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Abstract Maintenance of health and physiological

homeostasis is a synergistic process involving tight regulation

of proteins, transcription factors and other molecular pro-

cesses. The immune system consists of innate and adaptive

immune cells that are required to sustain immunity. The

presence of pathogens and tumour cells activates innate

immune cells, in particular Natural Killer (NK) cells. Sto-

chastic expression of NK receptors activates either inhibitory

or activating signals and results in cytokine production and

activation of pathways that result in apoptosis of target cells.

Thus, NK cells are a necessary component of the immuno-

logical process and aberrations in their functional processes,

including equivocal levels of NK cells and cytotoxic activity

pre-empts recurrent viral infections, autoimmune diseases

and altered inflammatory responses. NK cells are implicated

in a number of diseases including chronic fatigue syndrome

(CFS). The purpose of this review is to highlight the different

profiles of NK cells reported in CFS patients and to determine

the extent of NK immune dysfunction in subtypes of CFS

patients based on severity in symptoms.
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Introduction

Natural killer (NK) cells are granular lymphocytes origi-

nating from the CD34 hematopoietic progenitor cell line-

age and are found in the peripheral blood, spleen, bone

marrow and lymph nodes. The composition of NK cells in

comparison to the total lymphocyte population is about

15 % [1]. These cells are important in the principal innate

immune defence in response to pathogen invasion follow-

ing recognition. NK cells are imperative during viral and

microbial infection and tumour development, aiding in the

body’s immunity through cytokine secretion and cytotoxic

activity, which induces apoptosis in target cells. Thus, NK

cells are vital for pathogen clearance prior to the adaptive

immune response. Aberrant production of cytokines and

induction of cytotoxic activity are related to a number of

disease presentations such as rheumatoid arthritis [2],

chronic obstructive pulmonary disorder [3], neurological

conditions including Alzheimer’s and multiple sclerosis [4,

5] and cancers [6–9]. In particular, NK cell cytotoxic

dysfunction has been associated with chronic fatigue syn-

drome (CFS).
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Subsets of NK cells

Natural killer cells can be grouped into two types, however,

further classifications generates at least five subsets of NK

cells [10, 11]. These cells are mainly grouped according to

the presence of the Fc gamma receptor III (CD16) and the

neural cell adhesion molecule (CD56). The density of these

markers on the NK cells defines the classification of different

subsets of NK cells. Thus, NK cells can be grouped into

CD56brightCD16dim, CD56brightCD16-, CD56-CD16bright,

CD56dimCD16bright and CD56dimCD16-NK cells [10, 11].

About 90 % of the NK cells in the periphery are

CD56dimCD16bright while 10 % express CD56bright on their

cell surfaces [10]. NK cells with a high density of the CD16

molecules are considered highly cytotoxic and secrete low

levels of cytokines while those densely populated with CD56

markers are the dominant producers of NK-related cytokines

and are less cytotoxic [10]. The cytokines secreted by these

NK cells include granulocyte macrophage colony-stimulat-

ing factor (GMC-SF), IFN-c, TNF-a, IL-10 and IL-13. The

ability to induce cytotoxic activity and produce cytokines is

vital for sustained physiological homeostasis.

NK cell receptors

Natural killer cells express a number of activating and

inhibitory receptors generated from genes with variable or

conserved sequences. The most variable and polymorphic

NK receptors are the killer cell immunoglobin-like receptor

(KIR) family of receptors while the others such as NKG2D

are highly conserved [12]. KIRs are a family of inhibitory

receptors that reside as transmembrane proteins, with two

or more extracytoplasmic immunoglobin-like domains with

either short or long cytoplasmic tails that have an immu-

noreceptor tyrosine-based activation or inhibition motif

(ITAM and ITIM, respectively). KIRs contain a long

cytoplasmic tail and do not associate with adaptor mole-

cules. The activation of KIRs is dependent upon the rec-

ognition of MHC class I molecules. The primary function

of these receptors is the inhibition of cytotoxic activity—

the inhibitory KIRs are associated with having a longer

cytoplasmic tail. However, some KIRs containing ITAM

motif, KIR2DS/3DS, are known to stimulate cytotoxic

activity [13].

Natural killer cells undergo cytotoxic activation by

exogenous activation of surface receptors. Activating NK

receptors including, NKp46, NKp30 and NKp44, all share

the association of a signalling peptide existing on cyto-

plasmic tail, known as ITAM. ITAMs are highly con-

served peptides containing tyrosine residues [14]. The

ITAM peptide is a crucial intermediate between activation

of the surface receptor and downstream effector signalling,

which in the case of NK cell is cytotoxic activation and

the production of cytokines including IFN-c, tumour

necrosis factor b (TNF-b), IL-10 and IL-13. The activation

receptors of NK cells have a broad specificity and can be

activated by target cell antibody interaction, such as that

of an antigen presenting cell or B cell, or through the

recognition of the MHC class I-like complex. It has been

indicated that numerous receptor activation and cross

linking between these receptors is required for NK cyto-

toxic activation [15].

Natural killer cell activation predominantly relies on

receptors. Upon recognition of the adaptor molecule, the

ITAM components of the receptor are activated through the

phosphorylation of its tyrosine residues [14]. This tempo-

rary binding site now has an affinity to activate of ITAM,

which leads to the recruitment of a src-family kinase (SH2)

pathway and downstream syk/ZAP70 transcription. Syk

acts through the PI3K-dependent pathway to activate Rac1,

PAK1, MEK and ERK pathways increasing calcium entry,

degranulation, recruitment of perforin and granzyme con-

tained in lytic granules and cytokine gene transcription [16,

17]. These activating receptor molecules on target cells

may be antibodies or MHC class 1-like molecules,

requiring activation of multiple receptors and receptor

cross-linking to activate cytotoxicity [18, 19]. Inhibition of

NK cells occurs in the absence of a structurally sufficient

MHC class I molecule, giving rise to the ‘missing self’

theory of cytotoxic inhibition [20]. Recognition of the

target cell MHC class I, prompts ITIM phosphorylation at

the tyrosine residues to recruit and activate SHP-1/2

phosphatases. SHP1/2 dephosphorylates activated ITAM

pathway constituents, Syk and ZAP70, thereby inhibiting

cytotoxic activation and cytokine production.

NK cell cytotoxic activity

Natural killer cells can induce apoptosis in target cells

through granule-mediated and non-granule-mediated path-

ways. Granule-dependent cytotoxic induction is the most

specialised cytotoxic function of the NK cell [21, 22].

However, the significance of non-granule-mediated path-

ways is evident in the diversity of lethality of the NK cell

including antibody-dependent cell-mediated cytotoxicity

[23–27], TRAIL and FasL death receptor pathways [28–

30].

The relevance of the cytolytic granule-mediated path-

way to the CFS disease state is supported by a growing

body of evidence highlighting cytotoxic dysfunction and

the immune system [31–37], summarised by Bansal et al.

[38]. By activation of the granule-mediated pathway, NK

cells secrete perforin and granzymes into the target cells.

Perforin is a protein that either forms pores on the plasma
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membrane of the target cells to facilitate the passage of

granzymes into the target cells or fragments the host cell

endosomes, which contain granzymes [21]. They may also

be directly involved in cytolytic activity and once in the

target cells, granzymes bind to cell organelles to activate

either caspase-dependent or -independent apoptosis. These

mechanisms include nuclear envelope disruption leading to

DNA degradation, disruption of mitochondrial transmem-

brane potential and independently activates Ape1-mediated

bcl-2 overexpression [39]. NK cells may also contain a

memory component that assists in future invasions by the

same antigen. The primary pro-apoptotic component of NK

cells—granzymes, are currently categorised into five types,

only three of which have directly known functions—

granzymes A, B and K [40].

Granzymes A and K have similar functions and are

known to activate slow apoptosis while granzyme B is

associated with the activation of rapid apoptosis [41].

Granzyme B induces a caspase-dependent mechanism of

apoptosis while granzyme A is caspase independent,

inducing cell death through single stranded DNA degra-

dation, disrupting plasma membrane integrity and mito-

chondrial transmembrane potential [39, 42–44]. The exact

mechanism of perforin is still under investigation, how-

ever, mounting evidence tends to support oligomerisation

within the target cell membrane, leading to the formation

pore-like structures [45, 46]. These pores are then the

gateway for NK cell-derived granzymes to enter the target

cell and elicit their effect. NK cell cytotoxic activity also

occurs through a number of other secondary pathways

including IFN-c, TNF-a and Fas-ligand pathways, the

dysregulation of which may be involved in the mechanism

of CFS.

Chronic fatigue syndrome

Presently, an indefinable aetiology and mechanism of CFS

precludes effective diagnosis posing substantial anxiety

among patients and family members. CFS is a heteroge-

neous disorder with multi-factorial characteristics affect-

ing physiological processes including, endocrine,

neurological, immunological and metabolic processes [47–

54]. Substantial physical and mental weaknesses are

associated with CFS including but not limited to severe

disabling fatigue, interruptions in sleep, headaches, swol-

len lymph nodes, cognitive disturbances and muscle pain

in the absence of swelling [55]. CFS is neither age- nor

gender-specific, however, females are more likely to be

affected than males [56–58]. CFS is an unexplained dis-

order with a prevalence of 0.4–1 % worldwide [59].

Nonetheless prevalence of CFS varies among patients

[60].

NK cells in CFS

Chronic fatigue syndrome is known to be associated with a

reduction in NK lytic activity and in some cases an irreg-

ular distribution in the levels of NK subtypes. In a range of

studies, NK cytotoxic activity has been measurably

decreased as compared to healthy controls [31, 33, 34, 61–

64]. There is no standard definition for CFS, however, a

number of criteria have been generated to assist physicians

in disaffecting CFS from other known and characterised

disorders [59]. Similarly, our longitudinal investigations of

CFS have shown that reduced cytotoxic activity in patients

with CFS is maintained during the course of the disease

and does not notably fluctuate or associate with seasonal

changes. Incidentally, we have recently studied a group of

severely bed-ridden patients, due to the symptoms of CFS.

In these individuals, we have shown that, similar to the

CFS patients who have some level of mobility outside the

home, these patients demonstrated a significant decrease in

cytotoxic activity in their NK cells. However, in previous

investigations, reductions in NK cell function have been

associated with reduced levels of NK CD56bright cells [34].

A similar trend was not observed in our severe bed-ridden

population and a study of the longitudinal expression of

these subsets demonstrated that these cells are not consis-

tently reduced over time or during the course of the disease

[31]. This is consistent with the NK cells subset studies in

the literature where consistencies in the levels of NK cells

have not been observed across all studies. The heteroge-

neity of CFS may be associated with these findings; how-

ever, it posits that levels of NK cells may not be an

appropriate marker for identifying and distinguishing CFS

from the general population. The observation of reduced

NK cell cytotoxicity in both mobile and bed-ridden cases

of CFS is important to the current knowledge of the dis-

ease. In the severe cases of CFS, differences in the KIR

receptors may be associated with the disease presentation.

Notably the transcriptional levels of some KIRs are sig-

nificantly decreased in the CFS patients compared to the

controls while the expression of KIR2DS5 is not observed

in all CFS patients [65].

Allotypic and haplotypic differences in the expression of

these KIRS may affect the induction of cytotoxic activity

[66, 67]. Due to the high polymorphic nature of KIR, it is

proposed that specific polymorphisms may be associated

with the differences in expression of CFS patients [68]—

either due to a pre-transcriptional or a compensatory

means. However, studies are yet to provide details on such

genomic data of KIRs in CFS patients, which may be

further complicated by the heterogeneity and ambiguity of

the disease presentation and symptoms. In the absence of

appropriate diagnostic tools and a well-characterised suite

of biomarkers, CFS remains complex. A unifying theme in
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the literature is the presence of dysfunctional immune cells

specifically NK cells. Most immunological studies in CFS

are concerned with the cytotoxic activity and phenotypic

distribution of these cells.

Equivocal levels of NK cells and phenotypes in CFS

Chronic fatigue syndrome studies associated with periph-

eral NK cell phenotypes or subsets are contradictory.

Studies have reported increases, decreases and no change

in peripheral distribution of NK cell phenotypes and

overall NK cells in comparison to non-fatigued partici-

pants. Regardless of these inconsistencies, alterations in

NK phenotypes have adverse consequences on immune

function owing to the cytokine secretion and cytolytic

properties of these cells. Characterisation of NK cells into

CD56bright and CD56dim permits the determination of the

distribution of cytokine producing and cytotoxic NK cells.

Overall NK cell numbers may be increased or decreased

in some CFS patients [69, 70]. Similarly, CD56bright NK

cells may be increased or decreased in some CFS patients

[34, 70]. The consequence of equivocal levels of CD56bright

NK cells in CFS patients is unknown. Nonetheless,

CD56bright NK cells are highly resistant to apoptosis and

therefore have in increased life span in comparison to the

CD56dim NK cells [71, 72]. CD56bright NK cells in close

relation to T cells may be increased following elevations in

their numbers perpetuating autoimmune responses [73].

The presence of heightened levels of CD56bright NK cells

may suggest the presence of inflammation in the periphery.

The diversity in chemokine receptor expression on the

subtypes of NK cells is related to their sites of manifesta-

tion during inflammation, hence, CD56bright NK cells

expressing CCR5 are present in inflamed areas with high

incidence of RANTES and MIP-1a and b [74, 75]. These

NK cells are substantially activated following from their

interactions with monocytes [76]. Interestingly, reduction

in the levels of CD56bright NK cells is suggestive of dif-

ferentiation of the CD56bright NK cells into the CD56dim

NK cells [77]. Concurrent expression of high levels of

CD56dim NK cells and low level of CD56bright NK cells

may explain this phenomenon in CFS patients [70]. In

diseases like AIDS, reduction in the levels of CD56dim NK

cells correlates with decreases in NK cytotoxic activity

[78]. The equivocal levels of NK phenotypes limits the

acceptance of this assumption in CFS patients nonetheless,

it is possible to posit that in some CFS patients with

marked reduction in NK phenotypes and activity a similar

disease profile may be observed. The heterogeneity of CFS

may confuse these findings hence, levels of NK cells may

not be appropriate markers for identifying and distin-

guishing CFS from the general population.

NK cytotoxic activity in CFS

Although NK cell phenotypes and overall NK cell numbers

in the periphery are unpredictable, consistent decreases in

the cytotoxic activity occur in most CFS patients [1, 5, 36,

64, 69, 79–83]. A rationale for decreases in cytotoxic

activity remains to be determined, however, these may be

associated with altered lytic proteins in particular perforin

and granzymes [37]. Lytic proteins are important factors in

the granule-dependent pathway of cytolysis. Perforin con-

tains a membrane attack complex and a C2 domain that

contains Ca2? [84]. In CFS patients, perforin gene

expression may be increased in conjunction with relatively

low to normal levels of granzymes [32, 37, 85].

Perforin is an important indicator to cytotoxic activity as

it is an absolute necessity for granule-related apoptosis [21,

86]. Incidentally, mice lacking perforin demonstrate

reduced apoptosis [86, 87]. Trafficking or exportation of

granzymes into the target cell is dependent on the avail-

ability of perforin thus its deficiency pre-empts decreased

cytotoxic activity owing to the paucity in the available

granzymes to induce apoptosis [21, 45]. Granzyme distri-

bution in some CFS patients may be reduced [32]. It is

known that during development the level of perforin in the

NK cell is related to the expression of CD56. Following

maturation, a substantial proportion of NK cell-related

perforin is detected in the CD56dim NK cells in comparison

to the CD56bright NK cells [88]. Upregulation of perforin is

regulated by important proteins including IFN-b, IL-2, IL-

6, IL-12, IL-15 and IL-21 [89, 90]. In CFS IL-2, IL-6, IL-

15 and IL-21 are known to be characterised by alterations

in cytokine levels, this may be a contributory factor to the

decrease in cytotoxicity [91, 92].

Granzyme decrease in CFS may be attributed to

decreases in perforin although correlations remain to be

proven. Granzymes are serine proteases, in humans they

include, granzyme A, B, H, M and K [93–96]. Granzyme A

and B are the most characterised and they induce apoptosis

via distraction of endoplasmic reticulum SET complex or

activating of caspase 3 following cleavage of substrates as

previously mentioned [97]. Granzymes are found in the

extracellular fluids such as plasma, cerebrospinal fluids and

synovial fluid and are therefore implicated in the regulation

of inflammation [98]. The diverse role of perforin and

granzymes in cell death-related pathways is paramount to

immune function during infections. Hence, in CFS recur-

ring infections may occur as a consequence of aberrations

in cytotoxic activity. Importantly, NK cells employ a

number of other cytotoxic pathways that may require fur-

ther investigations in CFS to ascertain the exact path-

way(s) that have an involvement with reduced NK

cytotoxic activity.
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Other factors that may affect efficient cytotoxic activity

in NK cells of CFS patients may be related to cytokine

production and secretion by NK cells. Cytotoxic activity

may occur via IFN-c and TNF-a. Therefore, changes in

these cytokines in the CFS patients may also have a con-

tributory role to the observed decreases in cytotoxic activity

in these patients. Incidentally, cytokine studies in CFS

although not NK cell-specific may have a role in reduced

lysis [99, 100]. Importantly, in some CFS patients, signifi-

cant increases in IFN-c and TNF-a may indicate induction

of other cell death pathways [31]. Nonetheless, this does not

reflect an increase in cytotoxic activity as reduced cytotoxic

activity still persists even when these pro-inflammatory

cytokines are increased [31, 32]. IFN-c is the most abundant

cytokine secreted by NK cells, in particular CD56bright NK

cells. Longitudinal assessments of cytokines in CFS

patients explicitly illustrate nonconformities in the presen-

tation of cytokine production over the cause of CFS [31].

Shifts towards pro-inflammatory cytokines such as IFN-c
and TNF-a may occur initially but dissipate in time. In most

cases as we have observed in our CFS patients, an increase

in IFN-c and TNF-a occurred in coincidence with an

increase in anti-inflammatory cytokine IL-10.

NK receptors in CFS

Natural killer receptors are the least investigated NK-

related parameters in CFS. Currently, only one study has

examined the relationship between NK receptor expression

in CFS patients [65]. NK cells expression a varying number

of activating and inhibitory receptors that may have sto-

chastic presentations. It is possible to posit that failures in

the regulation of the expression of these receptors can

affect NK function during viral invasion. For example,

elevated levels of inhibitory KIRs such as KIR3DL1 may

result in decreased NK cell lyis in patients with lung cancer

[101]. KIR receptors are exceedingly polymorphic and

KIR3DL1 is no exception as it expresses eight different

KIR3DL1 allotypes with differing sensitivities to antigen

binding [102–105]. HIV and spondyloarthritis patients

demonstrate high levels of KIR3DL1 [13, 106–108].

Similarly, the incidence of KIR3DS1 in some CFS

patients exceeds that of non-fatigued controls [65]. A

similar gene encodes KIR3DL1 and KIR3DS1 [109],

suggesting a potential link between these receptors in CFS

and cytotoxic activity. Certain ligands of these receptors

may also be elevated in CFS patients [65]. Diversity in the

KIR receptor polymorphism may generate receptors with

differing haplotypes that are specific to CFS. Further

studies are required to provide extensive details into the

polymorphisms of KIRs in CFS patients, which may be

further complicated by the heterogeneity and ambiguity of

the disease presentation and symptoms.

NK gene expression studies in CFS

Natural killer gene expression or molecular studies in CFS

are lacking, currently, only two studies have investigated

mRNA and microRNA (miRNA) studies in CFS. Perhaps

the lack of such studies relates to the cost associated and

volume of blood required for the preferential isolation of

NK cells. In PBMCs, expression of GZMA and GZMB is

reduced in CFS patients in comparison to non-fatigued

controls. GZMA and GZMB are genes for the protein

granzyme A and B, respectively. These reductions may

correlate with the protein production. In our previous

studies, preferential examination of lytic protein genes in

CFS patients revealed a significant expression in the per-

forin gene PRF1 while GZMA and GZMK were signifi-

cantly reduced in the CFS patients [32]. The exact cause of

increase in the expression of perforin is not known, how-

ever, as perforin proteins were not measured in these CFS

patients, it is difficult to predetermine an association

between these PRF1 expression and perforin protein.

MicroRNAs are non-coding small RNA molecules with

regulatory roles in the expression of genes including

translation repression or mRNA degradation [110, 111]. In

CFS, NK cell expression of miR-10a, miR-21, miR-103,

miR-106, miR-146a, miR-150, miR-17-5p, miR-191 and

miR-223 are down-regulated in comparison to non-fatigued

controls [112]. Most of these miRNAs have been linked to

a number of cancers. An association or the role of these

miRNAs in NK cell-related activities is yet to be deter-

mined nonetheless these miRNAs are attributed to a

number of diseases and physiological processes. Most of

these miRNAs are associated with the presentation of a

number of different cancers and are involved in apoptosis,

cell proliferation and development. Importantly, miR-21,

miR-150 are implicated in the development of lymphocytes

and thus they may have similar effects in NK cells [113,

114]. Decreases in the expression of miR-10a occur in

chronic myeloid leukaemia [115]. MiR-10a preserves

vascular integrity by targeting HOXA1, MAP3K7 and

bTRC [116]. MiR-146a upon induction has been shown to

target TNF receptor-associated factor 6 (TRAF6) and the

IL-1 receptor associate kinase 1 (IRAK1) genes, and these

are important in the regulation of TLRs and inflammation

[117]. In many cancers the presence of miR-146a resulted

in cell proliferation [118]. Bacterial antigens and pro-

inflammatory cytokines stimulate the expression of miR-

146a, which in turn may suppress the secretion of inflam-

matory cytokines [119]. Similarly, miR-21 promotes

tumour growth owing to its oncogenic properties and its

role in inflammation and T cell-related activities [120].

These studies on miRNAs have elucidated an important

role of miRNAs in NK cells, as they regulate the expres-

sion of immune-related genes. However, these studies are
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limited as they have not identified the exact miRNA target

genes in CFS patients. Such studies may be instrumental in

unexplained disorders such as CFS, further research, may

be required to establish these links.

Implications for severe CFS patients

The results from studies on NK cells in CFS patients

suggest a potential mechanism of CFS can be identified

through a thorough study of NK cell-related activities.

From our observations, reductions in lytic proteins, genes

and further decreases in miRNA genes [31, 34, 112],

cumulatively affect efficient cytotoxic activity in CFS

patients. Similarly, the polymorphic alleles of the KIR

receptors may not allow efficient pathogenic and antigenic

targeting of the NK cell, as an overabundance in the

inhibitory KIRs may abort or impede cytotoxic activity

[121]. The extent immune dysfunction in subtypes of CFS

patients may differ among subgroups of patients. CFS

patients may have variations in the severity of their

symptoms, for example a distinct subgroup of patients

maybe housebound as they suffer from high levels of

fatigue and CFS-related symptoms compared to other

sedentary CFS patients [122]. Their severe persistent and

incapacitating symptoms probably exclude these patients

from CFS-related studies. Hence, we examined for the first

time NK cell-related parameters including cytotoxic

activity, phenotypes and KIR receptor expression in

patients with severe CFS (SCFS) in comparison to seden-

tary or moderate CFS (MCFS) patients and non-fatigued

controls. Currently, these studies have not been performed

in this group of CFS patients.

NK cytotoxic activity in severe CFS patients

Cytotoxic activity of the NK cells was measured by the

ability of the cells to lyse the K562 effector cells. The NK

cytotoxic activity against K562 cells was significantly

decreased in the MCFS and the SCFS group (P \ 0.05)

compared to the non-fatigued control group (Fig. 1).

Multiple comparison tests revealed significant decreases

between the SCFS patients and the control group only.

There were no significant differences between the MCFS

and the control group or the SCFS and the MCFS group.

NK receptors in severe CFS patients

The percentage of NK receptor expression was determined

following preferential gating on isolated NK cells in a

forward and side scatter plot. This was then extrapolated on

to six plots for CD56 versus the six NK receptors assessed.

Significant changes in NK receptors were observed in only

one receptor, KIR3DL1 (CD158e) (Fig. 2). KIR3DL1

expression was significantly different between the MCFS

group and the non-fatigued controls. There was a general

trend of reduced receptor expression in the non-fatigued

controls in comparison to the other two groups. However,

most of these observations were not statistically significant

(data not shown).

NK cytokines in severe CFS patients

In the present study, plasma cytokines were investigated in

SCFS, MCFS and non-fatigued controls, where a significant

increase in the plasma pro-inflammatory cytokines IFN-c and

TNF-a were observed in the SCFS patients. Additionally, IL-4

was significantly increased in the SCFS group (Fig. 3).
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Fig. 1 Decreased NK lysis in MCFS and SCFS group compared to a

non-fatigued control group. The percent lysis of NK cells in each

group is represented above where the white bar represents the results

from the non-fatigued control group and the black bar represents the

SCFS group. Asterisk denotes statistical significance where P \ 0.05

and data is represented as the mean ± SEM
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Fig. 2 Expression of KIR3DL1 in SCFS, MCFS and a non-fatigued

control group. The above bar graph is based on the flow cytometric

analysis of KIR3DL1. This was the only receptor that was signifi-

cantly (P \ 0.05) increased in the MCFS group in comparison to the

SCFS and non-fatigued controls. There was no significant difference

between the SCFS group and the MCFS group. Asterisk denotes

statistical significance where P \ 0.05 and data is represented as the

mean ± SEM
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Conclusion

This preliminary study is the first to examine and report

immunological disparities in severely affected CFS

patients characterised by significant decreases in NK lysis

and increases in KIR3DL1, IL-4, TNF-a and IFN-c.

The decreases in cytotoxic activity observed in the SCFS

and MCFS group were consistent with previous CFS NK

studies [34, 37, 69]. These NK disparities likely occur as a

consequence of paucities in lytic proteins including perforin

and granzymes and differential expression of their genes in

some CFS patients [37, 85]. These molecules are involved

in the granule-dependent cytotoxic pathway. Perforin is a

necessary component of this pathway as it facilitates the

entry of the granzymes into the target cell. In the target cell,

granzymes activate caspases, mitochondria-related apop-

tosis and reactive oxygen species, which induce apoptosis

[123]. Importantly, mice deficient in perforin experience a

substantial loss in cytotoxic activity. Reduced cytotoxic

activity permits the recurrence and prolonged survival of

various infections in the body possibly explaining the per-

sistence of flu-like symptoms in the CFS patients. As cor-

relations exist between cytotoxic activity and perforin in

CFS patients, a similar incidence may present itself in SCFS

patients perhaps at a more severe rate in comparison to the

moderately affected CFS population. Nonetheless, further

confirmatory studies are now required.

Significant increases in the expression of inhibitory

KIRs may correspond to the reduced NK cell lysis [124].

Specifically, the significant increase in KIR3DL1 may be

related to decreases in NK cell cytotoxicity of infectious

cells with Class I HLA expression [101]. KIR3DL1 is a

highly polymorphic inhibitory NK receptor and polymor-

phisms in its gene results in the generation of eight dif-

ferent KIR3DL1 allotypes that may be classified as having

high, intermediate or no surface expression with similar

affinity to bind antigens [102, 104, 105]. It associates with

antigens expressing HLA-B and having Bw4 specificity

[125]. Variations in the allotypes determine the response of

the KIR3DL1 to pathogens at the cell surface [104]. For

example expression of an inactivated KIRD3DL1 pheno-

type at the cell surface maybe subverted by ligands from

viral pathogens and this may be related to certain disease

presentations [126]. Similarly, polymorphisms within the

HLA-Bw4 may undermine recognition by KIR3DL1 [127].

Increases in KIR3DL1 have been associated with diseases

such as HIV and spondyloarthritis [66, 128]. KIR genes

have previously been investigated in CFS patients where

frequency of KIR3DS1 was significantly elevated in the

CFS patients in comparison to the non-CFS group [65].

Similarly, the incidence of KIR3DL1 and KIR3DS1 with-

out HLA-ligand and HLA Ile80, respectively, was higher

among the CFS patients [65]. KIR3DL1 and KIR3DS1 are

encoded by the same gene [109], hence, these observations

implicate possible compromises to the genetic framework

that confers atypical properties on these receptors and their

allotypes inadvertently compromising cytotoxic activity.
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Fig. 3 Plasma Cytokines in SCFS, MCFS and a non-fatigued control

group. The above bar graph is based on enzyme-linked immunosor-

bent assay (ELISA) assessments of seven plasma cytokines (IFN-c,

IL-1b/IL-1F2, IL-2, IL-4, IL-17, IL-6 and TNF-a). IL-4 (a), TNF-a
(b) and IFN-c (c) were significantly increased (P \ 0.05) in the SCFS

group in comparison to the MCFS and non-fatigued controls. Asterisk

denotes statistical significance where P \ 0.05. Results are repre-

sented as the mean ± SEM
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The increase in IFN-c did not correlate with an increase

in cytotoxic activity as cytotoxicity was reduced in the CFS

patients thus indicating that other cell types or cytokines

such as TNF-a may have contributed to the overall increase

in plasma IFN-c levels. The results on the cytokine studies

further highlight profound compromises in the immune

function of SCFS patients in comparison to the MCFS

patients. IFN-c and TNF-a activate macrophages and

CD8?T cells and provoke T helper 1-related immune

responses [129]. Persistent T cell and macrophage activa-

tion, decreased NK activity and impaired perforin function

is a hallmark of hemophagocytic lymphohistiocytosis

[130]. Hence, atypical immune activation may exist among

SCFS patients. Perhaps, cell-specific cytokine assessments

may provide superior in-depth analysis of cytokines in CFS

patients. Although, we have attempted to provide and

highlight cytokines in plasma this may still not be repre-

sentative of the cytokine profile in CFS patients as the

source of most of these cytokines were not examined in this

study and thus remains unknown. Nonetheless, this is the

first study to report on cytokines in SCFS patients and may

serve as a platform for further studies.

Contrary to previous studies, the present study did not

demonstrate any significant reductions or changes in NK

phenotypes. CFS is a heterogeneous disease and different

subgroups of CFS patients may potentially express differ-

ent distributions in immune cell phenotypes [55]. Inci-

dentally, we have previously shown that alterations in NK

phenotypes are not consistent overtime but fluctuate and

are therefore poor indicators of immune function in CFS

patients [31]. Reduced NK lysis with concomitant increa-

ses in KIR3DL1 and cytotoxic-related cytokines is sug-

gestive of impairments in the NK cell cytotoxic pathways,

in particular, the granule-dependent and -independent

pathways. Further studies are now required to elucidate the

mechanisms of these pathways in the CFS patients with

varying degrees of symptom severity. Importantly, KIR

receptors may be important biomarkers for the diagnosis of

CFS following thorough validatory studies to determine

their use in CFS diagnosis.
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