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Abstract

Human pluripotent embryonic stem cells have two special features: self-renewal and pluripotency. It is important to
understand the properties of pluripotent stem cells and reprogrammed stem cells. One of the major problems is
the risk of reprogrammed stem cells developing into tumors. To understand the process of differentiation through
which stem cells develop into cancer cells, investigators have attempted to identify the key factors that generate
tumors in humans. The most effective method for the prevention of tumorigenesis is the exclusion of cancer cells
during cell reprogramming. The risk of cancer formation is dependent on mutations of oncogenes and tumor
suppressor genes during the conversion of stem cells to cancer cells and on the environmental effects of
pluripotent stem cells. Dissecting the processes of epigenetic regulation and chromatin regulation may be helpful
for achieving correct cell reprogramming without inducing tumor formation and for developing new drugs for
cancer treatment. This review focuses on the risk of tumor formation by human pluripotent stem cells, and on the
possible treatment options if it occurs. Potential new techniques that target epigenetic processes and chromatin
regulation provide opportunities for human cancer modeling and clinical applications of regenerative medicine.
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Background
The first successful mammalian reprogramming of vege-
tal cells to totipotent cells using the technology of nu-
clear transfer generated the cloned sheep “Dolly” [1]. In
recent decades, the problems caused by tumorigenesis
generated by oocytes (embryos) created by nuclear
transfer have been underestimated. The creation of in-
duced pluripotent stem cells (iPSCs) requires the expres-
sion of stemness-related genes, such as the combination
of Oct4, Sox2, Klf4, and c-Myc (OSKM) and that of
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Oct4, Sox2, Nanog and Lin28 (OSNL) [2–5]. Studies of
the risk of tumorigenesis and cancerous transformation
have considered somatic cell reprogramming in the con-
text of cancer patient-specific reprogramming [2–12].
Stem cells are putative candidates for cancerous trans-

formation given their ability to self-renew and to dedif-
ferentiate, which can lead to the acquisition of both the
genetic and epigenetic modifications required for
tumorigenesis [13, 14]. The stemness-related transcrip-
tion factors are expressed in embryonic stem cells
(ESCs) and adult stem cells, but they are not generally
expressed in adult somatic cells. Abnormal expression of
ESC-specific factors has recently been reported in hu-
man tumors [15–17]. A retrospective study of human
patient cohorts has shown that the expression of these
factors with survival outcomes in specific tumor types,
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which suggests that these factors may be useful for
assessing patient prognosis [18].
A recent study reported that the clinical expression of

the pluripotent factors OCT4, SOX2, and NANOG
(OSN) in cancer patients was associated with treatment
resistance of lethal cancers [19]. This expression signa-
ture was observed in a large cohort of cancers (n = 884),
comprising renal (n = 317), bladder (n = 292), and pros-
tate (n = 275) cancers. The rates of triple coexpression of
OSN were 93, 86, and 54% in prostate, invasive cancer
of bladder, and renal cancer, respectively. The high level
of expression of OSN was also related to worse progno-
sis and shorter survival. The major regulators of stem
cell pluripotency correlated well with poor survival and
treatment resistance of cancer. .
One study showed the production of induced trans-

formed cancer stem cells (CSCs) from differentiated cells
[20]. Another study showed that the reprogramming of
cancer cells with abnormal or deleted p53 enhanced the
generation of pluripotent CSCs and the frequency of
tumorigenesis by these reprogrammed CSCs [21]. A repro-
gramming method has been applied to several types of
tumor cells as a possible trial for suppressing tumorigenesis
[22–24]. In these studies, some reprogramming factors
were delivered to cancerous cells to generate induced pluri-
potent CSCs (iPCSCs). This method may provide a good
model of tumorigenesis and may have therapeutic potential
in the prevention of the initiation of carcinogenesis.
In addition to the use of genetic materials to generate

pluripotent stem cells, small-molecule compounds that
Fig. 1 Schematic representation of the recycling of autologous patient-spe
Somatic cells from patients are established as patient-specific iPSCs, which
differentiating the corrected iPSCs into autologous progenitor cells for use
the genetic code and epigenetic factors are corrected using gene editing,
nucleic acids, and/or chromatin modification
can promote cell reprogramming have also been used to
obtain iPSCs. Small molecules that target molecules in sig-
naling pathways, including the inhibition of histone deace-
tylase (HDAC), Wnt signaling, and transforming growth
factor β (TGFβ) can regulate the expression of genes for
pluripotent factors, whose expression can lead to the re-
programming of cells [25]. Various molecules that pro-
mote cell reprogramming can be used as substitutes for
genetic materials. These include recombinant reprogram-
ming factors (e.g., OSKM) modified by a polyarginine [26]
and by small-molecule compounds [27–32]. However, the
use of chemically defined small molecules alone has not
yet generated human iPSCs (hiPSCs) [33]. Furthermore, it
has not been clarified whether these small-molecule-
driven iPSCs have a reduced risk of tumorigenesis after
their therapeutic transfer [34].
In this review, we discuss the current understanding of

the risk of tumor formation associated with the repro-
gramming of various human stem cell-like cells and
summarize the possible solutions, such as using antican-
cer treatments and inhibitors to suppress tumorigenesis
in iPSCs, CSCs, and their derivatives (Fig. 1). We have
excluded a description of the effects of long noncoding
RNAs and microRNAs (miRNAs) on reprogramming in
detail from this review article [35, 36].

Characteristics of stem cells and tumor cells
ESCs are established from the inner cell mass (ICM) of
blastocyst and can differentiate into all types of cells [15,
16]. The ability to produce teratomas in immune-deficient
cific induced pluripotent stem cells (iPSCs) to cure human diseases.
are corrected genetically by repairing the defect and then
in transplantation. To correct a gene mutation in patient-specific iPSCs,
antisense, ribozymes, and peptide nucleic acid (PNA) or modified
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animals is common pluripotent properties of iPSCs and
ESCs [1, 3, 37]. Tumors comprise different types of cancer
cells, and this contributes to the heterogeneity of tumors
[20]. Teratomas are defined as mixed benign tumors that
comprise abnormally developed tissues derived from germ
cells with normal karyotypes [37]. Teratomas are regarded
as posing no direct danger of forming a malignant tumor,
although they have the potential to metastasize in response
to some interactions with their microenvironment and
niches [38]. Substantial number of tumors can be generated
by a series of mutations, which can cause uncontrolled cell
division. The process of tumorigenesis is specified by
alterations in genetic, epigenetic, cellular, and microen-
vironmental circumstances [20]. Therefore, the risk of
tumorigenesis by any stem cell-derived transplants
needs to be eliminated before their clinical applications.

Stemness-related transcription factors in stem cells and
cancer cells
To understand difference between and similarities in
marker genes in CSCs and ESCs, we have summarized the
corresponding signals and their characteristics (Table 1)
[16, 17, 39].
A few examples are described below.

OCT4
Expression of OCT4 is required for the maintenance of
ESC characteristics [123]. Oct4-deficient mice do not
generate the ICM and thus differentiate into the troph-
ectoderm [123]. In addition, reduced expression of Oct4
in mouse ESC (mESC) caused in the upregulation of
trophectoderm genes (e.g., Cdx29), whose overexpres-
sion leads to differentiation into the primitive endoderm
and mesoderm [124]. Under serum-free culture condi-
tions, the forced expression of Oct4 in ESCs promotes
neuronal differentiation [125]. High expression level of
OCT4 is related to poor prognosis in bladder cancer
[126, 127], prostate cancer [128], medulloblastoma [129],
esophageal squamous cell carcinoma [130], leukemia,
and cancers of the ovaries, testicles, and pancreas [18].

SOX2
Expression of Sox2 is detected in ICM and extraembry-
onic ectoderm of preimplantation blastocysts [131]. Sox2-
deficient blastocysts cannot generate a pluripotent ICM.
Sox2-deficient mESCs differentiate into trophectoderm,
and the overexpression of Oct4 can rescue the pluripo-
tency of Sox2-deficient mESCs [132]. These findings sug-
gest that Sox2 is essential to maintain Oct4 expression.
Moreover, the synergistic action of Sox2 and Oct4 in Oct-
Sox stem cells-enhancers leads to the regulation of various
pluripotent genes, including Oct4, Sox2, and Nanog. In
contrast, forced expression of Sox2 in ESCs is reported to
lead to their differentiation [133, 134]. This effect was
reflected by the reduced expression of pluripotency genes
Sox2, Oct4, Nanog, Fgf4, and Utf1 [133] and the induced
generation of neuroectoderm, mesoderm and trophecto-
derm [134]. Increased expression of SOX2 correlates with
poor prognosis in stage I lung adenocarcinoma [135],
esophageal squamous cell carcinoma [136, 137], gastric
carcinoma [138–140], small-cell lung carcinoma [141–
143], breast cancer [144], testicular tumors [145], and
ovarian carcinoma [146].

KLF4
KLF4 is one of the Krűppel-like transcription factors
family that are involved in reprogramming. Klf4 is
expressed in mESCs and is repressed during differenti-
ation [147]. The RNA interference against Klf4 led to
the differentiation of ESCs [148, 149], whereas the forced
expression of KLF4 delays the differentiation, increases
the expression of OCT4, and stimulates self-renewal
ability [150]. Klf4 with Oct4 and Sox2 induces the ex-
pression of Lefty1 [151] and Nanog [152], KLF4 is also a
prognostic predictor of colon cancer [153] and head
neck squamous cell carcinoma [154], and is also de-
tected in leukemia, myeloma, testis cancer [18], early
stage breast cancer [155], nasopharyngeal cancer [156],
and oral cancer [157].

Nanog
In the absence of the leukemia inhibitor factor-signal
transducer and activator of transcription (LIF-STAT3)
pathway, Nanog is required for the maintenance of ESC
properties [158, 159]. Chamber et al. found that expres-
sion of Nanog was high in Oct4-knockout embryos,
whereas its overexpression did not counteract the differ-
entiation program of ESCs induced by Oct4 deletion
[159]. In the absence of Nanog, embryos did not pro-
duce a pluripotent ICM, but Nanog deficient mESCs
could be established [158, 160]. Nanog downregulation
in human ESCs promotes differentiation toward the ex-
traembryonic lineage, as demonstrated by the forced ex-
pression of endodermal and trophectodermal specific
genes. OCT4–SOX2 heterodimer complex binds to the
Octamer–Sox cis-elements in the proximal promoter of
NANOG gene and regulate NANOG expression in ESCs
[161]. Moreover, Nanog, Oct4, and Sox 2 cooperate with
the signaling pathway mediators, which means that signals
are delivered directly to the genes regulated by the core fac-
tors [162]. Higher expression of NANOG is concerned with
poor prognosis for testicular cancer [163], colorectal cancer
[164], gastric cancer [140], non-small cell lung carcinoma
[165, 166], ovarian cancer [167], and liver cancer [168].

C-Myc
c-Myc is one of the factors for stem cell pluripotency,
proliferation, and apoptosis [169–171]. c-Myc is directly
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regulated by LIF-STAT3 signaling, and its constitutive
expression renders ESC self-renewal independent of LIF.
However, the forced expression of dominant-negative c-
Myc induces differentiation [172]. It has been reported
that c-Myc represses signaling of the mitogen-activated
protein kinase (MAPK) pathway, which led to the inhib-
ition of differentiation [173]. c-Myc binds and regulates
the transcription of at least 8000 genes in ESCs includ-
ing those for E2F–Max complexes, and NuA4 HAT
complex, which regulate ESC pluripotency [174]. c-Myc
was one of the most important leukemia stemness fac-
tors. C-MYC overexpression is found in over 70% of hu-
man cancers, including breast cancer, colon cancer,
glioma, medulloblastoma, pancreatic cancer, and pros-
tate cancer [18, 175]. c-MYC expression correlates with
poor prognosis for hepatocellular carcinoma [176] and
early carcinoma of the uterine cervix [177, 178]. c-MYC-
driven reprogramming is controlled by the activation of
c-MYC-mediated oncogenic enhancers in human mam-
mary epithelial cells [179].

p53
The inhibition of the tumor suppressor protein 53 (TP53)
increases the rate of reprogramming of fibroblasts to
iPSCs [180, 181], which can differentiate into dopamin-
ergic neurons directly from human fibroblasts [182].

JDP2
The c-Jun dimerization protein 2 (JDP2) is a member of
the AP-1/ATF family of transcription factors and can
function as a histone chaperone that regulates transcrip-
tion [183–185]. JDP2 is a reprogramming factor because
it can regulate the Wnt signaling and function as a sup-
pressor of producing reactive oxygen species (ROS)
[186–189]. For example, addition of the ROS scavenger
vitamin C to the culture medium significantly increases
the reprogramming efficiency of cultured cells [190]. Ac-
tivation of the Wnt signaling can maintain the ability for
pluripotency in ESCs [41, 191–194]. ESCs can differenti-
ate into all types of cells, except for some in extraembry-
onic tissues [37, 38]. The cell reprogramming method
that uses OCT4 and JDP2 to generate gastric cancer
cells is based on this notion [195]. In that study, repro-
gramming using these two factors inhibited the tumori-
genic function of gastric cancer cells by inhibiting bone
morphogenetic protein 7 (BMP7). Moreover, repro-
grammed gastric CSC-like cells induced a lower level of
tumor formation in immune-deficient mice than did the
parental cancer cells [195]. This method is a good ex-
ample of a therapeutic strategy that might restrict cancer
progression by using JDP2 together with OCT4 as repro-
gramming factors. Collectively, accumulating evidence
suggests that ESCs and CSCs share major transcription
factors.
Surface markers for stemness in CSCs
The uncontrolled proliferation of many tumors is driven
by a small population of cancer cells, known as CSCs,
which exhibit the capacity for self-renewal and pluripo-
tency. Unlike somatic cancer cells, CSCs can produce an
obvious cancer and propagate the malignant cancerous
clones indefinitely. Like the stemness-related transcrip-
tion factors, surface markers that are expressed in stem
cells are also expressed in human cancers. These include
TRA-1-60, Stage specific embryonic antigen-1(SSEA-1),
Epithelial cell adhesion molecule (EpCAM), Aldehyde de-
hydrogenase 1 family, member A1 (ALDH1A1), Leucine-
rich repeat-containing G-protein coupled receptor 5
(Lgr5), CD13, CD19, CD20, CD24, CD27, CD34, CD44,
CD45, CD47, CD49f, CD66c, CD90, CD166, TNFRSF16,
CD105, CD133, c-Kit, CD138, CD151, and CD166. Table
1 shows the surface markers of CSCs, some of which are
targets of therapeutics in cancer treatment.

CD133
CD133 is a transmembrane glycoprotein that localizes to
cellular protrusions. It is originally known as a stem cell
marker which is detected in neuroepithelial stem cells
[196] and has been recognized as a CSC marker [197].
This molecule is used to identify many different types of
CSCs, including those originating from glioma [198],
and colorectal [199, 200], lung [201], liver [202], and
prostate [203] cancers. CD133 has been shown to be in-
volved in the regulation of glucose uptake and glucosamine
production under condition of high-glucose, circumstances
related to glycolysis, and autophagy [204]. However, knock-
down of CD133 has no significant effect on cancer develop-
ment [205]. Both CD133+ and CD133– metastatic colon
cancer cells are initiated equally during the early stage of
tumor formation [206], which indicates that CD133 expres-
sion is not specific and not restricted to stem cells. There-
fore, CD133 seems to reflect glucose availability and is not
a specific marker of CSCs.

CD44
CD44 is another transmembrane glycoprotein. CD44 is
concerned with cell division, migration, and adhesion via
different signaling [207]. It is expressed in both normal
fetal and adult hematopoietic stem cells. Upon binding
to hyaluronic acid (HA), its primary ligand, CD44 medi-
ates cell-cell communication and signal transaction. HA
binding to CD44 on cell surface molecules, such as
selectin, collagen, osteopontin, fibronectin, and laminin,
activates the epidermal growth factor receptor tyrosine
kinase and increases cell proliferation and survival
through the signals of MAPK and phosphatidylinositol-
3-kinase (PI3K)-Akt pathways [208, 209]. Knockdown of
CD44 prevents the tumors occurrence induced by colo-
rectal CSCs [205]. CD44 plays a role in in the invasive
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and tumorigenic abilities with stemness features of sev-
eral tumor cell types, including breast [210, 211], pros-
tate [212, 213], colon [214, 215], and pancreas [216]
cancers, and head and neck squamous carcinoma [217].
Therefore, CD44 is not specific for CSCs but is more of
a marker of invasive or metastatic cells. Several other
CSC surface markers appear to function in specific types
of tumors.

ABCG2
ABCG2 is one of the ATP-binding cassette transporter
(ABC) family. ABCG2 may be a universal biomarker of
stem cells [16]. ABCG2 plays a vital role in stimulating
the proliferation of stem cells and, in the case of esopha-
geal squamous carcinoma, has been shown to be re-
quired for the maintenance of the stem cell phenotype
[218]. The sensitivity of hepatocarcinoma cells to the
chemotherapeutic drugs, doxorubicin and 5-fluorouracil,
correlates inversely with the surface levels of AGCG2.
The AGCG2 level expressed on cancer cells, including
colon cancer lines, also correlates closely with tumori-
genicity, drug resistance, proliferation, and metastatic
ability [219, 220].

CD13
CD13 encodes the enzyme aminopeptidase N, a Zn2 +
−dependent membrane-bound ectopeptidase. CD13 is
overexpressed in multiple cancers, including hepatocar-
cinoma [221], and colon cancer [222], as well as on the
surface of vasculature endothelial cells in tumors under-
going angiogenesis [223].

Lgr5
Lgr5 is one of the leucine-rich repeat-containing G-
protein-coupled receptor (GPR49) family, which belongs
to the seven-transmembrane G-protein-coupled receptor
super family. Lgr1 ~ 5 family members are regulatory
receptors involved in Wnt signaling [224]. Lgr5 binds to
the furin-like repeat domains of R-spondin 1 ~ 4
(RSPO1 ~ 4) to potentiate WNT signaling [225]. How-
ever, RSPO1–Lgr5 can also directly activate TGFβ sig-
naling in a cooperative interaction with the TGFβ type II
receptor on colon cancer cells, which increases growth
inhibition and apoptosis [226]. The effect of Lgr5 ex-
pression depends on its interactions with the both Wnt
and TGFβ signaling systems [227]. Lgr5 is expressed in
many organs including the brain, mammary glands, in-
testinal tract, stomach, hair follicles, eyes, and reproduct-
ive organs [226]. Lgr5 is also a Wnt signaling target. Its
expression I increased in prostaglandin E2 (PGE2)-
treated colorectal cancer cell lines, but Lgr5 knockdown
inhibits the PGE2 survival response and increases cell
death [224]. Lgr5 seems to be a global marker of adult
stem cells, such as those found in the hair follicles,
intestine, liver, colon, rectum, and ovaries [228], and a
definitive surface marker of colorectal CSCs that is coex-
pressed with CD44 and EpCAM [229].
CD326 (EpCAM)
The surface marker EpCAM is a type I transmembrane
glycoprotein that acts as a calcium-independent homo-
philic adhesion receptor with a molecular weight 30–40
kDa. EpCAM is expressed in epithelial tissues, progeni-
tor cells, cancer cells, and stem and germ cells [230].
EpCAM can be downregulated when cancer cells
undergo the epithelial-mesenchymal transition (EMT).
The wide distribution of EpCAM expression on most
cancer cells indicates that it is not a specific marker of
CSCs [231].
Stemness-related signaling pathways
Three processes such as maintenance, self-renewal, and
differentiation are concerned with embryonic develop-
ment and homeostasis of adult tissues. Cancers com-
monly exhibit aberrant functions within these pathways,
often in a cell context-dependent manner. Here we dis-
cuss the current evidence for the control of the Hedghog
(Hh), Notch, LIF-JAK-STAT, PI3K-Akt-mammalian tar-
get of rapamycin (mTOR) and Wnt/β-Catenin pathways
in CSCs.
Hh signaling
The Hh ligands (Desert hedgehog, Sonic hedgehog, and
Indian hedgehog) bind to Patched, which activates
downstream signals that lead to the nuclear localization
of transcription factors, followed by the upregulation of
genes involved in survival, proliferation, and angiogen-
esis [232]. Hh is the major regulator of vertebrate em-
bryo development, stem cell maintenance, cell growth
and differentiation, tissue polarity, cell proliferation, and
the EMT [233]. Hh signaling is implicated in CSC self-
renewal and cell-fate determination [232] and is consid-
ered as a potential therapeutic target in the treatment of
breast cancer and pancreatic cancers [234].
Notch signaling
Notch is controlled with cell–cell communication
through transmembrane receptors and ligands. In hu-
man ESCs, Notch signaling governs the cell-fate deter-
mination in the developing embryos and is required for
the development of all three germ layers from undiffer-
entiated ESCs [235]. In CSCs, Notch controls tumor im-
munity and CSC maintenance [59]. Notch signaling is
frequently dysregulated in cancers, which provides a sur-
vival advantage for tumors and a potential target in the
treatment of cancers [236].
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LIF–JAK–STAT signaling
LIF–JAK–STAT signaling governs the cell-fate deter-
mination, is important in cytokine-mediated immune re-
sponses, and is involved in many biological processes
such as proliferation, apoptosis, migration, and stem cell
regulation [237]. Tight control of JAK–STAT signaling
is required for maintenance of stem cells, self-renewal,
and anchoring of stem cells in their respective niches by
through the regulation of different adhesion molecules.

PI3K–Akt–mTOR signaling
PI3K–Akt–mTOR signaling is crucial to stem cell prolif-
eration, metabolism, and differentiation. This pathway
may dysregulate in human cancers [238]. Over 70% of
ovarian cancer cells is reported to activate PI3K–Akt–
mTOR pathway. This pathway is a therapeutic target in
the treatment of this cancer type [74] as well as for
neuroblastoma [239], endometrial cancer [239], and
acute myeloid leukemia [240].

Wnt–βcatenin signaling
Wnt signaling plays a role in the stem cell differenti-
ation, and dysregulation of Wnt signaling is associated
with the expansion of stem and/or progenitor cells, as
well as carcinogenesis [241], Targeting of Wnt is one
treatment option for hematological malignancies [242],
liver cancer [243], and other types of tumors [244].

Mutation of the genome
The first event that triggers the transformation of nor-
mal cells into abnormal cells is mutation of the genome.
Such mutations may be maintained, and other events,
such as changes in the epigenome of stemness-related
genes, oncogenes, and tumor suppressor genes, can also
trigger the transformation into abnormal cells.
In general, “driver” mutations occur during the initi-

ation stage of cancer and are followed by the accumula-
tion of “passenger” mutations and tumorigenesis [245,
246]. Driver mutations trigger the growth and develop-
ment of cancers, whereas passenger mutations do not
affect clonality [247–249]. Recent progress in the tech-
nology of deep sequencing has led to identify these mu-
tations in particular oncogenes and/or tumor suppressor
genes [250]. However, whether these mutations can be-
come a barrier to the reprogramming of cancer cells re-
mains unclear. Moreover, the reprogramming of cancer
cells may induce genomic changes, including chromo-
somal aberrations, copy number variations (CNVs), and
single-nucleotide variations. For example, chromosome
abbreviations at trisomy 12, chromosome 8, and
chromosome X have been found in ESCs and iPSCs
[251–256]. CNVs have been detected during reprogram-
ming or mosaicism from parental cells. In some cases,
CNVs are also lost by passaging of cells [254, 257–260].
Single-nucleotide mutations have been analyzed using
high-throughput next-generation sequencing technolo-
gies [261, 262]. Additional investigation is required to
characterize the occurrence of these mutations during
cell reprogramming. Mutations in mitochondrial DNA
in human iPSCs increase with age, and the use of young
donor cells may be one option to overcome this problem
[263, 264].

Epigenetic alterations
The oncogenic potential of reprogrammed stem cells
correlates with epigenetic and genomic instability [265,
266]. Epigenetic instability during cancer progression
can lead to commitment to altered gene expression.
Tumor generation can be caused by epigenetic repro-
gramming such as carcinogenic enhancer reactivation in
both somatic and cancer cells [267–269]. In general,
DNA methylation can silence the expression of the
tumor suppressor genes that are required for sustaining
normal function, whereas aberrant expression of onco-
genes can lead to cancer initiation [270–272]. Intri-
guingly, iPSCs generated from human sarcoma cell lines
have the same methylation and demethylation status in
the promoters of oncogenes and tumor suppressor genes
in the initial stages. In some cases, iPSCs can suppress
the oncogenic promoters and maintain the activity of
the promoter of tumor suppressor genes. These finding
suggest that stem cell factors can inhibit the expression
of cancer phenotypes, perturb epigenetics, and change
cancer-related gene expression [266].
The factors that regulate chromatin are another pos-

sible target for circumventing the cancer risk during cel-
lular reprogramming. Histone modification, noncoding
RNA alteration, and chromatin alteration around mu-
tated regions of DNA are key events that change onco-
genic features [273]. Moreover, recent evidence of
super-enhancers, locus control regions, and phase separ-
ation has provided new targets for next-generation re-
programming, to limit the oncogenic risk associated
with cell reprogramming [273–275]. The methodologies
chosen to induce these epigenetic and chromatin
changes require careful consideration.

Epigenetic modifiers and cancer cell plasticity
The differences between CSCs and adult stem cells in
the early stage are reflected in differences in stemness
signals, such as BMP, notch receptor 1 (Notch 1), sonic
hedgehog (Shh) signaling molecule, TGFβ, and the
wingless-type MMTV integration site family (Wnt).
Later, EMT factors such as HIFs, the zinc-finger protein
SNAI2 (Slug), the zinc finger protein SNAI1 (Snail), the
class A basic helix–loop–helix protein 38 (Twist 1), and
the zinc-finger E-box-binding homeobox 1/2 (Zeb 1/2)
are activated, which leads to changes in epigenetic
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signatures during progression. Changes in the epigenetic
machinery might be crucial for the acquisition of stemness
characteristics by, and the tumorigenesis of CSCs [276].
The epigenetic barriers that determine cell plasticity

must be overcome during the initial steps of cell repro-
gramming. In the first step, DNA methylation by DNA
methyltransferases (DNMTs) occurs at CpG islands and
is reversed by ten-eleven translocation proteins (TETs),
followed by transcriptional silencing. Both DNMTs and
TETs affect transcriptional initiation, elongation, splicing,
and stability at the CpG-poor and repeat-rich intergenic
loci of target genes [277]. Some methylated DNA-specific
binding proteins also perform similar functions. In the
second step, histone modifications, such as methylation,
acetylation, ubiquitination, phosphorylation, and SUMOy-
lation, cause changes in nucleosomes. These changes de-
fine functional regions such as promoters, enhancers, and
insulators, which determine the transcriptional patterns
and cell fates. In the third step, histone modifiers are used
to control chromatin during transcription, replication, and
genome maintenance.
Several histone modifiers can regulate transcription,

such as the polycomb repressive complex (PRC) 1 and 2,
and the enhancer of zeste homolog 2 (EZH2), which is
the catalytic subunit of PRC2 that mediates transcrip-
tional repression by introducing H3K27me3 [278]. By
contrast, in glioblastomas, the H3K27M mutation in
H3.1 and H3.3 leads to reduced EZH2 activity and a de-
creased level of H3K27me3, followed by a more primi-
tive stem-like state [279, 280]. Loss of EZH2 function
can induce a transcription program for self-renewal and
leukemogenesis [281]. Therefore, EZH2 mutation and
deregulation of H3K27me3 seem to be linked.
The trithorax group (TrxG) complex is another factor

that plays a role in the control of histone methyltransfer-
ase (HMT) in mixed-lineage leukemia (MLL) [282]. In
this type of leukemia, the MLL fusion protein MLL-AF9,
which lacks the catalytic domain, is produced by
chromosomal rearrangement. The committed cells can
be reprogrammed toward leukemic stem cells and initi-
ate tumorigenesis [283]. MLL oncogenic fusion proteins
require the repressive activity of PRC1, which mono-
ubiquitinates histone H2A at lysine 119 (H2AK119Ubi)
and mediates transcriptional repression in association
with PRC2 [283]. BMI-1 in PRC1 is required to abolish
tumor suppressor functions and to enhance CSC self-
renewal in solid tumors [284]. Finally, ATP-dependent
chromatin modeling complexes that move, eject, or re-
structure chromatin, are also key elements in the control
of tumorigenesis.
Four subfamilies are involved in chromatin remodeling

in tumor cells, such as switch/sucrose nonfermentable
(SWI/SNF), imitation switch, chromodomain helicase
DNA binding protein 1, and INO80 complex ATPase
subunit. These differ in their functions, protein domains,
and subunit constituents [285]. Loss of SWI/SNF-related
matrix-associated actin-dependent regulator of chroma-
tin subfamily B member 1, a subunit component of the
SWI/SNF complex, results in genetic changes that drive
rhabdoid tumors and are associated with the inhibition
of differentiation, which leads to reprogramming toward
oncogenic transcription for oncogenic signaling [286,
287]. The AT-rich interactive domain-containing protein
1A, another subunit of the SWI/SNF complex, functions
as a tumor suppressor in colon cancers, and its deletion
causes activation of the oncogenic transcriptional pro-
gram for the promotion of invasive colon adenocarcin-
oma [288]. These data indicate that epigenetic modifiers
also play a critical role in determining stemness/pluripo-
tency and tumorigenesis.
Reversible epigenetic changes play a critical role in the

fate decision in cancer cells, which can favor or disfavor
the stem cell program that sustains tumor progression.
Similarly, cell reprogramming involving epigenesis in
cancer cells can generate iPSCs. Chromatin regulators
such as the complex of PGC and TrxG proteins can
regulate cancers and reprogramming [289]. In glioblast-
omas, several PRC and TrxG components play import-
ant roles in CSC development and in the plasticity of
cancer cells. In adult glioblastoma, overexpressed MLL5
represses the expression of H3.3 in CSCs, which causes
local reorganization of chromosomes [290]. The upregu-
lation of MLL5 in non-stem cancer cells induces cell
plasticity by inhibiting pro-neural differentiation, thereby
eliciting a stem cell-like stage.
Another chromatin modifier, the linker histone variant

H1.0, is also critical for the plasticity of cancer cells.
Perturbation of H1.0 levels affects self-renewal activity dir-
ectly and promotes the differentiation of non-stem cancer
cells, thus blocking their tumorigenicity in vivo [291]. The
plasticity of CSCs can be counteracted by epigenetic bar-
riers that prevent cell reprogramming in vitro, such as the
deposition of Suv39h1-associated H3K9me2/3 modifica-
tions [292]. An interesting insight into these epigenetic
barriers was provided by a comparison of the epigenetics
of gene expression between adult cells and CSCs in re-
sponse to tissue damage [293]. In that report, tissue dam-
age activated the resident stem cells, and CSCs exhibited
overactivated stress-dependent enhancers and epigenetic
modifications, which altered their cell fate and plasticity.
These findings highlight the critical role of the reversibility
of changes in the chromatin structure in the determin-
ation of the functional properties of CSCs.

Alteration in the microenvironment during tumorigenesis
The tumor microenvironment favors a stress-responsive
enhancer, which may induce CSC plasticity. Therefore,
the microenvironment and niche seem to be critical for
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the reprogramming to CSCs and iPSCs. Inflammation is
an immune reaction to a pathogen [294], during which
the responses of immune cells can lead to oxidative
damage of DNA in infected cells. Nuclear factor kB and
STAT3 can cause parenchymal cells to produce excess
amounts of ROS and reactive nitrogen species, which
can induce genomic instability and DNA mutations
[295]. Mutations and chromosomal alterations are
thought to be associated with tumor progression, which
may be potentiated by a chronic inflammatory micro-
environment that are damaged by mutations.
During CSCs have developed, CSCs may create their

own niche. Cells forming the CSC niche necessary for
both the maintenance of CSCs and the generation of fac-
tors and tumor-associated cells that maintain CSC proper-
ties such as invasion, metastasis, and promotion of
angiogenesis [296]. The CSCs niche contains cellular com-
ponents such as cancer-associated fibroblasts [297],
tumor-associated macrophages [298], tumor-associated
neutrophils [299], mesenchymal-associated cells [300],
and cell-mediated adhesion and soluble factors [301],
which played important roles in cell–cell communication.

How to avoid tumorigenesis in human pluripotent stem
cells
Tumor suppressor genes are mostly transcription factors
that modulate the antiproliferation signals that arrest the
consistency of the cell cycle for DNA repair and that
prevent mutation during cell division [302–306]. For ex-
ample, the p53 tumor suppressor gene protein product
functions as a transcription factor and a cytoplasmic
regulator in cell cycle arrest and apoptosis [306–308].
The dysregulation of genes that modulate the cell cycle
results in uncontrolled cell division, during which a
series of mutations to proto-oncogenes and tumor sup-
pressors are needed before cells transform to cancerous
cells [309]. Proto-oncogenes are quiescent counterparts
of oncogenes that become oncogenes upon mutation.
The modified cells produce more of the gene product
and exhibit excessive proliferative ability. Hormones or
signal transduction can stimulate oncogenes to promote
uncontrolled cell proliferation by changing the regula-
tion of gene transcription [310, 311].
Pluripotent reprogramming factors are overexpressed

in various cancers [312, 313]. OCT4 has been reported
to be overexpressed in a gastric cell line [18], ovarian
carcinoma, pancreatic cancer [18], prostate cancer [314],
and bladder cancer [315]. c-MYC is also overexpressed
in various cancers [316, 317] and can block differenti-
ation and induce tumor formation in the absence of p53
[318, 319]. These observations indicate that reprogram-
ming factors can act as potential proto-oncogenes in the
reprogramming process and emphasize the potential risk
of carcinogenesis by stem cell-like cells.
Reprogramming
Reprogramming protocols have been used to inhibit the
tumorigenesis induced during reprogramming in studies
of various cancer cells [20–22]. In these models, one or
multiple sets of reprogramming factors are delivered to
cancer cells and induced patient specific CSCs are gen-
erated. These models can be used to study therapeutic
targets in the initial stage of carcinogenesis [20–22]. In
addition to the genetic methods that are used to generate
pluripotent stem cells, some small molecules have been
reported to promote cell reprogramming. For example,
targeting signaling pathways like the HDAC, Wnt, and
TGFβ cascades can regulate the expression of pluripotent
stemness genes induce the reprogramming of cells [25].
Various molecules that promote reprogramming can re-
place genetic methods; these include recombinant repro-
gramming factors (OSKM) with polyarginine tags [26] and
other small molecules [30–33]. However, chemically de-
fined small molecules that induce reprogramming alone
have not been developed for human induced pluripotent
stem cells (hiPSCs) [24]. Furthermore, whether small
molecule-driven iPSCs can prevent the risk of tumorigen-
esis when used therapeutically has not been determined.
The ability of undifferentiated iPSCs to produce teratomas
in grafted cell populations is one of the main concerns of
this approach, and the nature of these cells should be
clarified genetically. Precise information about these trans-
plantation animal models, inoculated patient-specific
iPSCs, and the resultant organoids is needed.

Reversibility of the epigenetic state
The use of clones that have been pre-evaluated as being
safe is one possibility for overcoming carcinogenic activ-
ity, as demonstrated in neural stem cells (NSCs) [320–
322]. An antibody against SSEA-5 on human ESCs
(hESCs) can be utilized to remove teratoma-forming
cells from dissociated hESCs [323]. In immune-deficient
mice, flow cytometric analysis has shown that transplants
of SSEA-5-negative cells formed smaller teratomas, meas-
uring < 1 cm3, whereas SSEA-5-positive transplanted cells
formed teratomas > 1 cm3. Flow cytometric analysis using
an anti-SSEA-5 antibody may be useful for separating un-
differentiated, unsafe cells from iPSC-driven mixed-cell
populations. The induction of senescence generated by
replication stress and DNA damage, telomere shortening,
environmental and oncogenic stresses, and the pro- in-
flammation inducing microenvironments is one of the
oncogene-associated events involving epigenetic control
[285]. Cancer-associated senescence has been reported to
promote cancer stemness and plasticity in CSCs [306].

Risk management to prevent tumorigenesis
Three different approaches for the removal of tumor-
initiating pluripotent stem cells from ESCs and their
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differentiated cells have been reported: (i) chemical
treatment [324–327], (ii) genetic treatment [328–330],
and (iii) immunological treatment [323, 331–335]
(Table 2). Each method has its advantages and disadvan-
tages; the latter include the high cost, variation between
lots, nonspecific antibody binding, integration of toxic
genes, and long duration [354]. A strategy for application
to clinics to abate the teratoma formation should be ex-
plored further [354, 355]. The use of small molecules
has several advantages, such as robustness, efficiency,
speed, simplicity, and low cost. Some small molecules
can inhibit the formation of teratoma in human pluripo-
tent stem cells (hPSCs). For example, an inhibitor of
stearoyl-CoA desaturase (SCD), PluriSIns #1, has been
shown to prevent teratoma formation [325]. SCD1 is an
important enzyme in the biochemical synthesis of mono-
saturated fatty acids, which are needed for the survival
of hPSCs. A recent study reported that SCDs play a crit-
ical role in endoplasmic reticulum (ER) stress and pro-
mote the survival of glioblastoma cancer stem cells
[356]. The N-benzylnonanamide JC101 induces ER
stress via the protein kinase RNA-like endoplasmic
reticulum kinase/ATF4/DNA damage inducible tran-
script 3 (DDIT3 = CHOP) pathway [340], which leads to
the inhibition of teratoma formation. In a study that
used iPSCs to treat spinal cord injury, these cells were
determined to be safe before the grafting of transplants,
which prevented the formation of teratomas [357].
The introduction of inhibitors of antiapoptotic factors

that effectively remove residual iPSCs can also prevent
teratoma formation [344, 348]. Treatment with survivin
(an antiapoptotic factor) and a novel survivin suppres-
sant, YM155, was effective in decreasing the risk of tera-
toma formation. In that study, addition of YM155
permitted the survival of CD34+ cord blood cells and
prevented teratoma formation in human induced pluri-
potent stem cells (hiPSCs)-grafted mice [347].
The introduction of inducible caspase-9 (iCap9), as a

suicide gene, into hiPSCs avoided tumorigenic trans-
formation after their transplantation [347, 348]. The effi-
ciency of iCap9 and small molecule-like chemically
induced dimerization (CID) in the prevention of the risk
of tumorigenesis was evaluated in cell-transplantation
experiments. iCap9 integrated with CID induced the
apoptosis of iPSCs and iPSC-derived NSCs and pro-
duced the terminal differentiation of transduced cells
grafted into injured spinal cord in mice but avoided the
formation of teratomas [348].
A conditionally replicating adenovirus that targets can-

cers using multiple factors (m-CRAs) is a new antitu-
morigenic agent used in hPSC-based cell therapy. Given
that the survivin promoter is stronger in undifferentiated
hPSCs than was the telomerase reverse transcriptase
(TERT) promoter, surviving promoter m-CRAs efficiently
kill undifferentiated hPSCs but not differentiated normal
cells when compared with TERT promoter m-CRAs. The
surviving promoter m-CRAs seems to be a novel antitu-
morigenic agent that may facilitate safer hPSC-based med-
ical applications [358].
Another approach is the isolation of the desired differ-

entiated cells from other cell types and undifferentiated
hPSCs, such as the removal method of the residual pluri-
potent cells from other cells using fluorescence-activated
cell sorting or antibodies coated magnetic beads against a
particular antigen, including SSEA-5 [323], claudin-6 [333,
359], and the Ulex europaeus agglutinin-1 fucose-binding
lectin (UEA) [360]. Caludin-6 bound to the enterotoxin
produced by Clostridium perfringens kills the hPSCs that
induce teratoma formation [333]. Yet another approach is
the direct, targeted killing of tumor cells using a cytotoxic
antibody against the podocalyxin-like protein-1, an inhibi-
tor of stearoyl-CoA desaturases or a DNA topoisomerase
II inhibitor, etc. Etoposide, a DNA topoisomerase II in-
hibitor, and the CDK inhibitor purvalanol have been used
to minimize the risks of tumor formation by post-
transplanted ESCs and iPSCs [345, 346]. Lin et al. re-
ported that the cardiac glycosides digoxin and lanatoside
C can kill undifferentiated hESCs [339].

Important effects of JDP2 on reprogramming-derived
CSCs
The activation of the Wnt signaling is critical for maintain-
ing of pluripotency in ESCs [41, 185, 186, 192, 193]. JDP2,
has been used as a pluripotency-promoting factor in the
reprogramming of cancer cells to reduce their cancerous
features. JDP2 can activate or repress various gene tran-
scription actions [185, 361], although it also plays a critical
role in malignant transformation. For example, JDP2 can
promote cancer cell growth in leukemia and hepatocellular
carcinoma [362, 363] but may also be a tumor suppressor
in cancer cells [159, 364]. The treatment of gastric cancer
cell lines with OCT4 and JDP2 inhibited the tumorigenic
function of the cells by switching off BMP7 [195, 365]. The
tumor-forming ability of these partially reprogrammed gas-
tric CSC-like cells is reduced in immune-deficient mice,
which shows that JDP2 plays a critical role in the reduction
of oncogenic potential [185, 189].
Double deficiency of ATF3 and Jdp2 in mice stromal

tumors promotes cancer growth [361]. Jdp2 is regarded
as a factor that drives reprogramming through the regu-
lation of the Wnt signaling pathway and the suppression
of ROS production [188]. Oxygen regulates pluripotent
stem cells via Wnt–β-catenin signaling and HIF-1α
[188]. Wnt signaling plays a key role in the generation
and maintenance of iPSCs [366]. JDP2 is one of the tar-
get genes of the LEF–TCF family and is involved in the
Wnt signaling pathway [185]. Wang et al. generated
iPSC-like cells by introducing OCT4 and JDP2 (JO) into
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gastric cancers for reprogramming [306]. ESC-like col-
onies were obtained in teratomas of JO-introduced xe-
nografts. The JO-introduced xenografts were smaller
and had fewer necrotic and mitotic cells, and a larger
nucleus, than the parent cancer xenografts.
The roles of EZH2, HMT, and MLL in the regulation

of BMP7 expression have been examined [364, 365]. The
findings of this study suggest that HMT inhibitors can
be used to prevent MLL and that EZH2 is a potential
therapeutic target. The β-catenin–JDP2–RPMT5 com-
plex axis is critical for reestablishing glutathione homeo-
stasis after genotoxic-mediated stress and may be useful
in the development of drugs aimed at treating or avoid-
ing inducible resistance to chemotherapy in cancer cells
[367]. A combination of factors (Jdp2, Jhdm1b, Mkk6,
Glis1, Nanog, Essrb, and Sall4) was reported to be a use-
ful reprogramming complex for efficiently leading mouse
embryonic fibroblasts (MEFs) to become chimera-
competent iPSCs in xenografts [368]. These findings
suggest that the direct reprogramming of stem cells can-
not reduce the risk of malignancy itself, and that exclud-
ing cancer cells from the microenvironment of stem
cells may be crucial for reducing the risk of cancer.

Other solutions to eliminate the risk of tumorigenesis
Methods of pluripotency reprogramming that do not use
genetic material provide another potential strategy for
generating safe iPSCs. To date, various molecules that
promote cell reprogramming have been reported as sub-
stitutes for genetic materials. These small molecules
modulate the activities of the enzymes that are involved
in the epigenetic modification of genes and may play a
crucial role in pluripotency reprogramming [25, 27–30,
369]. These small molecules include the TGFβ inhibitory
antagonist SB431542, the MAPK–extracellular signal-
regulated kinase inhibitor PD0325901, and the inhibitor
of Rho-associated coiled-coil-containing protein kinase
thiazovivin (2,4-disubstituted thiazole or TZV). TZV sig-
nificantly increases the rate of hiPSC reprogramming by
up to 200-fold [370]. The combination of Oct4, the
TGFβ receptor inhibitor A83–01, and the methyltrans-
ferase inhibitor AMI-5 increases the reprogramming effi-
ciency of mouse iPSCs, and the repression of ROS
increases the efficiency of cell reprogramming [371,
372]. The addition of vitamin C to the culture medium
significantly increases the reprogramming efficiency.
However, the generation of hiPSCs using small-molecule
compounds alone has not been shown to reduce the risk
of tumorigenesis significantly. Further investigation of
nongenetic compound-guided iPSCs is required to ex-
clude the potential for tumor progression before patient
engraftment.
Vitamin C is a candidate for preventing the tumori-

genesis caused by hiPSCs because it inhibits the
improper self-renewal of human stem cells by increasing
histone demethylase activity. Vitanin C has also been ap-
plied as an anticancer agent in melanomas [373–376]. The
histone demethylases JIhdm1a/1b are the direct down-
stream molecules of vitamin C. In addition to its antioxi-
dant activity [376], vitamin C was reported to increase the
rate of reprogramming of fibroblasts to iPSCs when added
to the culture medium [190]. In that study, supplementa-
tion with vitamin C decreased p53/p21 levels, which suc-
cessfully blocked pluripotency reprogramming.
The mutation frequencies in hiPSCs increases with

age. Aging is also one of the major risk factors for cancer
progression. Therefore, younger donor cells may be used
to avoid detrimental mutations in mitochondrial DNA.
The reprogramming of somatic cells into iPSCs resets
the cellular damage and the stress- and senescence-
associated epigenetic marks in vitro, which suggests that
the reprogramming technology may be able to induce
the rejuvenation of senescent cells [377]. Mosteiro et al.
reported that cells reprogrammed in vitro were present
next to senescent cells clustered in reprogrammable
mice [378]. These senescent cells promote reprogram-
ming through senescence-associated secretory pheno-
types, especially via the production of interleukin 6
[379]. The functional crosstalk between reprogramming
and senescence has been reported elsewhere [380, 381].
To avoid the risk of point mutations in stem cells,

histocompatibility antigen-matched umbilical cord
blood-derived iPSCs are useful for ensuring a minimal
rate of mutations [382]. Amniotic cells derived from hu-
man placental tissues exhibit lower immunogenicity and
anti-inflammatory properties than do other cells [383,
384]. The expression of putative immunosuppressors,
such as CD59 and CD73, is repressed during the process
of reprogramming in amniotic cells [385]. These findings
emphasize that long-term-cultured hESCs and hiPSCs
show increased growth rates and decreased dependence
on the concentration of growth factors and malignant
tumor-forming abilities after their engraftment in mice
[386]. Carcinoma-derived iPCSCs, which have a higher
number of passages, exhibit increased carcinogenic abil-
ity compared with those obtained from donor cholangio-
cellular carcinoma [387].
Other candidate for therapeutic agents includes drugs

against the super-enhancers involved in phase separation
[388]. In general, the machinery used for epigenetic modi-
fication can be altered during transcription initiation,
elongation, and termination by involving the transcrip-
tional complex containing polymerase II. Transcriptional
regulators such as the mediator MED, coactivator Brd4,
splicing factor SRSF2, histone heterochromatin protein 1,
and nucleoplasmin 1 may be targets for therapies aimed at
modulating chromatin structure during reprogramming
and for blocking the development of cancer or other
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genetic diseases [389]. Hepatocellular carcinomas (HCCs)
exhibit distinct promoter hypermethylation patterns. Dele-
tion of C/EBPβ expression using the CRISPR-Cas9 system
affects the co-recruitment of BRD4 at enhancers marked
with H3K27ac to block the development of HCC [390].
The two mediator kinases, CDK8 and CDK19, may en-

able transcriptional reprogramming through the super-
enhancer family, chromatin looping by CTCF, and cohe-
sion with the transcriptional mediators MED12 and 13,
which may be potential drug targets [391]. The valproic
acid-mediated inhibition of HDAC and glycogen synthase
kinase-3 results in the transcriptional repression of many
genes, including the gene that encodes for myristoylated
alanine-rich C-kinase substrate 1, which is the Actin-
stabilizing protein that is required for the process of the
early development of dendritic morphogenesis and syn-
apse maturation [392]. In zebrafish, p300 and Brd4 trigger
genome-wide transcriptional network by controlling his-
tone acetylation of the first zygotic genes. This mechanism
is crucial for initiation of zygotic development and
reproduction [393]. In mammals, these target genes are
also potential candidates for drug targets. Stem cell-
derived organoids may also be useful for identifying the ef-
fects of the microenvironmental niche on cancer develop-
ment and the reprogramming fates of stem cells [394].
The successful epigenetic reprogramming of primary

cancerous cells was recently reported [350]. Pancreatic
ductal adenocarcinoma cells were reprogrammed by in-
dependent protocols, such as the introduction of OCT4
together with miRNA of Mir302, the episomal vector-
encoded NANOG and REX1, in Yamanaka’s protocol (as
a control). These methods yielded efficient reprogram-
ming with reduced tumorigenicity through epigenetic
changes, such as downregulation of TET2, SIRT1, dis-
ruptor of telomeric silencing 1-like (DOT1L), and T-box 3
(TBX3) and upregulation of TET1. A study of ischemic
cardiomyopathy found that DNA methylation and the
metabolic pathway were strongly correlated through the
EZH2–KLF15 axis [351]. C/EBPβ recruits the DOT1L
methyltransferase to open chromatin via methylation of
H3K79 in multiple drug-resistance genes [352].
Imprint dysregulation compromises the developmental

ability of pluripotent stem cells [353]. The stability of de
novo methylation of CpG islands in PSCs is critical for can-
cer development. Thus, CpG islands and imprinting-
control regions are important for the evaluation of develop-
ment, stemness, and pluripotency [395]. Reprogrammed
hiPSCs exhibit greater loss of imprinting compared with
ESCs, and the loss of imprinting preexists in their somatic
cells of origin. The differently imprinted genes related to
the loss of imprinting, especially those of paternal control,
are more prone to disruption [396].
Ubiquitin-like with PHD and RING finger domain 1

(Uhrf1) is a hemimethylated DNA-binding protein that
interacts with DNMT1 and recruits euchromatic his-
tone–lysine N-methyltransferase 2 to form heterochro-
matin, together with tripartite motif-containing 28 and
HDACs, for DNA methylation. In mouse stem cells,
Uhrf1 interacts with the SET domain complex contain-
ing 1A/COMPASS, followed by positive regulation of
H3K4me3 modification. Uhrf1 maintains bivalent his-
tone marks, such as H3K27me3 and H3K4me3, and par-
ticularly those associated with specifications to the
neuroectoderm and mesoderm [396]. Tatton-Brown–
Rahman syndrome (TBRS) is caused by a mutation in
DNMT3A, a gene that is also associated with Sotos syn-
drome, which is caused by haploinsufficiency of NSD1,
an HMT that catalyzes the demethylation of histone H3
at K36 (H3K36m22). In the mouse, NSD1-mediated
H3K36me2 methylation is induced by the recruitment of
DNMT3A and is crucial for the maintenance of DNA
methylation at intergenic regions. The binding of
DNMT3A to H3K36me2 can be inhibited by a missense
mutation associated with TBRS, which suggests that
trans-chromatin regulatory control is critical for human
neoplastic and developmental growth [397].

Conclusion
Genetic or epigenetic alterations in proteins or microen-
vironmental niches might promote the initiation or pro-
gression of carcinogenesis in some cells. Further steps
should be taken to provide effective anticancer systems
for the therapeutic application of reprogramming-guided
human stem cells. One intriguing technique is the use of
a CRISPR-Cas-derived vector to remove the targeted re-
gion of epigenetic barriers to identify the effects of tran-
scriptional reprogramming. Targeting of dCAS9-VP64 to
the Sox1 promoter produces strict transcript and protein
upregulation in neural progenitor cells. The removal of
DNA methylation by dCas9-Tet1 increases the propor-
tion of cells with activating master key transcription fac-
tors for abrogating the barriers of cell fate [398]. The
single-cell sequencing technique is also critical for defin-
ing cell fate and the decision toward differentiation.
The ascorbic acid plus 2i and Dot1l inhibitor drugs

can rapidly affect the conversion of MEFs to iPSCs. The
stemness gene Nanog appears in a subcluster with genes
such as those encoding the epithelial cell adhesion mol-
ecule (Epcam), Sal-like protein 4 (Sall4), and thymine
DNA glycosylase genes (Tdg). The Tdg tandem duplicate
1 (Tdg1) and Oct4 cluster with Zfp42, and Sox2 clusters
with the undifferentiated embryonic cell transcription
factor 1 (Utf1) and the developmental pluripotency-
associated protein 5A (Dppa5a). Sustained coexpression
of Epcam, Nanog, and Sox2 with other genes is also re-
quired for progression of MEFs toward iPSCs. The genes
for Ets homologous factor (Ehf), pleckstrin homology-
like domain family A member 2 (Phlda2), and eukaryotic
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initiation factor 4A-I (Eif4a1) also play critical roles in
robust iPSC generation.
Regulatory network analyses allow the search for new

networks of signaling, such as signaling inhibition by 2i,
and their role in repressing somatic expression. Such
analyses also allow the comparison of the actions of the
epigenetic modifier ascorbic acid and a Dot1l inhibitor
for pluripotent gene activation [399]. In one study, hu-
man iPSC-derived neurospheres were transferred into
nonobese diabetic-severe combined immune-deficient
mice, to treat and cure a spinal cord injury without any
tumor generation [349]. These grafted hiPSC-NSs sur-
vived, migrated, and differentiated into functional neu-
rons. However, the direct application of undifferentiated
iPSCs or hPSCs to patients has not been reported and
further research and advances are needed to generate
transplantable stem cells or organoids that can be ap-
plied to patients in the near future.
Collectively, the data discussed in this review show

that the characteristics of pluripotency can inhibit the
features of the cancer phenotype, restore differentiation
potential, and change the expression of the indicated
cancer-related genes through epigenetic modifications,
chromatin organization, and metabolism reprogramming
(Table 2). Therefore, the targeting of these epigenetic al-
terations may provide effective approaches for inhibiting
the tumorigenic capability of CSCs in the future. Further
study is required to provide further understanding of the
molecular machineries underlying the reprogramming of
cancer cells and the development of novel therapies for
the regenerative reprogramming of human cancer cells
and their derived organoids.
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