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Abstract: Solid malignant tumors are one of the leading causes of death worldwide. Many times
complete removal is not possible and alternative methods such as focused hyperthermia are used.
Precise control of the hyperthermia process is imperative for the successful application of such
treatment. To that end, this research presents a fast method that enables the estimation of deep tissue
heat distribution by capturing and processing the transient temperature at the boundary based on
a bio-heat transfer model. The theoretical model is rigorously developed and thoroughly validated by
a series of experiments. A 10-fold improvement is demonstrated in resolution and visibility on tissue
mimicking phantoms. The inverse problem is demonstrated as well with a successful application of
the model for imaging deep-tissue embedded heat sources. Thereby, allowing the physician then
ability to dynamically evaluate the hyperthermia treatment efficiency in real time.
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1. Introduction

Cancer is one of the leading causes of morbidity and mortality worldwide [1]. Today’s clinicians
are armed with multiple treatment options to alleviate the burden of solid malignant tumors. Despite
the ever-growing number of available techniques, the most effective treatment is still a complete
resection of the malignant mass with negative borders [2]. Unfortunately, many times complete
removal is impossible, especially for diffused tumors or sensitive anatomic locations. Thus, other
methods are used to supplement resection before or after the procedure. Most common are locally
applied radiation therapy [3,4] or systemic chemotherapy [5,6].

A less common method which is of potential interest, is focused hyperthermia [7,8]. Such a method
takes a much lower toll on the patient’s body and thus greatly improves his life quality while reducing
the burden on the healthcare system. Hyperthermia takes advantage of the fact that the sensitivity of
tumors to temperature elevation is higher than that of healthy tissue [9], i.e. in the temperature range
of 42–47 ◦C a cancerous tissue will experience reduced viability while healthy tissue is expected to only
experience reversible damage [10]. A focused and localized hyperthermia at the tumor sites makes it
much more effective. Thus, in recent years, targeted hyperthermia approaches have been developed.
Specifically, Nanoparticle Mediated Hyperthermia (NMH) uses targeted Super Paramagnetic Iron
Oxide Nanoparticles (SPIONs) excited by external Radio Frequency (RF) fields to focus the generated
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heat at the tumor sites [11–13]. SPIONs are the only type of nanoparticles which currently have the
necessary regulatory approvals for human use. This is due to their small size which allows renal
clearance and non-toxic surface properties. Other focused approaches include photodynamic therapy
(PDT) or brachytherapy. PDT uses light-sensitive drugs which are applied topically or systemically and
when concentrating in tumor areas are activated by external light and release singlet oxygen [14–16].
PDT is often restricted to shallow tumors due to the extreme attenuation of light inside the tissue.
Brachytherapy and other similar methods use miniaturized radiation sources (often called “seeds”)
embedded inside the organ [17,18]. Such methods are much more invasive.

Previously, using a thermal camera and inverse modeling we were able to image NMH both in
tissue-like phantoms and in vitro models [19]. We were able to localize these particles through the
analysis of features of the temperature images [20–22]. We have shown that NMH can reduce tumor
volume and aggressiveness [13].

In practice, all the above methods are being used without any real-time feedback system that
may indicate whether the tumor is responding and the treatment is successful. The response is
usually evaluated through imaging or biopsy after the whole set of the planned treatment has ended.
Specifically, for hyperthermia, the temperature at the tumor vicinity is unknown as well as unconfined
to the tumor region and thus, damage may occur to the surrounding tissue, or temperature might be
insufficient for treatment. This work aims to fill this void. Specifically, we seek to increase the efficiency
of NMH through control of the temperature at one or more tumor foci based on real-time estimation of
the temperature in the tumor vicinity through the thermal images.

Previous work [19] proved the ability to predict the source’s depth alone in a single spherical
heat source scenario, by means of classification of temperature rise time curve to a supervised training
set. Such method relies on a large, diverse dataset of training examples (temperature measurements
acquired from tissue-like phantom/in vitro experiments or simulations) which limits its generality and
ability to handle more abstract scenarios (distributed, non-uniform heat source). We have also proposed
using acoustical signal detection through a set of hydrophones around the organ of interest [23].
Our proposed solution, based on an analytic physical model, may solve the mentioned problem as it
accounts for the abstract set of variables parameterizing the heat transfer equation. A time-harmonic
model, i.e., heat source power which is a time-dependent sinusoidal function, was formulated in order
to analyze temperature measurements in a quasi-steady state. Time-harmonic heat stimulation offers
a high Signal to Noise Ratio (SNR) by means of Fourier transforming the measurements from time to
frequency domain. The signal’s energy concentrates in a narrowband fashion and therefore can be
well above from the noise floor. In addition, time-harmonic formulation simplifies the heat transfer
solution, which enables the addition of complexity to the model (multilayer heat transfer).

The rest of the manuscript is arranged as follows. First, we present a rigorous derivation of the
fast time-harmonic analytical model. Then the experimental setup and signal processing scheme are
described. Finally, we experimentally assess the method’s ability to separate thermal sources in the
lateral and axial directions. Tests are performed both in silico and on tissue-mimicking phantoms.
Finally, the estimated temperatures of each of separate tumor foci are tested as well to demonstrate the
ability to provide accurate feedback in real-time.

2. Materials and Methods

2.1. Time-Harmonic Analytical Model

Estimating the three-dimensional temperature distribution based on the surface temperature
measured by a thermal camera is non-trivial. This is due to two major reasons: (A) the surface
temperature is very much affected by external environmental conditions which might be unrelated
to the internal temperature distribution that we seek to estimate and (B) the temperature is known
to follow the heat equation which acts as a narrow low-pass spatial filter. Thus, even in the absence
of external environmental perturbations—the two-dimensional surface temperature distribution is
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heavily blurred and axially integrated version of the three-dimensional one. The high-resolution
temperature distribution that we seek. Figure 1 exemplifies these effects.

Figure 1. Temperature maps of simulated heat source embedded 8 mm below the surface.
(a) The thermal source distribution over a 10 × 10 cm area; (b) The resulting surface temperature
increase; (c) The same increase in temperature after a four-fold increase in the heat convention; (d) The
(temporal) Fourier coefficient of the surface temperature at 1/3 Hz resulting from a source modulation
at the same frequency.

We make an important observation to overcome these effects. While the spatial distribution
of the sources is unknown; the temporal distribution is known and externally controllable. Thus,
by modulating the excitation RF field, one can take advantage of a known perturbation and filter out
the signal components (which are linearly dependent on the modulation) from the noise component
which are independent of the modulation. A straightforward application of such a technique utilizes
a narrowband excitation waveform followed by filtering out all other frequencies in the measurement.
This allows coherent increase of the signal to noise ratio (SNR) or resolution on the expanse of
measurement time. This is, in contrast to simple non-coherent averaging of frames which will provide
a square root increase in SNR and won’t improve resolution.

Time-harmonic thermal stimulation leads to thermal diffused waves [24,25]. It allows us to apply
the wave approach. Diffused waves are damped waves with a complex wavenumber. By increasing
the frequency, one can increase the real part of the wavenumber (or decrease the wavelength) and
thus improve resolution. However, since the imaginary part (which is responsible for the damping) is
increasing with frequency as well, the damping will grow and additional images will be needed to
compensate for the reduction in SNR.
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We’ve developed an analytic multilayered model. Such a model is applicable to many anatomic
locations and a wide range of other applications. Since the model is based on a closed-form analytical
expression it can calculate the heat source and/or temperature distributions at various depths in a rapid
manner and thus can potentially allow a thermographic tomography of small regions. The model
geometry is described in Figure 2.

Figure 2. Analytical multi-layered thermal diffusion model geometry.

In order to derive the analytical multi-layered thermal diffusion model, let us first consider
Penne’s bio-heat equation:

ρTCT
∂

∂t
τT(r, t)︸ ︷︷ ︸

change in

temperature

− κT∇2τT(r, t)︸ ︷︷ ︸
conduction to tissue

− fBρBCB[τB(r, t)− τT(r, t)]︸ ︷︷ ︸
convection by perfusion

= qMET(r, t)︸ ︷︷ ︸
metabolic heat sources

+ qEXT(r, t)︸ ︷︷ ︸
extrnal heat sources

(1)

This equation describes the temperature distribution inside the tissue τT(r, t)
[0K

]
in time and

space. The subscript T is related to the tissue properties–thermal conductivity: κT
[
W ·m−1 · 0K−1] ,

density: ρT
[
kg ·m−3] and heat capacitance: CT

[
J · kg−1 · 0K−1] ). The subscript b is related

to arterial blood rather than the tissue— fB[Hz] blood perfusion rate. Temperature changes are due
to heat conduction to/from neighboring tissues, heat convection by arterial blood and due to a heat
source, such as metabolism and external sources:

q(r, t)
[
W ·m−3]

If we consider rapid heating of the tissue (i.e., by external MNPs) then the metabolic and
convection terms can be neglected. For a multi-layered tissue such as described in Figure 2, we can
formulate the problem using this set of PDEs: ∇

2τi(r, t)− 1
Di

∂
∂t τi(r, t) = − qEXT(r,t)

κi
δ[i− N] i = 1, 2, . . . , N

r =
[

x y z
]T

x, y, t ∈ R z ∈ [zi−1, zi]
(2)

where Di =
κi

ρiCi

[
m2 · s−1] is the thermal diffusivity and the subscript i is used for denoting tissue

properties of the ith layer and heating only occurs in the bottom Nth layer. Defining is zi as the
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cumulative depth: zi =
i

∑
m=0

dm, τamb and hamb as the ambient temperature and convection coefficient,

the set of PDEs is subject to the following boundary conditions:

lim
x→∞

τi(r, t) = lim
y→∞

τi(r, t) = 0 Temeparture vanishes at inifinte radius

κi
∂
∂z τi(r, t)

∣∣∣
z=zl

= κi+1
∂
∂z τi+1(r, t)

∣∣∣
z=zl

The heat flux is continuous over boundaries

τi(r, t)|z=zi
= τi+1(r, t)|z=zi

Temperature is continuous over boundaries

−κ1
∂
∂z τ1(r, t)|z=0 = ηup

(
τup − τ1(r, t)

∣∣
z=0

)
Heat transfer at upper surface

κN
∂
∂z τN(r, t)|z=zN

= ηdn

(
τdn − τN(r, t)|z=zN

)
Heat transfer at lower surface

(3)

To summarize, the problem before us is: given a measurement of τ1(r, t)|z=0 on the skin surface,
we wish to estimate qEXT(r, t) in the Nth tissue layer.

In order to simplify the task at hand, it is suggested to modulate the heat generation in the tissue
volume. It can be achieved easily by modulating the high-frequency RF excitation (hundreds of kHz)
with a low frequency (several Hz) periodic gating signal:

VRF(t) = A cos(ωRFt)︸ ︷︷ ︸
Fast RF signal to match

the MNP excitation peak

· cos(ωmodt)︸ ︷︷ ︸
Slow modulation signal

for resolving the temperature field

(4)

Such an excitation will generate heating with the following temporal dependence:

qExt(r, t) = qDC(r) + qAC(r) cos(ωmodt) (5)

Thus the abovementioned PDE set can be reformulated as:{
∇2τAC,i(r)− j ωmod

Di
τAC,i(r) = −

qAC(r)
κi

δ[i− N]

∇2τDC,i(r) = −
qDC(r)

κi
δ[i− N]

i = 1, 2, . . . , N (6)

Although this presents some simplification of the problem, it is not enough. By taking the spatial
Transverse Fourier Transform (spatial-TFT):

Ti
(
kx, ky, z

)
= F⊥{τi(x, y, z)} =

∫
x∈R

∫
y∈R

τi(x, y, z)ej(kx x+kyy)dxdy

τi(x, y, z) = F−1
⊥
{

Ti
(
kx, ky, z

)}
= 1

(2π)2

∫
kx∈R

∫
ky∈R

Ti
(
kx, ky, z

)
e−j(kx x+kyy)dkxdky

(7)

The above PDE set simplifies to the following ODE set:
∂2

∂z2 TAC,i −
(

k2
x + k2

y + j ωmod
Di

)
TAC,i = −QAC

κi
δ[i− N]

∂2

∂z2 TDC,i −
(

k2
x + k2

y

)
TDC,i = −QDC

κi
δ[i− N]

i = 1, 2, . . . , N (8)

where Q
(
kx, ky, z

)
is the TFT of q(x, y, z). These equations have a known homogenous solution:

TH
i
(
kx, ky, z

)
=

 TAC,i = AAC,ieµACz + BAC,ie−µACz µAC =
√

k2
x + k2

y + jωmod/Di

TDC,i = ADC,ieµDCz + BDC,ie−µDCz µDC =
√

k2
x + k2

y
(9)

Thus, the DC equations are just a particular case of the AC equations with ωmod = 0. From this
point onward, we won’t separate between the two. If we consider the source term to be of the form
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Q
(
kx, ky, z

)
= Q̃

(
kx, ky

)
δ(z− zs) then a particular solution suggested by the authors in a previous

work is:
TP

N
(
kx, ky, z

)
= − 1

µNκN
Q̃
(
kx, ky

)
H(z− zs)sinh(µN(z− zs)) (10)

where H(z) is the Heaviside step function. The total solution is:

Ti
(
kx, ky, z

)
= TH

i
(
kx, ky, z

)
+ TP

N
(
kx, ky, z

)
(11)

Now, if we consider a general source distribution:

Q
(
kx, ky, z

)
=

zN∫
z′=zN−1

Q
(
kx, ky, z′

)
δ
(
z′ − z

)
dz′ (12)

Then the general particular solution will be:

TP
N
(
kx, ky, z

)
= − 1

µNκN

z∫
z′=zN−1

Q
(
kx, ky, z′

)
sinh

(
µN
(
z− z′

))
dz′ (13)

It should be noted that since in the above expression z ≥ zN−1, the particular solution is zero in all
boundaries, except for z = zN . Thus we can consider only the homogeneous solution for all boundary
conditions (B.Cs) except for the lower boundary. Applying the continuity B.Cs we get the relations:

Aieµizi + Bie−µizi = Ai+1eµi+1zi + Bi+1e−µi+1zi

Aiκiµieµizi − Biκiµie−µizi = Ai+1µi+1κi+1eµi+1zi − Bi+1µi+1κi+1e−µi+1zi
(14)

Or put succinctly into vector-matrix form:[
Ai+1
Bi+1

]
=

1
2µi+1κi+1

[
(µi+1κi+1 + µiκi)e−(µi+1−µi)zi (µi+1κi+1 − µiκi)e−(µi+1+µi)zi

(µi+1κi+1 − µiκi)e(µi+1+µi)zi (µi+1κi+1 + µiκi)e(µi+1−µi)zi

]
︸ ︷︷ ︸

Mi

[
Ai
Bi

]
(15)

Denoting the matrix described in Equation (15) by Mi one can repeat this process to get the matrix
relation (denoted by Mtot) between the first and last coefficients:[

AN
BN

]
= MN−1 . . . M3M2M1︸ ︷︷ ︸

Mtot

[
A1

B1

]
(16)

Considering the convection B.C and infinite depth B.C (and accounting for the particular solution
there) we get:

A1 = α̃B1 + β̃Tup AN = γ̃BN + δ̃Tdn + TQ

ã =
κ1µ1+ηup
κ1µ1−ηup

β̃ = − ηup
κ1µ1−ηup

γ̃ = κN µN−ηdn
κN µN+ηdn

e−2µN zN δ̃ = ηdn
κN µN+ηdn

e−µN zN

(17)

where the source generated temperature TQ is given by:

TQ =
1

2κNµN

zN∫
z′=zN−1

Q
(
kx, ky, z′

)[
γ̃eµN z′ + e−µN z′

]
dz′ (18)
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Inserting these results into Equation (16) and solving for A1, B1 yields:[
A1

B1

]
=

1
(M12 − γ̃M22)− α̃(γ̃M21 −M11)

[
M12 − γ̃M22 α̃

γ̃M21 −M11 1

][
β̃Tup

δ̃Tdn + TQ

]
(19)

Thus, on the skin surface we get:

T1
(
kx, ky, 0

)
=

[M12 −M11 + γ̃(M21 −M22)]β̃Tup + (α̃ + 1)δ̃Tdn + (α̃ + 1)TQ

(M12 − γ̃M22)− α̃(γ̃M21 −M11)
(20)

which is directly related to the source TFT and to the thermal properties of the tissue layer.
By taking the inverse transform we can obtain:

τ1(x, y) = F−1
⊥

{
[M12 −M11 + γ̃(M21 −M22)]β̃Tup + (α̃ + 1)δ̃Tdn

(M12 − γ̃M22)− α̃(γ̃M21 −M11)

}
︸ ︷︷ ︸

τBC

+F−1
⊥

{
α̃ + 1

(M12 − γ̃M22)− α̃(γ̃M21 −M11)
TQ

}
︸ ︷︷ ︸

τsource

(21)

Thus, there is a contribution related to the upper and lower B.C and a contribution related to the
source. Since Tup and Tdn are potentially known, one can estimate qDC(r) or qAC(r) from τ1(r)− τBC(r)
by Wiener filtering:

q̂est(x, y) = F−1
⊥

(
P∗
(
kx, ky

)
F⊥{τ1(x, y)− τBC(r)}∣∣P(kx, ky
)∣∣2F⊥{τ1(x, y)}+ N

)
(22)

where P
(
kx, ky

)
= α̃+1

(M12−γ̃M22)−α̃(γ̃M21−M11)
1

2κN µN
(e−µN zs + γ̃eµN zs) is the Thermal Point Spread

Function (TPSF) and N is the noise floor of the measurement.

2.2. Thermal Phantom and Setup

We developed a simple controllable tissue mimicking phantom (Figure 3a) in order to test the
model predictions experimentally. The phantom is made from a petri dish (86 mm in diameter and
14 mm in depth) filled with polyester resin (ETERSET3030, Eternal Chemical Co. Ltd., Kaohsiung
City, Taiwan) with thermal conductivity and capacity that match those of a human liver tissue [26].
This is shown in Table 1. The thermal properties of agarose gel—a commonly used material for tissue
phantoms are listed as well for comparison. It can be seen that the thermal properties of all three are
similar. In this research, polyester was chosen over agarose gel due to its stability. Once hardened it
stays constant in shape and composition for many months, allowing ample time to conduct multiple
and comparable measurements. This is in contrast to agarose gel which loses water quickly thus
changing its volume and composition.

Table 1. Thermal properties of different mediums.

Thermal
Conductivity

Medium
Density

Heat
Capacitance

Thermal
Diffusivity

Polyester Resin 0.155 1090 1670 8.52 × 10−8

Agarose Gel 0.75% 0.382 999 4178 9.15 × 10−8

Soft Tissue 0.499 1020 3600 1.5 × 10−7

The notion behind this phantom was the ability to generate a set of distributed, individually
controlled heat sources inside a heat conducting medium and simulate different scenarios with
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5 degrees of freedom: 3-dimensional space, time (or modulation frequency) and stimulation power.
To accomplish this, the thermal phantom had eleven 120 Ω small electrical resistors (MBA0204 series
axial thin film fixed resistor, size 3 × 1.7 mm, Vishay Intertechnology, Inc. Malvern, PA, USA)
embedded in it, separated by different spacing between them. The resistors were divided into three
groups. The shallowest group at 3 mm depth has five resistors with 4.2 mm spacing; next a 3-resistor
group is located at 5 mm depth with 8.4 mm spacing. Finally, at depth of 7 mm, a group of three resistors
with 16.8 mm spacing. Resistor groups were far enough from each other to negate any disturbance
during imaging. All groups were confined to a central region within the phantom (the cyan zone in
Figure 3a) to avoid the effects of the boundaries. This enabled us setting different temperature levels
in each of them. Thus, such a phantom simulated a physical scenario of distributed point sources in
a radially infinite isotropic, homogeneous medium. While in the axial direction the medium is exposed
to thermal natural convection at the top surface and thermally insulated at the bottom.

The resistors energy output, and thus their temperatures are controlled by a multi-output
function generator (DS345, Stanford Research Systems, Sunnyvale, CA, USA). Each resistor could be
individually controlled electronically in order to simulate temperature variation due to different heat
source power. Also, the resistors could be electrically connected in parallel so that the resistors phase
and amplitude are matched and the thermal signal will be emitted coherently from a group of resistors.
The electrical voltage signal was a zero offset pure sine wave generated by a function generator.
Although function generators are attractive for creating various voltage waveforms, they fail to supply
the current required for power demanding applications. Thus, the function generator output signal was
amplified by a current booster follower circuit as described in Figure 3b in order to supply the sufficient
current to the resistors. Since current needs to be both synced and sourced (due to the AC waveform)
a bidirectional voltage follower was used. The heat generated by the resistor is proportional to their
voltage squared, the thermal response contained both zero frequency DC component as well as an AC
component at twice the voltage signal frequency: qTherm = V2(t)/R = A2/2R + A2 cos(2ωmodt)/2R.
The amplitude was set to 7.2 V per resistor, which resulted in a 0.432 W of generated heat. However,
only half of the heat was attributed to the AC term. This is a fundamental limitation that results from
the ability to heat only (without being able to cool the tissue below the nominal temperature). Thus,
a DC component will always be present.

A thermal camera (ThermoVision A40M, FLIR Systems, Wilsonville, OR, USA) was positioned at
30 cm above the phantom to capture thermal images for the various applied parameters. The camera
has a 320 × 240 pixel array with a built-in lens with a field of view (FOV) of 24◦ × 18◦. Three signals
were acquired synchronically: The resistor’s voltage was measured via data acquisition card (USB-6008
National Instruments Austin, Austin, TX, USA) at 10 Hz. The temperature of the close vicinity of
some of the resistors (marked in purple in Figure 3a) was measured via a thermocouple at 1 Hz and
the surface temperature was measured by a thermal camera at frame rates varying from 30 Hz to
0.3750 Hz while maintaining a factor of 75 over the stimulation frequency. The voltage was applied
immediately to the various resistors at the beginning of each experiment, but the data acquisition was
halted until all transient effects have vanished. E.g., until the surface temperature (measured by the
thermal camera) time dependence resembles a pure sinusoid. In order to achieve high SNR even in
relatively high stimulation frequencies, the first set of experiments (one source per depth) was acquired
for 24 stimulation cycles. The second set of experiments (multiple sources per depth) was acquired for
12 stimulation cycles. The experimental setup is shown in Figure 3c.
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Figure 3. Phantom set-up. (a) Sets of resistors embedded in gels with different distances between them
horizontally and 3 different depths. The resistors marked with purple are the ones which a thermal
couple was embedded with them and was used to verify the actual temperature. All resistors are
identical in their thermal and electrical properties. Multiple function generators supply current to the
resistors thus creating different controllable temperatures and frequencies; (b) An electrical diagram
showing the design of the Bidirectional current booster circuit that was used to amplify the function
generator’s signal and supply the proper current o the resistors; (c) A photo of the actual phantom and
thermal camera positioned to capture the entire phantom.

2.3. Thermal Image Processing

Surface thermal measurements were processed by taking the temporal Fourier transform and
picking only the (complex) image components at 2ωmod as depicted in Figure 4. The complex images
can be represented as the phase and magnitude plots of the temperature. The phase images retain
most of the structural/morphological data of the source. The magnitude images indicate the exact
transverse position of the source by filtering out spatial information and creating a strong temperature
gradient highlighting the maximum value point. For estimating the source distribution, those images
were later Weiner filtered, as was described earlier, to estimate the thermal power depth distribution.
This process is summarized in Figure 4.

Figure 4. (a) A time sequence of thermal images in response to a 0.05Hz sinusoidal voltage;
(b) The spectrum of a pixel in the image showing the spectral components in DC and 0.1 Hz;
(c) Magnitude image of the DC component showing the broad response; (d) Magnitude image of
the 0.1 Hz AC component showing a much narrower response; (e) Phase image of the 0.1 Hz AC
component that allows easy separation of the signal from the sounding noise.
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3. Results

3.1. Validation of the Thermal Model

First, we’ve compared the theoretical predictions with those measured in practice. To that end,
only a single resistor was used at each depth and the theoretical temperature profile was calculated.
To account for the non-point like source, the calculated Thermal PSF was convolved with a rectangular
area of dimensions similar to the resistor in Figure 3 (i.e., 1.7 mm by 3 mm). This simple approximation
was sufficient to predict the measured results quite well. The comparison is shown in Figure 5. First,
we compared the measurement and the model predicted TPSF at 0.1 Hz. The temperature plots along
both the vertical and horizontal axes are shown in Figure 5a,b. One can see that the model predictions
are highly correlated with the measurements. The predictions in the horizontal (short) axis are better
than those along the vertical (long axis). We suspect that our simple rectangle approximation might be
less accurate near the wire connectors. We’ve then moved to compare the Thermal PSF Full Width
Half Max (FWHM) and the peak temperature rise on the phantom surface at various depths and
modulation frequencies. This is shown in Figure 5c,d respectively. Figure 5c shows that for multiple
depths and modulation frequencies, the model predicts the surface temperature rise correctly from
5 ◦K to 10 ◦K. At such low level of temperature, the system described in Figure 3 reaches its noise floor
and can’t measure the temperature accurately anymore. Figure 5d describes the FWHM as a function
of modulation frequency at different depths. Again it is highly correlated with the measured values.
The only major deviation is the deepest source at high modulation depths were the SNR is very low.

Figure 5. Comparison of the thermal model vs. measurements. (a,b) Comparison of the predicted
PSF with measurement of a single heat source for both Horizontal and vertical axis. These show the
high correlation between the theoretical and experimental results; (c) Peak surface temperature rise
as a function of modulation frequency at different depths; (d) Thermal PSF FWHM as a function of
modulation frequency at different depths. Those plots show the accuracy of the thermal model is
retained at multiple depths and over three orders of magnitude of modulation frequencies.

3.2. Theoretical PSF Analysis

Encouraged by the high degree of correlation we’ve moved to characterize the predicted thermal
PSF as a function of depth and modulation frequency. Figure 6a shows the FWHM of the TPSF.
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As expected, the deeper the source is or the lower the modulation frequency is, the wider the TPSF.
Given a target resolution and a source depth, one can use Figure 6a as a guideline for picking the
appropriate modulation frequency. At shallower depths, the resolution degrades slowly with the
reduction in frequency. However, in greater depths, the TPSF is less forgiving and the degradation
is rapid.

In contrast, Figure 6b shows the relative magnitude of the TPSF. This figure is somewhat a mirror
image of Figure 6a. One can see that for low modulation frequencies (up to about 0.1 Hz) the magnitude
doesn’t change much with depth. This allows for a high SNR even at great depths (at the expanse of
resolution). However, at higher modulation frequencies the magnitude decays very fast with depth
which makes such combinations impractical unless a very lengthy measurement is used to increase
SNR and compensate for the great loss of signal.

Finally, Figure 6c presents the phase of the TPSF (at the center). Unlike the amplitude which is
dependent on the source strength and the measurement system and thus hard to calibrate, the phase
is almost independent of those factors and can be used for estimation of the source depth. As the
modulation frequency gets higher the (diffused) Thermal wavelength gets lower and the relation
between depth and phase become ambiguous. To negate that, a multi-frequency approach can be used.

Figure 6. Characterization of the predicted Thermal PSF. (a–c) The TPSF for different depths and
modulation frequencies. (a) Shows the FWHM in mm, (b) the relative magnitude in dB and (c) the
phase of the peak.

3.3. Transverse Thermal Resolution Analysis

We’ve then moved to estimate the transverse thermal resolution and its improvement due to the
modulation. To achieve this we’ve performed simultaneous stimulation of a whole group of resistors at
once. Either the five resistors positioned 3 mm beneath the surface with 0.1 Hz modulation frequency
(a–c) or the three resistors at a depth of 5 mm with 0.04 Hz modulation frequency (d–f) or the three
resistors at depth of 7 mm with 0.033 Hz modulation frequency (g–i). The subfigures of Figure 7
illustrate the magnitude of the surface temperature at DC (top row) and AC (middle row) frequencies.
It is clear that the transverse resolution is much improved and allows easy separation between the
sources and estimation of their relative intensities. However, the SNR is degrading with the increase
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in depth and frequency as a result of greater thermal attenuation and thus a reduction in signal
amplitude and consequently SNR. One can also appreciate the difference in amplitude. This is due to
the difference in resistance (which is also temperature dependent) and the current booster instability.

We define the transverse thermal resolution as the average FWHM of the measured hotspots
minus the width of the resistor (1.7 mm). The transverse resolution for each of the measurements
presented in Figure 5 is summarized in the following Table 2. It is clear that by modulating the heat
source one gets an order of magnitude improvement in the transverse thermal resolution without any
further processing.

Figure 7. Surface thermal response to an AC stimulated sources at different depths. Presented are the
different depths and frequency combinations for the DC and AC components. A cross-section (marked
in dashed white line) through both components is also plotted. ((a–c): 3 mm and 0.1 Hz; (d–f): 5 mm
and 0.04 Hz; (g–i): 7 mm and 0.033 Hz).

Table 2. Transverse resolution in different depths.

Source @ 3 mm Source @ 5 mm Source @ 7 mm

Resolution w/o Modulation 29.12 mm 33.06 mm 58.93 mm
Resolution with Modulation 1.80 mm 3.58 mm 3.89 mm

3.4. SNR Analysis

While it is clear that the modulation improves the thermal resolution, it is also clear that the
SNR is degraded. We’ve analyzed the SNR in a pixel-wise manner by a built-in MatlabTM “SNR”
function. An example of this calculation is shown in Figure 8a. The mean SNR was then calculated for
each image. A summary of the mean SNR resulting from a single source as a function of depth and
modulation frequency is presented in Figure 8b. It is not surprising that the SNR degrades with depth
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and with the increase in modulation frequency. Also, the SNR could not be estimated properly below
−5 dB due to limitations of the measurement system. At low modulation frequencies up to 0.02 Hz,
a slow and gradual decrease in the SNR is shown (which is due to the gradual decrease in the peak
temperature rise that was shown in Figure 5c. At higher frequencies, the SNR degrades rapidly with
the increase of modulation frequency. This degradation can be somewhat compensated by prolonging
the measurement time. As this is a coherent measurement the SNR will increase linearly with the
number of cycles used for measurement.

Figure 8. SNR analysis. (a) showing an example of the pixel-wise calculate SNR (b) Mean SNR in the
image as a function of stimulation frequency and source depth; (c) Visibility measurements as a function
of depth and modulation frequency. The figure shows the relative improvement in visibility compared
to DC; (d) The reconstruction of a single heat source at 3 mm depth using Weiner deconvolution on the
measured modulated surface temperature.

3.5. Thermal Visibility Analysis

The thermal visibility is a measure that combines the effects of improvement in thermal resolution
as well as degradation in SNR. In very low modulation frequencies, the TPSF is wide, and each
thermal hotspot fills the entire field of view which results in a low contrast. In very high modulation
frequencies, the TPSF is narrow but the amplitude is low and disappears into the background noise
resulting in low contrast again. In order to find the optimal modulation frequency for each depth,
we tested modulation frequencies between 0.005 Hz and 0.4 Hz at all three depths and calculated
the hotspot visibility for each scenario. The visibility was defined as the temperature difference
divided by temperature average across the line perpendicular to the parallel sources. Figure 6a depicts
the improvement in visibility (i.e., Vis(f,z)/Vis(0,z)) at different depths and modulation frequencies.
At shallow 3 mm depths, the modulation can improve hot spot visibility by a factor of up to 43 with
a modulation frequency of 0.4 Hz. This advantage degrades with depth and a maximal improvement
of 35 at 0.04 Hz at 5 mm and a factor of 12 at a modulation frequency of 0.02 Hz at a depth of 7 mm.
Although this limits our ability to see deep into the sample, it is still a considerable improvement over
the non-modulated measurements.
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3.6. Reconstruction of the Heat Source Distribution

Finally, we applied the Wiener filter for reconstruction of the heat source distribution. This allows
us to (partially) negate the effects of both the wide TPSF and decrease in SNR. Moreover it allowed the
reconstruction of the heat (rather than temperature) distribution at depth. The reconstruction algorithm
was applied to a single source located 3 mm deep with 0.1 Hz modulation frequency. The result is
presented in Figure 8d. One can see that the resulting heat distribution only slightly larger than the
resistor shape and dimensions (3 mm × 1.7 mm). Moreover, the maximal heat generation seems
to be concentrated around the center of the resistor which is more likely than assuming a uniform
distribution across its entire footprint.

4. Discussion

This paper presents a comprehensive study of a time dependent, externally controlled, distributed
heat source for the purpose of focused hyperthermia feedback system. A theoretical rigorous algorithm
was developed which predicted a simple relationship between the excitation heat source and the
measured surface temperature in the Fourier domain. This relation was exploited to increase the
resolution and imaging depth of thermal imaging up to 7 mm deep under tissue surface. Experimental
results support this model predictions and highlights its usability for a wide range of applications.
Both theoretical as well as experimental analysis was performed to find the best compromise between
resolution, depth and SNR. A single visibility was defined and optimized to maximize performances.
Following that, a wiener estimation of the heat distribution allowed the solution of the inverse problem
thus proving the usefulness of the proposed model-based thermal reconstruction method.

The results of this research present a method that enables the estimation of deep tissue temperature
sources by capturing and processing the transient temperature at the boundary. The proposed method
is based on a physical model of the bio-heat transfer equation, then analyses the pre-processed
measurement and outputs the temperature field in the vicinity of a heat source. Thereby, allowing
the surgeon the ability to dynamically evaluate the hyperthermia treatment efficiency in real time.
For example, assess the thermal dose in the cancerous tissue (>10 ◦C for irreversible damage) and the
effect on healthy tissue in its vicinity.

Since the tissue acts as a low-pass filter in the spatial domain, an embedded heat distribution
(containing high spatial frequency content) which diffuses to the tissue surface will appear blurred
and fuzzy. Therefore, we decided to link the spatial domain to the temporal domain by analyzing
the bio-heat transfer model as a function of the modulation frequency under harmonic steady-state
condition. Then we showed high a correlation between surface temperature measurements and
theoretical model in the space and modulation frequency domain.

Evidently the application of temporal modulation of the heat source power enables the analysis of
the surface thermal map in the temporal frequency domain, thus sharpening the image and improving
resolution by an order of magnitude (Sections 3.3 and 3.5). The idea is to separate the measurements to
a coherent signal (due to the heat source) and uncorrelated signal, i.e. noise.

Thermal source power and distribution estimation is an ill-posed mathematical inverse problem,
hence unstable and very sensitive to measurement and environmental noise. To overcome this obstacle
we have utilized the modulated excitation protocol and demonstrated SNR improvement that is
proportional to the number of modulation periods.

Another powerful tool is the theoretical/experimental overview of the TPSF (thermal point
spread function). This offers the operator the option to adjust and choose the modulated excitation
protocol parameters (modulation frequency) given a set of independent a-priori variables (source
depth/distribution and applied power) optimizing a particular scenario and assessing the temperature
in the volume of interest. Particular scenario means, different tumors (types and sizes) in variable
physiological tissues.

The ideal conditions for temperature reconstruction would be a high-power source unknown
distribution in space (compatible for hyperthermia treatment where temperature rise is desired in
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order to eradicate tumor cells) confined to a known Region of interest (ROI) proximal to tissue surface.
As discussed in Section 2.1, there is a significant importance for capturing a large virtual ROI (surface
imaged by the thermal camera) in order to fulfill the zero transverse boundary conditions away from
the artificial ROI boundaries. Though it may impair the reconstruction resolution (due to camera
limited pixel number and size) it will guarantee model compatibility. The results of this study will
serve as a strong base for the next step of this research, a nanoparticles based image and treat method
and system for solid tumors treatment. The study will be continued on in–vitro models (chicken liver
tissue) within 4 months and followed by in vivo studies on small animals bearing tumors. These are
all planned to be carried out during 2018.
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