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Abstract

Spinal cord injury (SCI) is a devastating neurological disease without effective treatment. To generate a
comprehensive view of the mechanisms involved in SCI pathology, we applied RNA-Sequencing (RNA-Seq)
technology to characterize the temporal changes in global gene expression after contusive SCI in mice. We
sequenced tissue samples from acute and subacute phases (2 days and 7 days after injury) and systematically
characterized the transcriptomes with the goal of identifying pathways and genes critical in SCI pathology. The top
enriched functional categories include “inflammation response,” “neurological disease,” “cell death and survival” and
“nervous system development.” The top enriched pathways include LXR/RXR Activation and Atherosclerosis
Signaling, etc. Furthermore, we developed a systems-based analysis framework in order to identify key determinants
in the global gene networks of the acute and sub-acute phases. Some candidate genes that we identified have been
shown to play important roles in SCI, which demonstrates the validity of our approach. There are also many genes
whose functions in SCI have not been well studied and can be further investigated by future experiments. We have
also incorporated pharmacogenomic information into our analyses. Among the genes identified, the ones with
existing drug information can be readily tested in SCI animal models. Therefore, in this study we have described an
example of how global gene profiling can be translated to identifying genes of interest for functional tests in the future
and generating new hypotheses. Additionally, the RNA-Seq enables splicing isoform identification and the estimation
of expression levels, thus providing useful information for increasing the specificity of drug design and reducing
potential side effect. In summary, these results provide a valuable reference data resource for a better understanding
of the SCI process in the acute and sub-acute phases.
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Introduction

Spinal cord injury (SCI) is one of the most debilitating
neurological diseases. About 300,000 people are currently
living with SCI in the United States and nearly 11,000 new
cases are reported annually [1]. The expense associated with
the medical care is very high, but clinically available treatments
provide only modest benefit [2,3]. At present, there are no
effective treatments for this devastating neurological disorder.

Previous studies indicated that in the acute phase of SCI,
primary damage occurs as a direct result of trauma when
resilience thresholds are surpassed, leading to immediate
physical, biochemical and cellular alterations. Primary injury

triggers multiple secondary injury cascades that cause further
tissue loss and dysfunction [4]. Unraveling the detailed
molecular events and especially the key genes and pathways
would shed light on both understanding the injury mechanisms
and developing therapeutic strategies.

Due to technical limitations, previous studies have usually
focused on a small number of genes and pathways at a time
[5,6,7,8,9,10,11,12,13,14,15], and thus did not provide a
comprehensive view of the complex mechanisms contributing
to SCI pathology. Considering the large number of biochemical
cascades and cellular reactions involved, a global analysis is
necessary in order to elucidate the pathophysiology of SCI.
Although the use of cDNA microarray and genechip
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technologies have provided valuable insights into the disorder
during the last decade [16,17,18,19,20,21], microarray
technology suffers from limitations in resolution, dynamic range
and accuracy [22]. Recent advances in Next Generation
Sequencing technology, specifically RNA-Seq technology,
make it possible to globally map transcribed regions and
quantitatively analyze RNA isoforms at an unprecedented level
of sensitivity and specificity [23,24].

Notably, recent large scale RNA-Seq studies have revealed
that most mammalian genes generate multiple RNA transcripts
through alternative splicing [25]. Alternative transcripts
encoding proteins with distinct functions or regulatory
properties can have profound physiological effects. Since the
formation of these gene isoforms is tissue and context-
dependent, targeting specific isoforms has the potential to
improve drug efficacy and reduce side effects [26,27]. Herein,
we use RNA-Seq technology to investigate the isoform
expression of genes during the SCI process, thus revealing
another layer of information that is valuable for targeted
therapy and drug design.

In this study, we have generated a comprehensive reference
data resource for a better understanding of the SCI process in
the acute and sub-acute phases. Comparing to the microarray
data from a prior SCI study that is similar to our study, RNA-
Seq data showed higher sensitivity, larger dynamic range and
was able to identify more differentially expressed genes.
Importantly, we have investigated the SCI process as a whole,
rather than as a collection of single gene entities. Based on the
data generated, we characterized the functions and pathways
involved, and developed a systems biology based framework to
analyze the SCI global gene networks that will enable the
identification of potential key determinants in the acute and
sub-acute phases. Some candidate genes that we identified
have been shown to play important roles in SCI, thus
supporting the validity of our approach. There are also many
additional genes that are identified whose functions in SCI
have not been well studied. In the future, we will examine the
roles of these interesting genes using animal models and
functional tests.

Methods

Animal model and tissue preparation
All animal care and surgical interventions were undertaken in

strict accordance with the Public Health Service Policy on
Humane Care and Use of Laboratory Animals, Guide for the
Care and Use of Laboratory Animals, and with the approval of
Animal Welfare Committee at the University of Texas Health
Science Center at Houston.

A total of 24 female C57BI/6J mice (10-16 weeks of age;
20-25g; The Jackson Laboratory, Bar Harbor, ME) were used
with 3 mice pooled together in each biological replicate: sham
control (n=2), 2 and 7 days after SCI (n=3). The surgical
procedure for SCI were described previously [28]. Briefly, after
anesthetization with a mixed solution of ketamine (80 mg/kg ip)
and xylazine (10 mg/kg ip), mice received a dorsal
laminectomy at the 9th thoracic vertebral (T9) level to expose
the spinal cord and then a moderate T9 contusive injury using

an Infinite Horizons impactor (Precision Systems and
Instrumentation) at 60 kdyn with the spine stabilized using steel
stabilizers inserted under the transverse processes one
vertebra above and below the injury [29]. The sham control
mice received only a dorsal laminectomy without contusive
injury. Afterwards, the wound was sutured in layers, bacitracin
ointment (Qualitest Pharmaceuticals, Huntsville, AL) was
applied to the wound area, 0.1mL of a 20 mg/ml stock of
gentamicin (Butler Schein, Dublin, OH) was injected
subcutaneously, and the animals recovered on a water-
circulating heating pad. Then mice received analgesic agent,
buprenorphine(0.05 mg/kg, SQ; Reckitt Benckise, Hull,
England) twice a day for two days. Bladders were manually
expressed until automatic voiding returned spontaneously,
which generally was within 7 days. The mice locomotion tests,
Basso Mouse Score, were performed at 2 and 7 days post-
injury before collecting the injured spinal cord tissues to confirm
the injury severity in each mouse is consistent with moderate
contusion SCI. At 2 or 7 days after SCI, the mice were
anesthetized again with ketamine and xylazine and perfused
briefly with normal physical saline. The injured spinal cords
were then dissected. 0.5 mm pieces of spinal cord were cut in
the injured epicenter and frozen in liquid nitrogen and
processed for RNA isolation. Histological staining was done by
the iron-eriochrome cyanine R (EC) staining. The spinal cords
from the epicenter, 6mm and 12mm to the epicenter caudally
and rostrally were used for staining.

RNA-Sequencing
RNA-Seq was performed on the polyadenylated fraction of

RNA isolated from tissue samples of acute (2D) and subacute
phase (7D) and normal tissues (control, denoted as CTR
hereafter). Three biological replicates were used for 2D and
7D, and two biological replicates were used for sham control.
Trizol was used to extract total RNA and the quality was
accessed by Bioanalyzer. Only samples with RIN>8 were used
for library construction. 150-300 ng total RNAs were used for
each sequencing library. RNA samples were polyA selected
and paired-end sequencing libraries were constructed using
TruSeq RNA Sample Prep Kit as described in the TruSeq RNA
Sample Preparation V2 Guide (Illumina). The samples were
then sequenced using the Illumina HiSeq sequencer.

Mapping sequence reads to the mouse genome
The 100bp paired-end RNA-Seq reads were mapped to the

mouse reference genome (version mm9) by the Top hat
software [30] (version 1.3.3) which uses the Bow tie read
mapper [31] (version 0.12.7). Because we used spinal cord
tissue which includes mixed cell types, in order to reconstruct
reliable gene structures and obtain accurate expression level
estimations, Top hat was fed with the option of “–no-novel-
juncs”. Only reads compatible with the annotated gene were
considered. The final step in setting up the parameters was to
designate option -G, a prompt which supplies Top hat with
known gene model annotations [32].
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Transcriptome reconstruction and expression level
estimation

Mapped reads were assembled into RNA transcripts using
the Cufflinks software [33] (version 1.3.0). Cufflinks was run
using the annotation file (downloaded from Cufflinks web site)
of known genes and the mapped reads produced by Top hat.
Fragments Per Kilobase of exon model per Million mapped
fragments (FPKM) value (a normalized gene expression value
that are comparable between different samples and genes)
together with confidence intervals were estimated for each
replicate. The whole process (from mapping to FPKM
generation) was automated using our in-house pipeline.

FPKM threshold determination
To facilitate downstream analyses (such as gene expression

fold change analysis etc.) and to access the accuracy and
reliability of our RNA-Seq experiments, we conducted an
analysis based on the 95% confidence intervals of FPKM
values calculated by Cufflinks. For each gene, if its estimated
FPKM value had a lower confidence bound of 0 then it was
labeled as “unreliable” (had a possibility of being 0); in contrast,
if it had a lower confidence bound larger than 0, then it was
labeled as “reliable”. The numbers of “reliable” and “unreliable”
FPKM values were counted at each FPKM level. False positive
and false negative rate curves were produced in order to
identify a FPKM value that is optimized for both false positive
rate and false negative rate (Figure 1A). According to the
above procedure, we identified that at ~0.04 FPKM level, the
probability that a transcript can be reliably detected is ~0.97. At
0.1 FPKM level, the probability that a transcript can be reliably
detected is ~0.99. To be conservative and for the convenience
of calculating fold change, we choose 0.1 FPKM as the
threshold for following analysis. Any FPKM that is below 0.1
were set to 0.1 when calculating fold change of different
samples. This is similar in microarray data analysis, the
background intensities below threshold (floor value) are often
set to the threshold to avoid ratio inflation [34].

Clustering analysis
To group genes according to their expression patterns during

the SCI process, c-means clustering of genes expression
across CTR, 2D and 7D stages was performed using R
package mfuzz (version 2.16.1) [35]. Only genes that have fold
change > 2 between at least 2 stages were used for the
clustering (7239 genes). To evaluate the consistency of
expression estimation among samples, unsupervised
hierarchical clustering was performed using the hclust method
with complete linkage in R (Pearson correlation metric). Top
3000 genes with highest variation across SCI stages were
used.

Comparative analysis of RNA-Seq and prior microarray
SCI study

Microarray gene expression data of a similar SCI study was
downloaded from GEO (Gene Expression Omnibus http://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE5296).
Briefly, global changes in gene expression in C57BL6 mouse

model of contusion injury were evaluated using Affymetrix
Mouse Genome 430 2.0 arrays. Mice were subjected to a
moderate injury at the T8 spinal segment under isoflurane
anesthesia. Sections of spinal cord were analyzed from the site
of impact at 0.5, 4, 24, 72 h and 7 and 28 days after injury (n=3
per group), sham-injury (n=2 per group), or naive mice (n=2).
Four mice were pooled for each individual n, for a total of 12
mice for each injury time point. The time points that are in
common with our RNA-Seq data (sham control (0 hour) and 7
days after injury) were used for comparison analysis. We
downloaded the. cel files from GEO and processed those using
Bioconductor R packages (version 2.12). Intensity data were
normalized per chip using MAS5 algorithm implemented
through Bioconductor affy package. Gene symbols and gene
names were downloaded from Affymetrix NetAffx Mouse430_2
annotations file (http://www.affymetrix.com/support/technical/
byproduct.affx?product=moe430-20).

All probe sets except the AFFX control probe sets were then
mapped to gene identifiers using above mentioned annotation
file. In the situation when multiple probe sets were mapped to
one gene, the probe set with the greatest standard deviation of
expression values was selected.

To evaluate data correlation between microarray intensities
and RNA-Seq FPKM values, spearman correlation were
calculated. Only those genes that are detected on both
platforms were used for calculation. In order to compare the
ability of detecting differential expressed (DE) gene by
microarray and RNA-Seq, fold-change (in log scale) was
calculated using probe intensities of microarray or FPKM
values of RNA-Seq. Differential expressed genes were
determined as fold-change > 2 and p < 0.05 using an unpaired
two-sided t-test.

Quantitative RT-PCR
Quantitative RT-PCR was performed to validate gene

expression changes of C3AR1, CCL7, CD22, CD36, CLEC6A,
FCER1G, FCGR2B, Il7r, LPL, MSR1, and PTX3. Total RNAs
from injured and CTR mice were purified with Trizol reagent
(Invitrogen) and DNA was removed by DNase treatment
(Invitrogen). First-strand cDNA was synthesized from 900 ng
total RNA in a 20-µl volume using SuperScript® Double-
Stranded cDNA Synthesis Kit and SuperScriptII (Invitrogen).
The PCR reaction consisted of 1µl of 1:10-diluted cDNA, 5 µl of
iTaq SYBR Green Supermix With ROX (Bio-Rad Laboratories,
Inc.) and 100 pmol each of 5’ and 3’ primers (shown as below)
in a total volume of 10 µl and was performed in ABI 7900HT
(Applied Biosystems) for 40 cycles with denaturation at 95° C
for 15 seconds, annealing at 60° C for 30 seconds and
extension at 72° C for 30 seconds. RNA without reverse
transcriptase treatment was used as negative control. All qPCR
reactions were performed in triplicate and Ct values were
averaged. Relative Expression Fold Change was calculated
using 2-ΔΔCt method [36]. The calculation was performed
between 2D/CTR and 7D/CTR respectively. Housekeeping
gene Hprt was used. Amplification primers for qRT-PCR were
designed by using PrimerExpress3.0 Software (Applied
Biosystems, Life Technologies). The primer sequences were:
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Figure 1.  Identification of differentially expressed genes.  (A) Detection threshold determination. False positive and negative
rates for the detection of genes as a function of detection threshold used, demonstrating how a detection threshold of 0.04 FPKM
was determined. A more conservative threshold 0.1 FPKM was chosen for downstream analysis (the probability that a transcript can
be reliably detected is ~0.99). (B) Table and Venn diagrams show the distribution of genes that changed > 2 fold and were
statistically significant (t-test p < 0.05) in 2D and 7D stages.
doi: 10.1371/journal.pone.0072567.g001
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C3AR1 forward primer: TCTCACCCTGGCCGATTTC,
C3AR1 reverse primer: GGGATAAGTTTGCACAGGAACAA;

CCL7 forward primer: AATGTGCCTGAACAGAAACCAA,
CCL7 reverse primer: CTTAGGACCGTGATCAACACATTT;
CD22 forward primer: CAGGGACCCCAGCAACAC, CD22
reverse primer: ATTCACATTCTCATAATCCCCATAGG; CD36
forward primer: CCTGGGAGTTGGCGAGAAA, CD36 reverse
primer: CCAATAACAGCTCCAGCAATGA, CLEC6A forward
primer: TCTGTGGCATTTAACTCAAGTGTGT, CLEC6A
reverse primer: TTGCATCTGTCTCCAAAATACGA; FCER1G
forward primer: CCCGGAGCCAGGAGACATAT, FCER1G
reverse primer: GAATTAGAAGTGGGAAAAGAATGCA;
FCGR2B forward primer: TCCAGGTGCTCAAGGAAGACA,
FCGR2B reverse primer: CGGATGGACCTCCCATTGT; IL7R
forward primer: CACAAGAACAACAATCCCACAGA, IL7R
reverse primer: ACTCGCTCCAGAAGCCTTTG; LPL forward
primer: CGCTCCATTCATCTCTTCATTG, LPL reverse primer:
AGGCAGAGCCCTTTCTCAAAG; MSR1 forward primer:
TTTACCAGCAATGACAAAAGAGATG, MSR1 reverse primer:
AAGGGATGCTGTCATTGAACGT; PTX3 forward primer:
GGACAACGAAATAGACAATGGACTT, PTX3 reverse primer:
CGAGTTCTCCAGCATGATGAAC; One internal control: HPRT
(forward primer: TATGCCGAGGATTTGGAAAA, reverse
primer: ACAGAGGGCCACAATGTGAT).

Systematic identification of potentially important genes
in SCI acute/subacute phases

In order to identify genes that play important roles during
SCI, we employed a systems based approach. First,
differentially expressed genes were selected for network
construction. With the purpose to create a reasonable size
network that included an essential number of genes involved in
SCI process, we selected top 10% up/down-regulated genes
(fold change > 2) for the network construction. In the second
step, selected differentially expressed genes were uploaded
into ingenuity pathway analysis. Networks for acute (2D) and
subacute (7D) phases were constructed using IPA software,
and merged into a global network for each stage. Genes that
do not have connections with other networks were left out.
Briefly, the IPA software constructs networks that are optimized
for both interconnectivity and the number of focus genes
(genes in the uploaded dataset). From these focus genes, the
network grows using neighborhood genes. Thus, some genes
that are not in the focus gene dataset are also included in the
final network (the white nodes). In 7D, because there are many
more down-regulated genes than in 2D, we constructed
separate networks using up- or down-regulated genes. In the
third step, the connection number of the genes that appeared
in the network was obtained from IPA and used as an indicator
of the genes’ involvement in the constructed network. In the
fourth step, genes were further selected based on the following
criteria: location on plasma membrane or in extra cellular space
and fold-change > 2. Because there are a relatively small
number of genes that have drug information in ingenuity
knowledge base, we also included the genes with available
drug information regardless of their cellular location. We then
calculated an index number considering both the fold change
and the connection number of a gene in the constructed

network and ranked the genes based on this number
(relevance index: RI = abs(log(Fold change)) *(Connection
number)). We searched related literatures in the PubMed
database to further select interesting genes for qRT-PCR
validation.

Gene set enrichment analysis
Gene set enrichment analysis (GSEA: http://

www.broad.mit.edu/GSEA) [37] was used to understand the
biological pathways involved in SCI. We used the built-in C2
and C5 curated gene sets (Molecular Signatures Database
(MSigDB 3.0: www.broadinstitute.org/gsea/msigdb)). The
statistical significance of GSEA was analyzed using 1000
permutations. Enrichment was compared among Normal, 2D
SCI and 7D SCI stages in this study. A positive enrichment
score indicates that the specific molecular signature correlated
with the SCI phenotype. The significantly enriched gene sets,
such as those related to hypoxia and energy metabolism, were
further analyzed. Briefly, the genes in the leading subset (which
mainly contribute to the enrichment score) were analyzed using
IPA in order to study their functions and networks.

Results

Transcriptome dynamics at acute/subacute phases of
SCI

Clinically relevant contusion SCI model was used in this
study. The contusion SCI resulted in a central injury devoid of
neurons and glias due to the loss of neural tissue and an outer
rim of spared white matter in the injury epicenter (Figure S1).
The central injury gradually increased while the peripheral
spared white matter gradually decreased in the caudal and
rostral spinal cords (Figure S1). The injury size and the
percentage of spared white matter were closely correlated with
the injury severity determined by the injury forces of the
contusion impactor [38,39]. Moderate contusion SCI was used
in the present study and the injury severity was confirmed by
the histology staining and the locomotion test: Basso Mouse
Score.

Transcriptomes were reconstructed using our in-house
pipeline (see details in Materials and Methods). ~95% of all
reads were mapped to the mouse reference genome (NCBI37/
mm9) and over 100 million reads were recognized as spanning
a splice junction (Table S1) (all sequences have been
submitted to GEO database: GEO Series accession number
GSE45376). The estimated normalized expression levels were
reported in FPKM. To achieve accurate estimation of
expression level, we focused on known transcripts in our study
(Table S2). We identified a statistical threshold for the reliability
of expression measurement based on FPKM values (see
Materials and Methods). False positive and false negative rate
curves for each biological replicates were then generated to
identify an optimized FPKM threshold that minimized both false
positive rates and false negative rates (Figure 1A). These
analyses reveal that when a FPKM value is > ~0.04, the
reliability of the FPKM is estimated to be ~0.97; when a FPKM
value is > ~0.1, the reliability of the FPKM ~0.99, reflecting a
high quality of expression level estimation. Therefore, we set
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the threshold to 0.1. FPKM values below 0.1 were set to 0.1 as
the lowest expression value to avoid ratio inflation when
calculating fold change of gene expression. Pearson
correlation coefficients of global gene expression between
replicates were high (r > 0.94) (Figure S2 A), indicate high
consistency between replicates. Unsupervised hierarchical
clustering of RNA-Seq data also shows good correlations
among replicates (Figure S2 B).

Quantitative comparison of 2D and 7D expression to CTR
expression allowed for the identification of all genes that were
differentially expressed in these two stages. All genes up/
down-regulated by more than 2-fold and statistically significant
(t-test p < 0.05) were counted and summarized in table (Figure
1B Venn diagram). According to our criteria, there were 2832
differentially expressed genes (DE genes) at 2D stage, and
4207 DE genes at 7D stage. 1802 genes differentially
expressed in both 2D and 7D stages. 7D had more DE genes
compared to 2D, because there were more down-regulated
genes in 7D than in 2D. 1187 genes were down-regulated in
2D; while 2579 genes were down-regulated in 7D. Down-
regulated gene number increased in 7D samples because of
increased neural cell death. Among these, 894 genes were
significantly down-regulated in both 2D and 7D. Genes
involved in ‘Nervous System Development and Function’ were
enriched. There were similar numbers of genes up-regulated in
2D and 7D. 1645 genes were up-regulated in 2D, and 1628
genes were up-regulated in 7D. A large number (906) were up-
regulated in both 2D and 7D, involving more than1/2 up-
regulated genes in 2D or 7D. Genes related with ‘Inflammatory
Response’ were enriched.

We used cluster analysis (c-means clustering) to separate
7239 genes that changed >2 folds over the time course into 9
groups (Figure S2 C). ‘Nervous system development and
function’ was among the top enriched functional categories in
clusters 3, 4 and 8, while ‘inflammatory response’ was among
the top enriched functional categories in clusters 1, 2, 5 and 9.

RNA-Seq in comparison with microarray study
A number of studies comparing the RNA-Seq and microarray

accuracy, dynamic range and differential expression detection
showed that RNA-Seq is superior to microarray and can
provide novel information [22,40,41,42,43,44]. To evaluate the
strength and validity of our RNA-Seq data, we searched GEO
for microarray experiments that are comparable to our study in
terms of the animal model and the type of injury. The only
comparable microarray SCI experiment is GSE5296 (see
Material and Method). In this study, C57BL6 mouse model of
contusion injury (at thoracic vertebral (T8) level) were
evaluated using Affymetrix Mouse Genome 430 2.0 arrays.
Global changes in gene expression were monitored at different
time points (sham control, 0.5, 4, 24, 72 h and 7 and 28 days
after injury). We compared the common time points of the
microarray study with our data at 0 hour (sham control) and 7
days after SCI. The spearman correlations between 0 hour
(sham control) and 7 days after SCI are very high in the
microarray study and are close to the correlations between
biological replicates of the same time point (Figure S3 A). RNA-
Seq shows increased detection of differential expressed genes

between CTR and 7D (Figure S3 B). Together, our analysis
results demonstrated that RNA-Seq is more sensitive and has
broader dynamic range than microarray (Figure S3 B,C).

Enriched functional categories and pathway analysis
The large number of DE genes in 2D and 7D demonstrates a

dramatic impact of the injury to the transcriptome. To
systematically characterize the functions of the DE genes, we
searched for the enriched functional categories among genes
that changed most significantly. To balance the numbers of up-
and down-regulated genes selected, top 10% up-regulated and
down-regulated genes (genes fold change >2) were used for
the analysis. Top enriched functional categories included
‘inflammation response’, ‘neurological disease’, ‘cell death and
survival’ and ‘nervous system development and function’ at
both 2D and 7D. However, the specific genes in these
functional categories and gene numbers varied between 2D
and 7D (Table S3). The number of genes involved in the
functional categories ‘inflammation response’, ‘cell death and
survival’ and ‘nervous system development’ all increased in 7D
(101, 73 and 111, respectively) compared with 2D (77, 47 and
48, respectively), reflecting that inflammation, cell death, and
nervous system necrosis become more extensive in 7D than in
2D samples. Most genes involved in ‘nervous system
development’ were down-regulated. In 2D, some genes, such
as Tnf, Il6, Lif, Il1b, Adipoq, Il1rn and Ccl13 were involved in
multiple functional categories, indicating that they may play
multiple roles in SCI acute phase. In 7D, CXCR4, Grin1, Spp1,
Cybb and Ccl13 were also involved in multiple functional
categories.

Further, we analyzed the biological processes enriched in
genes that changed most significantly (top 10% of the genes
fold change > 2) in 2D and 7D by using Ingenuity Pathway
Analysis (IPA). For 2D and 7D, the top 15 enriched canonical
pathways are shown in Figure 2A. IPA analysis revealed that
2D and 7D shared many significantly over-represented
pathways. Among the top enriched pathways (p < 0.05), 19
appeared in both 2D and 7D. These included the LXR/RXR
Activation, Atherosclerosis Signaling and TREM1 Signaling
pathways among others. In addition to these shared pathways,
there were also different canonical pathways in 2D and 7D. For
example, among the enriched pathways, Glutamate Receptor
Signaling, which included mostly down-regulated genes
because of increased neuron cell death, only appeared in 7D.

In 2D, the LXR/RXR pathway was one of the top enriched
pathways, indicating the activation of the LXR/RXR pathway in
the acute phase (Figure 2B). Among the ~50 genes that are
involved in LXR/RXR pathway, 15 genes were up-regulated by
more than 20-fold, including Tnf, Il6 and Il1b, which participate
in multiple pathways (Table S4).

We also extended the above analysis by using more relaxed
fold change criteria (>2 fold in both directions and >10 fold in
both directions respectively), and identified similar critical
pathways and networks such as LXR/RXR activation pathway,
Atherosclerosis Signaling and others.

RNA-Seq Characterization of Spinal Cord Injury
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Figure 2.  The top canonical pathways enriched in the differentially expressed genes.  (A) Top 15 canonical pathways
enriched in top 10% up/down-regulated genes of 2D/CTR and 7D/CTR are shown. The –log(P value) of the enrichment of each
canonical pathway was plotted. (B) LXR/RXR Activation pathway up-regulated genes are colored pink. The color of a gene reflects
its fold change. The higher the fold change the deeper the color.
doi: 10.1371/journal.pone.0072567.g002
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Alternative splicing
An advantage of RNA-Seq technology is its ability to discern

expression levels of the splicing isoforms of genes (Table S2),
thus providing yet another layer of information that can be
critical for future pharmacological interventions [26]. We
counted the number of genes that have more than one
annotated isoform expressed in all stages of SCI. There were
2741, 2946 and 2906 in CTR, 2D, 7D stages respectively. Up
to 12 annotated isoforms per gene were observed, although
the majority of genes (99%) had 1-5 isoforms (Figure 3A). The
maximum likelihood estimation of expression level of each
gene’s isoforms was performed using the cufflinks software.
Among the differentially expressed genes, 10327 isoforms
changed by >2 fold between at least 2 stages during SCI (CTR,
2D and 7D). The isoforms showed dynamic expression
changes over the time course of the injury. We describe two
interesting examples in Figure 3B.

The gene Spp1 (osteopontin, Opn) is a cytokine that is up-
regulated after cell injury and tissue repair [45]. Previous
studies have shown that blocking Spp1 expression at sites of
cutaneous wounding resulted in reduced granulation tissue,
scarring and inflammation-associated fibrosis [46].
Interestingly, Spp1 has also been shown to stimulate axon
growth in retinal ganglion cells [47]. Our RNA-Seq profiling of
Spp1 shows a dramatic increase in its overall expression
through the acute and subacute phases of SCI, a result that is
consistent with the previous studies. In addition, we found that
NM_009263, one of the 5 isoforms of Spp1, is the major
isoform in spinal cord tissue and is responsible for the overall
increase in expression (one-way ANOVA p < 0.0001) (Figure
3B left panel). Several other isoforms are also induced
compared to the CTR in 2D and 7D, but their absolute
expression values are much lower than NM_009263. The
distinct functions of these isoforms are still to be investigated.

Although many genes, such as Utg1a, Vegfa, and Ptprc,
showed similar changing patterns in its different isoforms, there
are a number of genes whose isoforms changed in the
opposite directions. Gene Morf4l2 (mortality factor 4 like 2) is
an example of “isoform switching” at different stages of SCI.
Two of the Morf4l2 gene’s major isoforms, NM_001168229,
and NM_001168230 show distinct expression patterns during
acute/subacute phases (Figure 3B right panel). Isoform
NM_001168229 expression level was higher in the CTR
sample and it steadily declined after SCI (one-way ANOVA p =
0.037); while the NM_001168230 level was lower in the CTR
sample and higher in 2D and further increased in 7D (one-way
ANOVA p = 0.0028). NM_001168230 became the major
isoform after injury. The function of Morf4l2 is not yet clear and
thus it will be interesting to investigate the functions of its
isoforms in CNS and SCI.

Establishing the systems based analysis framework
To obtain a comprehensive view of the complex mechanism

of SCI, we developed a systems biology based analysis
framework to identify potentially important genes in the global
gene network for further testing. We first constructed gene
regulatory networks for 2D and 7D stages separately using IPA
software and merged them into one global network for each

stage (see Materials and Methods) (Figure 4A). To construct
reasonable size networks that suitable for downstream
analysis, top 10% up/down-regulated genes were used. After
constructing networks that capture the essences of the
observed transcriptomic changes in SCI, we searched for key
determinants in these networks. Several criteria were used in
combination to select genes of interests (Figure 4B). First,
genes that are significantly differentially expressed are likely to
be involved in the SCI process. Secondly, hub genes, which
have a large number of interactions with other molecules
(connection number in the network) usually play an important
role in a network [48,49,50]. Thirdly, we are particularly
interested in molecules located on the plasma membrane and
extracellular space of cells because they are easily targeted by
drugs [51]. These also include the neighborhood genes brought
into the network by IPA analysis.

To better indicate the relevance of a gene, we calculated a
Relevance Index (RI) number that considered both the fold
change and the connection number of a gene in the
constructed network and ranked the genes in that network
based on this number (Table S5, Table S6 and Table S7). In
the 2D network, genes known to be involved in SCI, such as
Il6, Tnf, Il1b, Ccl2 (MCP-1) were ranked at the top of the list,
supporting the validity of our method [16]. We have also
incorporated pharmacogenomic information from IPA into our
analysis. Among the genes identified, some have existing drug
information in ingenuity knowledge base can be readily tested
in SCI animal models (Table S5, Table S6 and Table S7).
Using the above described criteria, we identified not only well
studied genes, but also genes that have not been carefully
studied in SCI, including Cd36, Lpl, C3ar1 and Msr1 [52]. We
performed qRT-PCR validation of the differential expression of
the genes of interests (Figure 5A). The expression changes
(SCI 2D/CTR and 7D/CTR) were very consistent with RNA-Seq
results.

GSEA analysis of functional gene set enrichment and
the characterization of gene markers

To understand the biological implications of our global
characterization, we performed a series of analysis to extract
the specific functional gene sets, pathways and networks
involved. Cell damage and death are the fundamental events in
SCI. Understanding how they are triggered is important
clinically and experimentally. Previous studies reveal that
inflammation, hypoxia, nutrients supply deficiency are the main
causes for the secondary spinal cord injury, and some of these
genes are intensively studied. Compared with the conventional
gene specific research, RNA-Seq analysis provides a genome-
wide view of the systemic changes during the spinal cord
injury. GSEA analysis (using the Molecular Signatures
Database (MSigDB) v 3.0) [37,53], revealed hundreds of
enriched gene sets among our differentially expressed genes,
indicating the complex mechanism of spinal cord injury. Those
gene sets related to inflammation and apoptosis ranked high
among the enriched ones. Gene sets related to hypoxia [54],
metabolic stress [55], glucose deprivation [56] and reactive
oxygen species [57] were also enriched in both 2D (Figure S4
A) and 7D samples (Figure S4 B) [55]. IPA analysis of the
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Figure 3.  Alternative splicing analysis.  (A) The annotated isoform numbers per gene (x-axis) were plotted over number of genes
(y-axis). (B) Splicing isoform expression of genes Spp1 and Morfl2 in acute and subacute phases. Error bars represent ±SEM. P
values for transcript NM_009263, NM_00116829 and NM_001168230 were calculated by one-way ANOVA.
doi: 10.1371/journal.pone.0072567.g003
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Figure 4.  Developing a systems based analysis framework to identify key determinants in the global gene network.  (A)
Network constructed in 7D stage using top 10% up-regulated genes. Gene TNF (tumor necrosis factor) was highlighted with its
connected edges (in blue). (B) The workflow of a systems based analysis framework in identifying potentially important genes.
doi: 10.1371/journal.pone.0072567.g004
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leading edge genes (see methods) involved in these gene sets
further indicated that these genes formed networks that
function in cell death and survival (data not shown). Notably,
some of the nodes in the hypoxia and nutrient gene networks
are also the key factors in inflammation, such as Il6 and Tnf.
When we examined the enriched gene sets for reactive oxygen
species (ROS), we found that the genes can be further
classified into two subsets. The gene expression of
deoxygenases, such as Sod1 and Sod2 decreased in the sub-
acute phase of spinal cord injury, while other ROS scavengers,
such as Hmox1 and Txnrd1 increased.

Complicated interactions exist between immune cells and
neural cells after SCI. It is important to understand the cell
types involved in this process and their interaction dynamics.
Specific gene markers for macrophages (Itgam, Cd86, Arg1)
(Figure 6), oligodendrocyte precursor cells (OPC: Cspg4/Ng2)

(Figure 7A), neural stem cells (NSC: Nestin) (Figure 7B),
endothelial cells (Pecam-1, also known as Cd31) (Figure 7C),
and hematopoietic stem cells (HSC: Cd34) (Figure 7D) were
selected based on the literature [58,59,60,61]. Their expression
levels were compared during acute and subacute phases of
SCI.

Previous studies showed that there are two subsets of
macrophages which have distinct functions [59,60]. The M1
marker, Cd86, increased in 7D (one-way ANOVA p=0.0026)
(Figure 6B), whereas the M2 marker, Arg1, increased in 2D
(one-way ANOVA p=0.0011) (Figure 6C). Furthermore, GSEA
analysis revealed that, although the M1 up-regulated gene set
was enriched in both 2D and 7D samples compared with
CTR(Figure 6D, E), the M1 specific gene set was further
enriched in 7D samples when compared with 2D samples
(Figure 6F), These data implied that M1 macrophages

Figure 5.  Validation using qRT-PCR.  Relative expression fold change from qRT-PCR were calculated using 2-ΔΔCt method. Error
bars represent ±SD (n=3). FPKM fold change were the ratio of average FPKM between samples.
doi: 10.1371/journal.pone.0072567.g005
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increased in 7D samples, while M2 macrophages decreased
[60]. In the M1 up-regulated gene set, genes such as Fgd2 and
Tifab etc were significantly higher in 7D samples [62,63].

We also observed dynamic changes in astroglial markers.
Gfap is one of markers for reactive astrocytes after CNS
injuries [64]. Its expression is up-regulated in SCI acute and
subacute phases (one-way ANOVA, p = 0.0261) (Figure 7E).
Lcn2 and serpina3n have been shown as markers of the early
phase of reactive astrogliosis in both ischemia and
neuroinflammation injury models (Figure 7F,G). They are both
up-regulated in 2D and 7D and are expressed higher in 2D
compared to 7D [65].

Discussion

Although extensive work has been carried out to understand
the pathophysiology of SCI, a comprehensive view of the
underlying molecular mechanisms and pathways is still lacking.
Limited by resource and technology, previous studies of SCI
usually focus on known pathways and a small number of genes
[5,6,7,8,66,67]. In this study, we systematically characterized

the transcriptome of spinal cord injury at acute (2D) and
subacute (7D) phases by RNA-Seq. With such an informative
resource, we can now better understand the pathological
processes of SCI through integrative analysis of the gene
expression data.

One important advantage of massively parallel sequencing is
that it is more quantitative than microarray [68]. Given its higher
sensitivity, specificity and wider dynamic range, RNA-Seq can
accurately measure gene transcription changes at a genome-
wide scale, including known and unknown transcripts. Our
study is designed to reflect the transcriptomic change of injured
tissue samples which include multiple types of cells. In order to
reconstruct reliable gene structures and obtain accurate
expression level estimations, our procedure focused on known
genes and isoforms [32]. These reference datasets are a
valuable resource for the SCI research community for the
derivation of new hypotheses. Importantly, RNA-Seq also
enables splicing isoform identification and expression level
estimation, thus providing useful information for increasing the
specificity of drug design and reducing potential side effects.

Furthermore, in this study, we established a systems biology
based framework to extract potential key genes from

Figure 6.  The expression of macrophage marker genes in both acute and subacute phases of SCI.  Expression profile of the
common macrophage marker Itgam (A), M1 specific marker CD86 (B) and M2 specific marker Arg1(C) during the time-course of
SCI. P values were calculated by one-way ANOVA. GSEA analysis: differential gene expression was ranked by fold change (x-axis:
2D vs control (D), 7D vs control (E), 7D vs 2D (F)). The most up-regulated genes are shown on the left side (red), while the most up-
regulated genes were shown on the right side (blue). Black bars represent the positions of the M1 vs M2 up-regulated signature
genes in the ranked list. Enrichment score (ES, Y-axis) reflects the degree the genes are overrepresented. When the distribution is
at random, the enrichment score is zero. Enrichment of signature genes at the top of the ranked list results in a large positive
deviation of the ES from zero. NES, normalized enrichment score; FDR, false discovery rate-adjusted q value.
doi: 10.1371/journal.pone.0072567.g006
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constructed networks of the SCI acute and subacute phases.
Gene profiling generates a large amount of information to be
mined. Recent development of network analysis made it
possible to better understand the hierarchical relationships
among genes involved in certain biological processes.
However, currently there is no systematic method to estimate
the importance of the genes in the network and to identify the
potential key determinants for further experimentation. The
analysis framework that we have developed combines existing
knowledge from the literature, such as molecular interactions
and cellular localization information, with our differential
expression data. Based on these criteria, we were able to
prioritize genes of interest that exhibited specific
characteristics, thus demonstrating the validity of our approach.

First, this list contains many important genes known to be
involved in SCI. In addition to Tnf, Il6, Il1b which were well
studied in SCI, many other genes, such as Hmox1 [69], Ccl11
[70], and Ccr1 [71], also gained attention. Hmox1 is an
inducible cytoprotective enzyme and has anti-inflammatory and
antioxidant effects after spinal cord injury [69]. Expression of

Ccl11 is associated with immune response modulation and
protection against neuroinflammation [70]. Ccr1 was suggested
to have a crucial role in the chronic central pain mechanisms
after SCI [71]. Very recently, genes such as Lcn2 [72] and Tlr4
[73] were also found to play important roles in SCI. Lcn2
(Lipocalin 2) is important in the defense against bacterial
infection by interfering with bacterial iron acquisition. It has also
been shown that a lack of Lcn2 reduces secondary damage
and improves locomotor recovery after spinal cord injury [72].
Tlr4 expression was found to lead to greater synaptic loss, and
was correlated with increased astrogliosis and up-regulation of
pro-inflammatory interleukins [73].

Secondly, most genes identified by our method are involved
in relevant biological processes (such as ‘inflammation’ or
‘nerve system development’ functional categories) and
pathways in SCI. For example, among pathways that are
enriched in the 2D network, Ccl2, Ccl7, Msr1, Il1rn, Il6, Il1b,
Tnf, Ptgs2, Lpl and Cd36 are involved in ‘LXR/RXR Activation’
(p = 1.38E-09, Fisher Exact Test for pathway enrichment), and
Il1rn, Osm, Cfb, Il6, Il1b, Tnf, Serpine1 and Hmox1 are

Figure 7.  Expression dynamics of cell markers of various cell types.  Expression profile of OPC marker Cspg4, also known as
NG2 (A), neural stem cell marker Nestin (B), endothelial marker Pecam-1, also known as CD31 (C), hematopoietic stem cell marker
CD34 (D), reactive astrocyte markers GFAP(E), Lcn2 and Serpina3n (F,G), are shown. P values were calculated by one-way
ANOVA.
doi: 10.1371/journal.pone.0072567.g007
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involved in ‘Acute Phase Response Signaling’ (p=8.58E-6,
Fisher Exact Test). The LXR/RXR pathway is one of the top
enriched pathways in 2D and is also significantly enriched in
7D. The LXR/RXR pathway is activated by oxysterols and
intermediates in the cholesterol synthetic pathway, which are
important for the metabolic conversion of cholesterol to bile
acids in the liver [74]. In addition, the LXR pathway also plays
an important regulatory role in several metabolic signaling
pathways in adipose tissue, such as glucose uptake and de
novo fatty acid synthesis [74]. However, whether this pathway
has similar functions as in the nervous system remains largely
unknown. Previously, multiple studies have revealed that some
genes of this pathway, such as Lpl, are widely expressed in
multiple cell types in the spinal cord and are considered to be
essential in regulating feeding behavior and maintaining normal
neuronal function [75,76], further supporting a role for the LXR
pathway in the nervous system. In addition to lipid metabolism,
the LXR/RXR pathway was also found to be essential for the
endogenous anti-inflammatory response in macrophages [77].
It will be intriguing to investigate the roles of other genes in this
pathway in SCI.

Among pathways that are enriched in the 7D network,
Ccl2(MCP-1), Mmp3, Cxcr4 and Ccr2 genes are involved in the
‘Atherosclerosis Signaling’ pathway (p=1.03E-5 Fisher Exact
Test), and Cd28, Osm, Lgals3 and Clec7a genes are involved
in the ‘Role of Pattern Recognition Receptors in Recognition of
Bacteria and Viruses’(p=4.14E-4 Fisher Exact Test). Notably,
the ‘Atherosclerosis Signaling’ pathway is the top enriched
pathway in 7D; Ccl2(MCP-1), Cxcr4 and Ccr2in this pathway
have been shown to play a role in SCI. Ccl2 chemokine and its
receptor Ccr2 contribute to neuropathic pain development after
spinal cord injury [78]. Cxcr4 are key regulator of neuro-repair
processes after brain ischemia and spinal cord injury; inhibiting
Cxcr4 can enhance re-myelination and improve recovery
[79,80]. C3ar and C5ar in the ‘Role of Pattern Recognition
Receptors in Recognition of Bacteria and Viruses’ pathway
play a role in the inhibition of apoptosis. Genes related to
‘nerve system development’ included mostly down-regulated
genes because of increased neural cell death. Glutamate
Receptor Signaling pathway was enriched.

Importantly, based on this valid approach that we developed,
we were able to identify new genes of interests for further
investigation. The qRT-PCR validation indicates a highly
consistent expression pattern with the RNA-Seq result. Among
these, some genes have been indicated to have a role in other
pathological conditions, but not in SCI. For example, Lpl can
modify the synaptic loss and remodeling processes in a brain
injury model [76] and has a potential role in Alzheimer’s
disease [81]. It may also play a role in the pathophysiological
response to cerebral ischemia reperfusion [82]. Cd36 inhibition
was suggested as a viable strategy to enhance possible
recovery in stroke [83]. Ptx3 was found to have protective role
in seizure-induced neurodegeneration [84] and its expression
increases in the spinal cord during EAE (experimental
autoimmune encephalomyelitis) [52]. Therefore, we
demonstrated an example of how global gene profiling can be
translated into identifying genes of interest as potential
therapeutic targets for functional tests. We have also

incorporated pharmacogenomic information into our analysis.
Among the genes identified, the ones with existing drug
information in IPA database can be readily tested in SCI animal
models.

Additionally, by analyzing the transcriptome signatures in our
data using GSEA, we identified a large number of gene sets
that are significantly enriched in the SCI process. Conventional
studies examine genes of interest individually; transcriptomic
studies provide the expression of the gene markers
simultaneously and thus are more informative. Therefore, with
cell type specific markers, we can examine the responses of
different cell types and subtypes of cells in the spinal cord
injury environment and during the injury time course. Such
information provides valuable clues for detailed biological study
in the future. For example, previous studies revealed that there
are two subsets of macrophages, M1 and M2. M1 can be
identified as Cd86+, and M2 are Arg1+ [59,60]. We found that
M1 macrophages increased in 7D samples, while M2
macrophages decreased. M1macrophages have been shown
to be harmful for regeneration, whereas M2 macrophages are
potentially beneficial for regeneration [60]. This suggests that
the reduction of the M1/M2 ratio in the subacute phase and the
modulation of M1 properties may potentially promote
regeneration. In the M1 up-regulated gene set, genes such as
Fgd2 and Tifab etc are significantly higher in 7D samples. Fgd2
was found to play a role in vesicle trafficking in immune cells
[62] and Tifab may be an important regulator during the
maturation of macrophages [63]. It is possible that these genes
may play a role in distinguishing the functions of M1and M2
macrophages. This could be tested by further experimentation.

A recent transcriptome study characterized the induced
genes [65] of reactive astrogliosis in two different injury models
(ischemia and neuroinflammation). We compared the top 50
induced genes from these two injury models with our RNA-Seq
dataset and found most induced genes in both injury models
are up-regulated in our SCI 2D and 7D data. Thereby, ischemia
and neuroinflammation both contribute to the activation of
reactive astrocytes and gliosis in SCI acute/subacute phases.

In summary, our study has not only characterized the
dynamic change of genes known to play a role in SCI, but also
provided new potential key determinants and pathways in this
pathological process. The examples that we have described
here are only a brief demonstration of the potential value of this
resource, and from our study there is a large amount of
biological information available to be explored by the scientific
community. By following up the hypotheses generated from
these analyses, we hope to identity new mechanisms and
therapeutic targets for reducing secondary tissue damage and
promoting regeneration.

Supporting Information

Table S1.  Summary of read mapping.
(TIF)

Table S2.  Expression value (FPKM) of genes and
isoforms.
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(XLSX)

Table S3.  Top enriched functional categories in acute and
subacute SCI.
(XLSX)

Table S4.  The expression of genes involved in LXR/RXR
pathway 2 days after SCI.
Abbreviations: E (Extracellular Space); P (Plasma Membrane);
C (Cytoplasm); N (Nucleus); Y (there is drug for the gene in
IPA database).
(XLS)

Table S5.  Genes of interest identified from network
constructed in acute SCI(2D).
Genes were listed in the order of their Relevance Index
number. RI = abs(log(Fold change)) *(Connection number).
(XLSX)

Table S6.  Genes of interest identified from network
constructed with up-regulated genes in subacute SCI (7D).
Genes were listed in the order of their Relevance Index
number. RI = abs(log(Fold change)) *(Connection number).
(XLSX)

Table S7.  Genes of interest identified from network
constructed with down-regulated genes in subacute SCI
(7D).
Genes were listed in the order of their Relevance Index
number. RI = abs(log(Fold change)) *(Connection number).
(XLSX)

Figure S1.  Histological staining of the injured spinal cord
by the iron-eriochrome cyanine R (EC) staining shows a
moderate contusion injury.
The contusion SCI resulted in a central injury devoid of neural
tissue and an outer rim of spared white matter in the injury
epicenter at both 2 and 7 days after contusion. The central
injury gradually decreased while the peripheral spared white
matter gradually increased caudally and rostrally away from the
epicenter center. The injury was further increased in 7D in
comparison to 2D after SCI.
(TIF)

Figure S2.  Sample correlation and clustering analyses.
(A) Pearson correlation coefficients between samples. (B)
Unsupervised hierarchical clustering of CTR, 2D, and 7D RNA-
Seq data (top 3000 genes with highest variation across SCI
stages were used). (C) Clustering of differentially expressed
genes. 7239 genes whose expression changed > 2 folds were
clustered into 9 groups using c-means clustering algorithm.

(TIF)

Figure S3.  Comparison of RNA-Seq and microarray data.
(A) Spearman correlation between RNA-Seq data and
microarray data. Only genes that are detected by both
platforms (15153 genes) were used (‘m’ stands for microarray,
‘r’ stands for RNA-Seq). (B) The comparison of differential
expression detection. The number of DE genes (Y-axis) was
plotted as a function of fold threshold used (7D/CTR, X-axis,
log scale). At the same fold threshold, RNA-Seq can detect
more DE genes than microarray. (C) The comparison of
dynamic range. The fraction of genes (Y-axis) was plotted as a
function of fold changes (7D/CTR, X-axis, log scale) detected
by RNA-Seq and microarray. RNA-Seq shows a broader
dynamic range for the fold change detection in SCI data. Only
genes that are detected by both platforms were used.
(TIF)

Figure S4.  Analyses of the functional gene set enrichment
by GSEA.
(A) Differential gene expression was ranked by fold change (2D
vs control, x-axis). The most up-regulated genes are shown on
the left side (red), while the most down-regulated genes were
shown on the right side (blue). Black bars represent the
positions of the individual genes of the signature gene set
(hypoxia signature (a), rapamycin response up-regulated gene
signature (rapamycin inhibits mTOR pathway and represents
the metabolic stress) (b), glucose deprivation up-regulated
gene sets (c) and reactive oxygen species related gene sets
(d)) in the ranked list. Enrichment score (ES, Y-axis) reflects
the degree the genes are overrepresented. When the
distribution is at random, the enrichment score is zero.
Enrichment of signature genes at the top of the ranked list
results in a large positive deviation of the ES from zero. (B)
Genes were ranked according to the expression ratio (7D vs
control) and further analyzed by GSEA with the same
molecular signature gene sets as above and indicated as a’, b’,
c’ and d’ correspondingly. ES, enrichment score; NES,
normalized enrichment score; FDR, false discovery rate-
adjusted q value.
(TIF)
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