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Abstract

There is no diabetes risk model that includes dietary predictors in Asia. We sought to

develop a diet-containing noninvasive diabetes risk model in Northern China and to evaluate

whether dietary predictors can improve model performance and predictive ability. Cross-

sectional data for 9,734 adults aged 20–74 years old were used as the derivation data, and

results obtained for a cohort of 4,515 adults with 4.2 years of follow-up were used as the vali-

dation data. We used a logistic regression model to develop a diet-containing noninvasive

risk model. Akaike’s information criterion (AIC), area under curve (AUC), integrated discrimi-

nation improvements (IDI), net classification improvement (NRI) and calibration statistics

were calculated to explicitly assess the effect of dietary predictors on a diabetes risk model.

A diet-containing type 2 diabetes risk model was developed. The significant dietary predic-

tors including the consumption of staple foods, livestock, eggs, potato, dairy products, fresh

fruit and vegetables were included in the risk model. Dietary predictors improved the nonin-

vasive diabetes risk model with a significant increase in the AUC (delta AUC = 0.03,

P<0.001), an increase in relative IDI (24.6%, P-value for IDI <0.001), an increase in NRI

(category-free NRI = 0.155, P<0.001), an increase in sensitivity of the model with 7.3% and

a decrease in AIC (delta AIC = 199.5). The results of the validation data were similar to the

derivation data. The calibration of the diet-containing diabetes risk model was better than

that of the risk model without dietary predictors in the validation data. Dietary information

improves model performance and predictive ability of noninvasive type 2 diabetes risk

model based on classic risk factors. Dietary information may be useful for developing a non-

invasive diabetes risk model.

Introduction

A number of noninvasive diabetes risk models have been developed to predict the risk of

developing type 2 diabetes and to identify high-risk individuals [1–11]. The advantages of a

noninvasive diabetes risk model are its lower cost and greater convenience compared with

the blood glucose test. Furthermore, it can be widely used in a population-based screening
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program for health promotion and disease prevention. Thus far, most of the noninvasive dia-

betes risk models have been developed for Caucasian populations [1–5]. However, Glümer

et al. have evaluated the performance of one diabetes risk model for Caucasians in nine popu-

lations of diverse ethnic origin and found that the risk model did not perform well in other

ethnic groups [12]. This finding suggested that these diabetes risk models that were developed

for Caucasian populations may be limited when applied to an Asian population. However,

very few diabetes risk models have been developed for the Asian population [6–11]. Further-

more, most of the risk models developed for Caucasians did not include dietary predictors,

and there is no diabetes risk model including dietary predictors for Asians.

Many cohort studies have confirmed that diet plays an important role in the development

of type 2 diabetes. Many studies have suggested that type 2 diabetes can be prevented in high-

risk individuals by intensive behavioral interventions targeting the diet [13–15]. However,

compared with classic risk factors such as age, gender, physical activity, a family history of dis-

ease, and anthropometrics indices, previous studies have underestimated the impact of dietary

predictors in these established diabetes risk models. In 2007, Simmons et al. reported that die-

tary predictors did not improve the predictive ability of noninvasive diabetes risk models

using classic risk factors and comparing the value of C-statistics between risk models with and

without dietary predictors [16]. However, C-statistics are not sufficiently sensitive to assess the

effect of important new predictors in risk prediction models [17], thus inaccurately reflecting

the real effect of dietary predictors in noninvasive diabetes risk models. To solve this dilemma,

net reclassification improvement (NRI) and integrated discrimination improvement (IDI)

have been proposed as better measures of discrimination than C-statistics when evaluating

new predictors [18]. Based on these measures, a previous study has demonstrated that dietary

information is useful in cardiovascular risk models [19]. To date, no study has explicitly evalu-

ated the effect of dietary predictors in diabetes risk models employing these measures.

Therefore, the primary purpose of this study was to develop a noninvasive diabetes risk

model that included dietary predictors based on baseline data from a cohort of 9,734 subjects

in China and to evaluate the risk model in another independent cohort for external validation.

Additionally, we evaluated whether dietary predictors improved model performance and the

predictive ability of the noninvasive diabetes risk model.

Materials and Methods

The derivation data

In our study, baseline data for the Harbin Cohort Study on Diet, Nutrition and Chronic Non-

communicable Disease (HDNNCDS) were used as the derivation data. The HDNNCDS was

launched in 2010 by the national key discipline, Department of Nutrition and Food Hygiene at

Harbin Medical University [20]. The HDNNCDS covered 7 urban administrate regions of

Harbin. Each region was divided into 3 strata according to their financial situation and a total

of 42 communities were randomly selected from each stratum in each administrate region by

performing a stratified multistage random cluster sampling design. Subjects were eligible to

participate in the study if they 1) were between 20 and 74 years old, 2) had been living in Har-

bin for at least two years, and 3) were without cancer or type 1 diabetes mellitus. The diabetes

diagnosis records were used to distinguish the participants’ diabetes type. A total of 9,734 sub-

jects participated in the HDNNCDS. The first follow-up survey of all cohort subjects in the

HDNNCDS is ongoing and is not yet completed. In our analysis, we excluded subjects at base-

line who had undergone dietary intervention for diabetes or other diseases (n = 655) and had a

total calorie intake� 4500 kcal/d or� 500 kcal/d (n = 315). A total of 8,764 subjects including

1,096 individuals with diabetes were included for analysis in the HDNNCDS.

Effect of Dietary Predictors in Noninvasive Diabetes Risk Model

PLOS ONE | DOI:10.1371/journal.pone.0166206 November 16, 2016 2 / 13



The validation data

The cohort data from the Harbin People’s Health Study (HPHS) was used as the validation

data. The HPHS was launched in 2008 by the Centers for Disease Control and Prevention and

the Public Health School in Harbin [21]. The HPHS covered 5 urban administrate regions of

Harbin. Each region were divided into 3 strata based on their financial situation and one or

two neighbourhood committees were chosen from 15 communities that were randomly

selected from each stratum in each administrate region by performing a stratified multistage

random cluster sampling design. A total of 8,940 subjects, aged 20 to 74 years old, were

recruited for the study. Subjects were eligible to participate in the study if they had no history

of using postmenopausal hormone therapy, malignancy, thyroid dysfunction, renal calculi,

corticosteroid or calcitriol use. A total of 4,515 subjects (approximately 50.5% of the total sub-

jects) were randomly selected to participate in the follow-up survey due to the study’s financial

constraints. In 2012, 4,158 subjects completed the first in-person follow-up survey with a

response rate of 92.1%. In the validation data, subjects were also excluded at baseline in HPHS

if they had diabetes (n = 550), were undergoing dietary interventions for diabetes or other dis-

eases (n = 126), and had a total calorie intake� 4500 kcal/d or� 500 kcal/d (n = 52), leaving

3,430 subjects included in the analysis. In total, 394 incident cases of type 2 diabetes were

observed during the 4.2 years of follow-up.

Ethics statement

Both of these two study protocols were approved by the Ethics Committee of the Harbin Medi-

cal University, and written informed consent was provided by all subjects. The methods in this

study were in accordance with the approved guidelines.

Questionnaire survey

Detailed in-person interviews were administered by trained personnel using a structured ques-

tionnaire to collect information on demographic characteristics, dietary habits, lifestyles, phys-

ical condition and anthropometric characteristic. The questions about dietary habits, lifestyles

and physical condition in the questionnaire were the same in the HDNNCDS and the HPHS.

The section on dietary habits was evaluated by the validated food frequency questionnaire

(FFQ) containing data regarding usual dietary intake over the past 12 months, including 103

food items from 14 food groups, which were white rice, wheaten food, potato and its products,

beans and its products, fresh vegetables, fresh fruits, livestock and its products, poultry and its

products, milk and dairy products, eggs and its products, fish and its products, snack, beverage

and ice cream. For each food item, participants are asked to choose their usual rate of consump-

tion frequency categories from “per day”, “per week”, “per month”, and “never” and then

answered the number of times for the corresponding frequency categories. The question regard-

ing the amount of food intake consumed in lians (a unit of weight equal to 50 g) or ml (for liq-

uid food item) for the corresponding frequency was measured by using molds of photographs

of standard potion sizes. Each food items were quantified in g/d with multiplying the frequency

by the amount of the food item. The energy intake per day was estimated by the Food Nutrition

Calculator (V1.60, Chinese Center for Disease Control [CDC], Beijing, China).

The section on lifestyles and physical condition mainly included prior disease history, a

family history of disease, regular exercise, labor intensity, cigarette smoking, alcohol consump-

tion, and taking medicines and health products in the prior 12 months. Current smokers were

defined as those who smoked at least 100 cigarettes in a lifetime or smoked every day or cur-

rently smoked some days. Current drinkers were defined as those who consumed� 1 alco-

holic drink each month in the 12 months prior to the survey. Regular exercise was defined as

Effect of Dietary Predictors in Noninvasive Diabetes Risk Model
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any kind of recreational or sport physical activity other than walking for work or life per-

formed at least 30 minutes for three or more days per week.

Anthropometric measurements and biochemical analyses

Anthropometric measurements, including height, weight, and waist circumference, were also

taken at baseline by well-trained examiners, with subjects wearing light, thin clothing and no

shoes. Body weight and height were measured to the nearest 0.1 kg and 0.1 cm, respectively.

Blood pressures were measured 3 times with a standard mercury sphygmomanometer on the

right arm of each subject after a 10-minute rest in a sitting position, and the mean values were

used for analysis. Body mass index (BMI) was calculated as weight (kg) divided by the square

of the height in meters (m2). An oral glucose tolerance test was administered according to the

World Health Organization guidelines for each subject. Fasting and 2-h postprandial serum

blood glucose levels were measured using an automatic biochemistry analyzer (Hitachi,

Japan).

Outcome ascertainment

Diabetes was identified by self-reports of a history of a diagnosis of diabetes, fasting blood

glucose� 7.0 mmol/L, and/or 2-h glucose� 11.1 mmol/L, and/or taking medication for

diabetes.

Hypertension was identified by self-reports of a history of a diagnosis of hypertension, a

systolic blood pressure� 140 mmHg and/or diastolic blood pressure� 90 mmHg, and/or tak-

ing medication for hypertension.

Statistical analysis

All statistical analyses were performed using SPSS v21.0 (Beijing Stats Data CO. Ltd, Beijing

China) and R 2.15.1 (http://www.r-project.org/). A two-sided P<0.05 was considered statisti-

cally significant.

Student’s t-test and the χ2 test were used for the comparison to baseline clinical characteris-

tics and dietary information between the derivation data and validation data. In this study,

noninvasive risk factors were defined as factors that could be measured without taking a blood

sample. The variables included in the model were divided into classic risk factors and dietary

predictors. Classic risk factors included age, gender, BMI, waist circumference, regular exer-

cise, labor intensity, alcohol consumption, cigarette smoking, education, hypertension and a

family history of diabetes. Dietary predictors included the 14 food groups in the FFQ and total

calorie intake. Their adjusted odds ratio (OR) and 95% confidence intervals (95% CI) were

estimated using a multivariate backward logistic regression analysis. The diabetes risk score

was developed for the two multivariate logistic regression models: a classic noninvasive risk

score and a diet-containing risk score, and points were assigned to each variable based on the

magnitude of its regression coefficient [22]. In the diabetes risk score system, we transformed

the unit of diet consumption from gram per day to liang per day, to facilitate its use in China.

The dietary predictors except diary in the risk model were continuous in order to use the full

information for dietary predictors. The risk score allows decimal value if the weight is not in

round number. For the dairy products, because 24.4% and 29.4% of the total subjects in the

derivation data and validation data were never consume milk and its products, we transformed

the dairy and its products variable into binary variable in the risk model. A total diabetes risk

score for each individual was calculated as the sum of the points for each variable.

The classic noninvasive risk model and the diet-containing risk model were compared with

Akaike’s information criterion (AIC), area under curve (AUC), IDI, NRI and the Hosmer-
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Lemeshow goodness-of-fit test (HL test) for model performance, discrimination and predic-

tive ability, and general calibration in derivation data and validation data separately. An AIC

difference between two models of 10 or greater was considered to be significant with a lower

AIC value indicating a better model performance [23]. AUC, IDI and NRI were calculated to

evaluate the model discrimination and predictive ability [24]. To apply NRI in the logistic

regression model, we adopted the approach proposed by Pencina et al [25]. The Hosmer-

Lemeshow goodness-of-fit test (HL test) was used to examine how well the predicted preva-

lence matched the observed prevalence of type 2 diabetes, and P-values of 0.01 or greater from

the test were considered to indicate a good calibration.

Results

Table 1 shows the baseline clinical characteristics and average daily diet intakes in the deriva-

tion and validation data. The derivation data were older than the validation data, and the pro-

portion of males was higher in the derivation data than in the validation data. The other

baseline characteristics and average daily diet intakes were very different between the deriva-

tion and validation data.

Table 1. Characteristics of Subjects in the Derivation and Validation Data.

Derivation data (8,764) Validation data (3,430) P-value

Age (years) 49.6 (10.3) 44.7 (10.3) <0.001

Male, n (%) 3,065 (35.0) 1,021 (29.8) <0.001

Body mass index (kg/m2) 24.8 (3.4) 25.0 (3.4) 0.020

Waist circumference (cm) 83.9 (9.9) 85.4 (10.1) <0.001

Current smokers, n (%) 1,513 (17.4) 544 (15.9) 0.021

Current alcohol drinkers, n (%) 3,191 (36.4) 1,014 (29.6) <0.001

Hypertension diagnosed, n (%) 3,048 (34.8) 1,158 (33.8) 0.149

Family history of diabetes, n (%) 1,285 (14.7) 417 (12.2) <0.001

Regular exercise, n (%) 3,967 (45.3) 1,912 (55.7) <0.001

Fasting serum glucose (mmol/l) 4.91 (1.63) 4.70 (0.71) <0.001

Postprandial serum glucose (mmol/l) 6.29 (2.87) 5.67 (1.67) <0.001

Average daily diet intakes

Total calorie (kcal/d) 2,391 (892) 2,253 (845) <0.001

White rice (g/d) 221 (155) 207 (148) <0.001

Wheaten food (g/d) 135 (109) 138 (106) 0.180

Potato and its products (g/d) 63 (77) 59 (68) 0.040

Beans and its products (g/d) 53 (66) 50 (61) 0.010

Fresh Vegetable (g/d) 268 (216) 294 (231) <0.001

Fresh Fruit (g/d) 152 (154) 164 (177) <0.001

livestock and its products (g/d) 78 (85) 65 (70) <0.001

Poultry and its products (g/d) 32 (54) 23 (37) <0.001

Dairy and its products (ml/d) 90 (105) 93 (109) 0.194

Eggs (g/d) 46 (47) 41 (40) <0.001

Fish and its products (g/d) 37 (79) 33 (80) 0.021

Snacks (g/d) 15 (34) 13 (29) 0.002

Beverage (ml/d) 39 (89) 34 (88) 0.012

Ice-cream (g/d) 11 (29) 9.0 (29) 0.010

All values are presented as the mean (standard derivation) or as percentages.

doi:10.1371/journal.pone.0166206.t001
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Student’s t-test and the χ2 test were used for the comparison to baseline clinical characteris-

tics and average daily diet intakes between the derivation data and validation data.

Table 2 presents the classic noninvasive risk model and the diet-containing risk model in

the derivation data. In the classic noninvasive risk model, age, gender, hypertension, a family

history of diabetes, alcohol consumption, regular exercise, BMI and waist circumference were

significantly associated with the risk of type 2 diabetes. In the diet-containing risk model, the

classic risk factors and consumption of staple foods, livestock, eggs, potato, dairy and its prod-

ucts, fresh fruit and vegetable were retained in the model. The detailed risk score systems

based on the two models were presented in the S1 Table.

The detailed parameters of the risk model evaluation that dietary predictors improved in

the derivation data are presented in Table 3. Dietary predictors improved the model perfor-

mance with a significantly decreased AIC value (delta AIC = 199.5). Dietary predictors

improved the model discrimination with a significant increase in the AUC (delta AUC = 0.03,

P<0.001). Compared with the classic noninvasive risk model, the addition of dietary predic-

tors to the risk model significantly increased the relative IDI and NRI by 24.6% and 0.155 sepa-

rately. Based on the results of the HL-test, the predicted prevalence of type 2 diabetes in the

two models matched the observed prevalence well (χ2 = 7.29; P = 0.51 for the classic

Table 2. Risk Scores Based on the Classic Noninvasive Risk Model and the Diet-containing Risk Model for Type 2 Diabetes Risk in the derivation

Data.

Classic noninvasive risk model Diet containing noninvasive risk model

β OR (95% CI) Points allocate β OR (95% CI) Points allocated

Classic noninvasive risk factors

Age (years) 0.060 1.06 (1.05–1.07) 0.6 0.064 1.07 (1.06–1.08) 0.6

Gender, female −0.597 0.55 (0.47–0.65) −6 −0.408 0.66 (0.56–0.79) −4

Hypertension * 0.779 1.92 (1.66–2.22) 8 0.772 2.16 (1.87–2.51) 8

Family history of diabetes † 1.318 3.00 (2.53–3.55) 13 1.394 4.03 (3.38–4.82) 14

Alcohol consumption 0.392 1.48 (1.26–1.75) 4 0.463 1.56 (1.34–1.88) 5

Regular exercise ‡ −0.172 0.84 (0.73–0.96) −2 −0.233 0.79 (0.69–0.91) −2

Body mass index (kg/m2) 0.063 1.07 (1.04–1.10) 0.6 0.066 1.07 (1.04–1.10) 0.7

Waist circumference (cm) 0.031 1.03 (1.02–1.04) 0.3 0.030 1.03 (1.02–1.04) 0.3

Dietary factors

Staple foods (liang/d) §,** 0.080 1.08 (1.05–1.11) 0.8

Livestock and its products (liang/d) 0.111 1.12 (1.09–1.15) 1

Eggs (liang/d) 0.115 1.12 (1.05–1.20) 1

Potato and its products (liang/d) −0.147 0.86 (0.82–-0.91) -1

Fresh fruit (liang/d) −0.123 0.88 (0.86–0.91) -1

Fresh vegetable (liang/d) −0.048 0.95 (0.94–0.97) -0.5

Dairy and its products # −0.228 0.80 (0.68–0.94) -2

C-statistics 0.782 (0.767–0.795) 0.805 (0.791–0.817)

* Hypertension was defined as self-reports of a history of a diagnosis of hypertension, a systolic blood pressure� 140 mmHg and/or diastolic blood

pressure� 90 mmHg, and/or taking medication for hypertension.

† Family history of diabetes was defined as diabetes in first- or second-degree relatives.

‡ Regular exercise was defined as any kind of recreational or sport physical activity other than walking for work or life performed at least 30 minutes for

three or more days per week.

§ Consumption of staple foods was defined as the sum of the consumption of white rice and wheaten food.

# Dairy and its products were defined as daily consumption of dairy products.

** 1 Chinese liang� 50 gram

doi:10.1371/journal.pone.0166206.t002
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noninvasive risk model; χ2 = 6.34, P = 0.61 for the diet-containing risk model). The sensitivity

of the diet-containing risk model in the derivation data was significantly higher than that of

classic noninvasive risk model at the 20% probability cut-off point (57.6% vs 50.3%, P<0.001).

The specificity of the two models did not differ significantly in the derivation data (84.5% vs

84.7%, P = 0.389).

To further validate the usefulness of the diet-containing risk model of the derivation data

and to evaluate the effect of dietary predictors on the diabetes risk model, the scoring methods

were ascertained by applying the scores to the validation data. The distribution of the scores in

both models of both dataset was normal distribution by K-S test (classic noninvasive risk score

in the derivation data: Z = 1.25, P = 0.090; in the validation data: Z = 0.953, P = 0.323; diet-con-

taining risk score in the derivation data: Z = 1.318, P = 0.062; in the validation data: Z = 0.812,

P = 0.525). The score distribution of the classic noninvasive risk model in the derivation data

(median 68.5, standard deviation 11.8, range from 21.7 to 117.9) was not significantly different

from that in the validation data (median 68.2, standard deviation 11.4, range from 34.1 to

107.8) (P = 0.060), whereas the score distribution of the diet-containing risk model was shifted

significantly to higher levels in the validation data (median 72.8, standard deviation 13.0,

range from 20.6 to 127.7) compared with the derivation data (median 71.5, standard deviation

12.4, range from 30.4 to 112.1) (P<0.001). As shown in Table 4, in the validation data, the sum

of the scores of the diet-containing risk model predicted the incidence of type 2 diabetes more

effectively than the sum of the scores based on the classic risk model, with a significant increase

in the AUC (delta AUC = 0.03, P<0.001). Compared with the classic noninvasive risk model,

the addition of dietary predictors to the model significantly increased the relative IDI and NRI

by 22.5% and 0.219 separately. Based on the results of the HL-test, the calibration of the diet-

containing risk model was better than that of the classic noninvasive risk model (χ2 = 13.20;

P = 0.11 for the diet-containing risk model; χ2 = 17.57, P = 0.03 for the classic noninvasive risk

model). Detailed information for the HL-test in the two models is presented in Fig 1. The

4.2-years cumulative incidence of type 2 diabetes was significantly increased with elevating

quintiles of the risk scores of both models as shown in the Fig 2. The sensitivity of the diet-con-

taining risk model in the validation data was significantly higher than that of classic noninva-

sive risk model at the 20% probability cut-off point (49.0% vs 40.4%, P<0.001). The specificity

of the two models did not differ significantly (85.8% vs 85.7%, P = 0.543).

Table 3. The Detailed Parameters of the Risk Model Evaluation that Dietary Predictors Improved in

the Derivation Data.

Classic noninvasive diabetes

risk model

Diet-containing noninvasive diabetes

risk model

AIC 5565.3 5365.8

AUC (95% CI) 0.78 (0.77–0.80)** 0.81 (0.79–0.82)**

P-value for difference in C-

statistics

Reference <0.001

IDI (95% CI) Reference 0.033 (0.028–0.039)**

Relative IDI Reference 24.6%

NRI (95% CI) Reference 0.155 (0.120–0.190)**

HL χ2 (P-value) 7.29(0.51) 6.34(0.61)

AIC, Akaike’s information criterion; AUC, area under curve; HL, Hosmer-Lemeshow goodness-of-fit; IDI,

integrated discrimination improvement, NRI, net classification improvement

** P<0.001.

doi:10.1371/journal.pone.0166206.t003
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Discussion

In the present study, we developed a diet-containing noninvasive type 2 diabetes risk model

for Northern Chinese using dietary information and classic noninvasive risk factors. We

observed that the addition of dietary predictors to the noninvasive diabetes risk model

improved the model performance and its predictive ability.

Many noninvasive risk models have been developed to predict the risk of type 2 diabetes

[1–11]. Some of them have been developed for Asians [6–11], which also can be adapted to the

setting and purpose of our study. Most of these risk models included the following classic risk

factors: age, gender, BMI, WC, family history of diabetes, hypertension, sport time, smoking

and alcohol consumption. We also included all of these risk factors in the classic noninvasive

Table 4. The Detailed Parameters of the Risk Model Evaluation that Dietary Predictors Improved in

the Validation Data.

Classic noninvasive risk

model

Diet-containing noninvasive risk

model

AIC 2116.6 1934.5

AUC (95% CI) 0.76 (0.73–0.78)** 0.79 (0.77–0.81)**

P-value for difference in C-

statistics

Reference <0.001

IDI (95% CI) Reference 0.026 (0.018–0.033)**

Relative IDI Reference 22.5%

NRI (95% CI) Reference 0.219 (0.158–0.281)**

HL χ2 (P-value) 17.57 (0.03) 13.20 (0.11)

AIC, Akaike’s information criterion; AUC, area under curve; HL, Hosmer-Lemeshow goodness-of-fit; IDI,

integrated discrimination improvement, NRI, net classification improvement

** P<0.001.

doi:10.1371/journal.pone.0166206.t004

Fig 1. The Hosmer-Lemeshow Goodness-of-fit Test for the Diet-containing Diabetes Risk Model and Classic Noninvasive Diabetes Risk Model.

X-axes indicate the deciles of the predicted risk of type 2 diabetes, and y-axes indicate the probability of type 2 diabetes events. P-values from χ2 statistics

calculated to compare the difference between the predicted and the actual incidence of type 2 diabetes.

doi:10.1371/journal.pone.0166206.g001
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risk model in our study, and the effects of these risk factors were in agreement with previous

studies, which could be seen as the update and utility of these risk models in our population.

Therefore, the performance of the classic noninvasive risk model in our study can represent

the performance of these previous risk models, and dietary information will improve the

model performance and predictive ability of these previous risk models.

The effect of diet has been widely studied and acknowledged. For example, a prospective

study showed that the consumption of milk and dairy products is associated with a markedly

reduced prevalence of the metabolic syndrome [26]. A meta-analysis also suggested that 1.35

servings a day of vegetables compared with 0.2 servings resulted in a 14% reduction of the risk

of type 2 diabetes [27], a 6% lower risk of type 2 diabetes per 1 serving a day increment of fruit

intake [28], and an 11% increase in the risk of type 2 diabetes per 1 serving a day of white rice

consumption [29]. However, dietary predictors have not been adequately emphasized in type

2 diabetes risk prediction models. Simmons et al. reported that the addition of dietary predic-

tors does not improve the performance of the model or the predictive ability of type 2 diabetes

risk models. The authors speculated that risk factors such as BMI interfere with the effects of

long-term diet and future diabetes risks, and this may account for the lack of improvement

with the addition of dietary predictors to the model. However, these classic risk factors cannot

completely account for the association between diet and type 2 diabetes. For example, a previ-

ous study showed that increased red meat consumption over time was associated with an ele-

vated subsequent risk of type 2 diabetes, and the association was only partially mediated by

body weight [30]. In addition, the value of C-statistics is insensitive when evaluating new pre-

dictors. In our study, we used new measures such as NRI and IDI to evaluate the effects of die-

tary predictors in the noninvasive diabetes risk model. We included 14 kinds of food that are

common in China. We found potato, dairy products, fresh fruit and vegetables decreased the

risk of type 2 diabetes, and staple foods including white rice and wheaten food, eggs and live-

stock increased the risk, which is consistent with previous studies. In the present study, the

diet-containing risk model had better AIC and AUC than the classic noninvasive risk model in

the derivation and validation data. The addition of dietary predictors to the risk model yielded

a significant increase in relative IDI and NRI for the risk model compared with the classic

Fig 2. Estimated 4.2 years cumulative incidence of type 2 diabetes by quintile of risk scores of the classic

noninvasive risk model (A) and diet-containing risk model (B). X-axes indicate the quintiles of the two risk scores, and

y-axes indicate the 4.2 years cumulative incidence of type 2 diabetes. P-values from χ2 statistics calculated to compare the

difference of the incidence of type 2 diabetes across the quintiles of the two risk scores.

doi:10.1371/journal.pone.0166206.g002
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noninvasive risk model. Furthermore, the Hosmer-Lemeshow goodness-of-fit test for the diet-

containing noninvasive risk model indicated better agreement between the observed and pre-

dicted probabilities of type 2 diabetes incidence across deciles than that of the classic noninva-

sive risk model in the validation data. The increased sensitivity also indicated that the diet-

containing risk model identified 7 and 8 more patients than classic noninvasive risk model per

one hundred diabetic patients in the derivation data and validation data. These results indicate

that dietary predictors can improve the model performance and predictive ability of the nonin-

vasive diabetes risk model. Dietary information is useful for constructing a noninvasive type 2

diabetes risk model.

In China, currently more than half of the people with diabetes are undiagnosed [31], and

the burden of expenditures for medication and care is rising as the incidence of type 2 diabetes

increases rapidly. Although the existing classic noninvasive diabetes risk models may be help-

ful for identifying high risk subjects in the primary care settings, they are probably not efficient

tools for preventing diabetes in clinical practice for the reason that they include limited modifi-

able risk factors. The diet-containing noninvasive risk model can improve disease awareness

and identify high-risk individuals and potential targets for the reduction of type 2 diabetes

risk. Most of the risk factors in the diet-containing risk model are modifiable. Therefore, this

model can establish specific, effective and feasible strategies for the prevention of type 2 diabe-

tes and motivate patients to comply with a healthy lifestyle and with treatment plans. The die-

tary information in our study came from FFQ. The FFQ in our study presents 103 food items,

and it takes 20–30 minutes to finish and can self-administered. This method enables to obtain

dietary data in a relative simple, cost-effective and time efficient approach. It is suitable and

feasible for the integration of FFQ into noninvasive diabetes risk models. Although dietary

record provides more accurate dietary data of an individual for diet evaluation than FFQ does

in a clinical setting, time and labor intensive are two major constraints of dietary record,

which have been suggested as barriers for physicians to apply this method in clinical practice.

The strength of our study is that we included dietary predictors in the type 2 diabetes risk

prediction model, providing more modifiable factors than previous studies in the noninvasive

risk model for the Asian population. Furthermore, we validated the usefulness of dietary pre-

dictors in the noninvasive type 2 diabetes risk model in the derivation data and in another

independent cohort. Our studies also have limitations. First, we cannot exclude the possibility

of measurement errors from information bias in the dietary data, although trained personnel

performed the interviews using a validated FFQ and molds and photos of portion sizes. The

reproducibility and validity of the FFQ in our study has been assessed in the previous studies,

and the results indicated that the FFQ in our study is a reliable method for assessing dietary

intake [20, 21]. Therefore, the measurement errors from information bias due to food data

may affect the predictive ability very slightly. Additionally, our analysis did not include a sec-

tion on nutrient supplementation, which has been found to be associated with type 2 diabetes

and may lead to potential biases. Second, the two risk models were developed based on cross-

sectional data because of its large sample size and relative good representation of the area.

Although the two risk models in our study could only associate prevalent cases of type 2 diabe-

tes, rather than identify incident cases, the discrimination and predictive ability of the diet-

containing risk model were relative good with higher sensitivity and acceptable AUC when

evaluated it in an independent cohort.

Conclusion

In conclusion, we developed a diet-containing noninvasive risk model for a northern Chinese

population using classic noninvasive risk factors and dietary information. Dietary information
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improves model performance and predictive ability of noninvasive type 2 diabetes risk model

based on classic risk factors. Dietary information may be useful for developing noninvasive

type 2 diabetes risk models.
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12. Glümer C, Vistisen D, Borch-Johnsen K, Colagiuri S, DETECT-2 Collaboration. Risk scores for type 2

diabetes can be applied in some populations but not all. Diabetes Care. 2006; 29: 410–414. doi: 10.

2337/diacare.29.02.06.dc05-0945 PMID: 16443896

13. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of
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