration. Compared with
2D materials, 1D CP nanomaterials as the conductive channel of FETs can provide more sensitive
responses through depletion or accumulation of charge carriers in the nanomaterial bulk. The CP
nanomaterials should be immobilized on electrode substrates for sensing applications in the liquid
phase. However, owing to possible chemical, thermal, and kinetic damages, CPs are unsuitable for
conventional lithographic process. Fortunately, the CP nanomaterials could be chemically immobilized
onto a surface-modified microelectrode substrate. Figure 17 depicts the detailed surface modification
steps for fabricating the FET sensor substrate. In the first step, carboxylated PPy nanotubes (CPNTs)
were anchored onto a microelectrode substrate through covalent linkages and contacted to two
metal electrodes (called the source and the drain). Subsequently, the surface of the CPNTs could be
functionalized with the enzyme glucose oxidase (GOx) through covalent binding. When the enzyme
recognizes glucose, it induces a change in the source-drain current. This FET sensor showed high
sensitivity in detecting glucose at the concentration range 0.5–20 mM. A similar concept has also
been applied to detecting different kinds of biomolecules such as proteins [155,156], hormones [157],
tastants [158] and odorants [159].
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Figure 17. Schematic illustration of the reaction steps for the fabrication of a field-effect transistor
(FET) sensor platform based on carboxylated PPy nanotubes (CPNTs): (a) microelectrode substrate;
(b) aminosilane-treated substrate; (c) immobilization of the nanotubes onto a substrate; and (d) binding
of GOx to the nanotubes. Reprinted with permission from [154]. Copyright 2008, American
Chemical Society.

Three-electrode electrochemical configuration is also a common strategy for the fabrication of
CP-based biosensors. A gold/PANI nanocomposite was reported for the electrochemical detection
of prostate-specific antigen (PSA) [160]. The hybrid nanocomposite was obtained via electrostatic
self-assembly of gold nanoparticles on PANI nanowire-deposited electrodes. The nanostructured
gold/PANI composite provided effective surface sites for the immobilization of anti-PSA that facilitated
charge transport and thereby enhanced sensing properties. The immunochemical sensor measured the
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concentration of PSA by differential pulse voltammetry. This sensor not only exhibited a long linear
range in a calibration curve with a detection limit of 0.6 pg·mL−1, but also showed high sensitivity,
selectivity, and reproducibility in response. Recently, Hui et al. [161] developed an electrochemical
DNA sensor based on polyethylene glycol (PEG)ylated PANI nanofibers for breast cancer susceptibility
gene (BRCA1) detection. PEG is an inexpensive, nontoxic, and highly hydrophilic polymer; therefore, it
has been widely used in versatile applications from industrial manufacturing to medicine. PEGylation
involves covalently coupling a PEG structure to another larger molecule. Remarkably, the PEGylated
PANI nanofibers had large surface area and remained conductive. Additionally, they showed excellent
antifouling performances in single protein solutions as well as in complex human serum samples.
Consequently, the DNA sensor showed a very high sensitivity to BRCA1 with a linear range of 0.01
pM to 1 nM, indicating the excellent potential of this novel biomaterial for application in biosensors.

6. Conclusions and Outlook

We have described the electrical and electrochemical studies of CPs that have become important
over the last few decades. Understanding these properties is of key importance in the development
of CPs for application in various fields. The theoretical modeling of the transport properties of CPs
is still challenging due to the extreme complexity of the polymeric conjugated systems. However,
continuous study of the origins of conductivity and knowledge of doping reactions have made it
possible to control the kinetics of the charge-transfer reactions. Electrons are either added to or
extracted from the delocalized π-bonded polymer backbone, leading to the formation of charge carriers
such as polarons, bipolarons, and solitons. The mobility of these carriers is affected by a variety of
factors, such as the dopant, temperature, and inherent structure. The conductivity can be improved
successfully by electrochemical doping, both n-type and p-type, to induce an insulator-to-metal
transition in the CPs. CPs offer many advantages in applications as in electrochemical capacitors,
actuators, and sensors. However, the major disadvantages of CPs when used in these applications
include their inferior long-term stability. Furthermore, the conductivity of CPs still has much room
for improvement. The conductivity of CPs is lower than that of metals, and this has limited their use
in specific applications such as transistors and memory devices. It is believed that overcoming these
existing problems will make CPs strong candidates for a diverse range of future applications.
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Abbreviations

The following abbreviations are used in this manuscript:

CPs Conducting polymers
PPy Polypyrrole
PANI Polyaniline
PT Polythiophene
PEDOT Poly(3,4-ethylenedioxythiophene)
PPV Poly(p-phenylene vinylene)
HOMO Highest occupied molecular orbital
LUMO Lowest unoccupied molecular orbital
CSA Camphor sulfonic acid
CV Cyclic voltammetry
EDLCs Electrochemical double layer capacitors
RGO Graphene oxide
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NCFC Nitrogen-doped carbon fiber cloth
CNTs Carbon nanotubes
PPCL PPy/cellulose
FET Field-effect transistor
CPNTs Carboxylated polypyrrole nanotubes
GOx Glucose oxidase
PSA Prostate-specific antigen
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