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Abstract: The Mar Menor is a Mediterranean coastal saltwater lagoon (Murcia, Spain) that represents
a unique ecosystem of vital importance for the area, from both an economic and ecological point of
view. During the last decades, the intense agricultural activity has caused episodes of eutrophication
due to the contribution of inorganic nutrients, especially nitrates. For this reason, it is important
to control the quality of the water discharged into the Mar Menor lagoon, which can be performed
through the measurement of dissolved oxygen (DO). Therefore, this article aimed to predict the
DO in the water discharged into this lagoon through the El Albujón watercourse, for which two
theoretical models consisting of a multiple linear regression (MLR) and a back-propagation neural
network (RPROP) were developed. Data of temperature, pH, nitrates, chlorides, sulphates, electrical
conductivity, phosphates and DO at the mouth of this watercourse, between January 2014 and January
2021, were used. A preliminary statistical study was performed to discard the variables with the
lowest influence on DO. Finally, both theoretical models were compared by means of the coefficient
of determination (R2), the root mean square errors (RMSE) and the mean absolute error (MAE),
concluding that the neural network made a more accurate prediction of DO.

Keywords: intensive agriculture; eutrophication; nitrates; dissolved oxygen (DO); multiple linear
regression (MLR); back-propagation neural network (RPROP)

1. Introduction

Coastal lagoons result from the mixing of fresh and salt water [1]. They represent
dynamic and heterogeneous systems, which are subject to intermittent or permanent
seawater flows that are integrated through sand barriers while fresh water is incorporated
in the form of runoff and discharges from streams or watercourses. The ionic composition
of the water in these lagoons is also influenced by that of the groundwater.

In recent times, the strong anthropic activity developed in coastal areas has altered the
quantity and nature of these incoming water flows, increasing their irregularity and trophic
load [1,2]. Since the 1970s, an increase in the amount of nutrients from agricultural fertiliz-
ers has been observed, leading to the eutrophication of many coastal areas of the world [3,4].
Eutrophication is causing major ecological disasters affecting both flora and fauna of the
ecosystems associated with coastal lagoons [5,6]. The high amount of biomass produced
decreases the availability of light, favoring among the primary producers the most compet-
itive community for light, i.e., phytoplankton, at the expense of macrophytes [7,8]. This
overproduction leads to a loss of diversity [9], habitat destruction and mortality by anoxia
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of various species [10–13]. In coastal areas, which are characterized by strong population
growth, eutrophication has become a serious threat since the 1950s [14]. So, eutrophication
is one of the greatest ecological risks to ecosystem health, and one of the greatest challenges
to sustainable water management. It is increasingly recognized that eutrophication has mul-
tidimensional consequences for water quality, as well as the ecosystem and human health.
It even conditions the development of certain economic activities. These consequences
depend on site-specific conditions, in particular the ecological stability of the system, types
of land use, climate change and the presence of other pollutants [15].

Coastal lagoons are particularly sensitive to eutrophication, as these systems tend to
concentrate anthropogenic nutrient inputs due to restricted exchanges with the sea and
long water residence time [7]. The Mar Menor area is subject to a great economic activity,
which includes a high urban pressure. In the 1970s, the Tajo-Segura water transfer took
place, which led to the development of intensive agriculture in the region of Campo de
Cartagena, whose main collector towards the lagoon is the El Albujón watercourse. This has
caused episodes of eutrophication in the lagoon, characterized by increased turbidity [16]
and decreased dissolved oxygen (DO) [17,18].

DO is a parameter that has been a frequently used to assess water quality [19–22].
Water quality monitoring is very useful to control the health of ecosystems, especially in
critical areas where possible pollution episodes are foreseen and/or relevant socioeconomic
activities. Surface water quality prediction is a basic task in water resources management
studies, to establish the reasons for water quality deterioration and to keep pollution within
permissible limits [23,24].

The prediction of different parameters affecting water quality can be performed
through multiple linear regression (MLR) models [23,24], or by applying artificial in-
telligence, which is an effective tool for dealing with the problems of dynamic complex
hydrological systems [25,26]. Within artificial intelligence, artificial neural networks (ANN)
stand out as very useful models for data processing [27]. An artificial neural network is a
computational model whose architecture attempts to mimic the behavioral relationships of
the brain. It consists of a limited number of interconnected elements (neurons) distributed
in an input layer, one or more hidden layers and an output layer. The input layer has the
function of receiving information from the outside, while the neurons of the output layer are
in charge of delivering the results of the predictions made by the neural network. Hidden
layers generate the chaining relationships between inputs and outputs, extract and refine
the relationships and characteristics of the input variables to predict the outputs that are of
interest to the study. These types of networks are able to forecast water quality parameters
through the relationships between inputs and outputs, without taking into account the
internal mechanisms of the forecasting models [28]. In this regard, Ay and Kisi [22] applied
three different models to predict the concentration of DO in river water in Foundation
Creek, El Paso, Colorado, consisting of two ANN models (MLP (Multilayer Perceptron) and
RBNN (Radial Basis Neural)) and one statistical model (MLR). These authors concluded
that ANN models fit very well in the estimation of DO, obtaining a much higher accuracy
with them than with MLR. On the other hand, Zhang et al. [29] used back propagation
neural networks (BPNN) to predict DO as a criterion for water quality assessment, using
data of temperature, nitrogen content of the ammonia (NH3-N) and biological oxygen
demand (BOD) to simulate DO concentration with an average relative error lower than 8%,
obtaining a good predictive tool. Other authors such as Liu et al. [30] used an Elman neural
network (ENN) model to predict DO for rapid assessment of Singapore coastal waters.
In this study, the designed network architecture consisted of seven or eight hidden layer
nodes, and good results for DO were obtained. Wang et al. [31] studied and compared four
types of models to predict monthly ammonia nitrogen (NH(4+)-N) and DO in the Harbin
region, northeast China. These four models were based on: bootstrapped wavelet neural
network (BWNN), ANN, wavelet neural networks (WNN) and AutoRegressive Integrated
Moving Average (BANN and ARIMA). The results showed that the BWNN model could
handle water quality time series data, which are highly fluctuating and non-seasonal, and
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produced a better performance than the other four models. Naha et al. [32] investigated the
ability of adaptive neurofuzzy inference system (ANFIS) in the Johor river basin, Malaysia,
to predict DO concentrations. The results obtained by the ANFIS model were compared to
those obtained by the model developed with the technique of multilayer perceptron neural
network (MLP-NN), and a higher accuracy for the ANFIS model, both in the prediction of
average DO and in its extreme values, was observed. Another parameter that can be used to
evaluate the degree of eutrophication in waters is the amount of chlorophyll. In this regard,
Jimeno-Saez et al. [33] applied machine learning algorithms to estimate the chlorophyll in
seawater from the coastal lagoon of Mar Menor. The algorithms used were Support Vector
Regressions (SVRs) and Multilayer Neural Networks (MLNNs), obtaining better results in
the validation phase for the SVRs, as well as satisfactory final results for the prediction of
chlorophyll concentration.

The purpose of this study is to determine the extent to which the DO concentration
in freshwater present in the mouth of the El Albujón watercourse to Mar Menor lagoon,
can be forecasted using theoretical models. To do so, a model based on MLR and a model
based on ANN were developed. The architecture of the ANN model was developed upon
a back-propagation algorithm and using the Knime application, which is an open-source
tool, easy to use and requires few computer resources. This will presumably represent an
improvement with respect to the literature consulted. Experimental water quality data
were used, and the choice of input variables for the modelling was based on a statistical
correlation analysis of the field data. Predicted DO concentrations obtained by both models
were compared with measured values, to identify the best predictive tool.

2. Materials and Methods
2.1. Location of Study Area

The Mar Menor is a Mediterranean coastal saltwater lagoon, located in the Region of
Murcia, southwestern Spain, with a semi-arid climate, which occupies an area of approx-
imately 170 km, a coastline length of 73 km and a maximum depth of 7 m. This lagoon
is separated from the Mediterranean Sea by a sandy coastal bar approximately 19 km
long, with different widths, with five channels or gullies through which it exchanges water
with the sea, and where a summer colony known as the Manga del Mar Menor is located.
The Mar Menor is also a place of vital natural importance, since in its surroundings, up to
10 figures of environmental protection, geological and ecosystemic interest converge. The
area is integrated within the Natura 200 Network. It has a ZEPA (Zone of Special Interest
for Birds), which includes the Protected Landscape called “Open Spaces and Islands of the
Mar Menor”. In addition, the Mar Menor is a Wetland of International Importance (WII),
according to the Ramsar Convention, being therefore essential to protect the ecosystems
that compose it.

The physicochemical parameters of the water from the El Albujón watercourse at its
mouth in the Mar Menor lagoon (Figure 1) selected for this study were temperature, pH,
nitrates, chlorides, sulphates, electrical conductivity, phosphates and DO, corresponding
to the period from January 2014 to January 2021. Water analysis was carried out by the
Water Quality Laboratory of the Confederación Hidrográfica del Segura. Temperature, pH,
electrical conductivity and DO were determined in situ by electrometric probes following
internal methods based on the corresponding Standard Methods (SM2550-B, SM 4500 H,
SM 2510-B and SM 4500-O-G, respectively). On the other hand, ex situ parameters such as
nitrates, chlorides, sulphates and phosphates, were determined by Ion Chromatography by
an internal method based on UNE EN-ISO 14911.
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Figure 1. Situation of Region of Murcia and El Albujón watercourse. Adapted with permission from
Ref [34]. Copyright 2022. Inst. Geograf. Nacional de España.

2.2. Development of Mathematical Models
2.2.1. Preliminary Statistical Study to Analyze the Influence of Different Variables on
DO Concentration

First, the influence of the different variables on DO concentration was analyzed in
order to select the variables with the greatest influence and discard those with the least
influence. For this purpose, the Pearson coefficients of each parameter were analyzed with
DO concentration, using the totality of the data in the period studied.

2.2.2. Multiple Linear Regression (MLR) Model

Once the most influential variables (independent variables) were selected, the MLR
method was applied to DO (dependent variable). The goodness-of-fit of the model was ver-
ified through the assumptions of linearity, independence, homoscedasticity and normality
of the residuals. The hypotheses of the model were tested to see if they fit the data collected.

2.2.3. Artificial Neural Network (ANN) Model

In order to develop the architecture of the ANN-based DO prediction model, different
configurations of number of neurons and hidden layers were studied. The starting point
was the total of the 153 measurements or data of the variables with the greatest influence
according to the preliminary statistical analysis. The ANN was created in two phases,
which were the training phase and the model validation phase. The objective was to verify
that the proposed network architecture is capable of adequately modelling the simulation
target. Normally the network weights are initialized as random values.
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During the training or learning phase, the dataset containing both the desired input
and output information were processed to optimize the network outputs in order to
minimize the error between the objective values and the model outputs. In this study,
the data set was divided into two different subsets, so that a first subset of data was used to
create a model to serve as a training set for the network. The second subset was used to
validate the model created in the previous phase (test set).

The learning algorithm used was the back-propagation algorithm (RPROP). This type
of neural network uses a back-propagation procedure, which is a method of learning from
a predefined set of inputs and outputs, using a propagation cycle. The ANN architectures
for predicting the DO were obtained using the Knime application, a tool selected because it
is open source and easy to use and parameterize. In addition, to avoid scale differences
between the physical variables involved in the network, a normalization process was
carried out. In this process, each variable was transformed to a natural system between 0
and 1.

To find the best data distribution ratio for the training test and the model validation
test, respectively, the network was experimented and run with different data distribution
percentages. Thus, the training/test ratios tested were 90–10% to 50–50%, decreasing and
increasing, respectively, by 5% for each test.

Different combinations of hidden layers and number of neurons per layer were also
tested during the network development process. Processes were tested with 5, 4, 3, 2 and 1
hidden layers and combinations from 20 to 100 neurons per layer, respectively. Between
all the combinations tested, the one considered most efficient was chosen, consisting of
3 hidden layers and 50 neurons per layer.

As a summary, two flow charts are included. Figure 2 corresponds to the general
process and Figure 3 represents the neural network’s flow chart.
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3. Results and Discussion

Table 1 shows the physicochemical variables used in the present study, together with
the minimum, maximum, arithmetic mean and standard deviation values of the data
provided by the Consejería de Agua, Agricultura, Ganadería, Pesca y Medio Ambiente of
Region of Murcia and the Confederación Hidrográfica of Segura river.

Table 1. Physicochemical variables available to develop the theoretical models, at the mouth of El
Albujón watercourse, between January 2014 and January 2021.

Parameter Unit Min Max Mean Standard Deviation n

Temperature ◦C 8.8 27.8 19 5 153
pH 6.8 8.7 8.0 0.3 153

Nitrates mg/L 1.3 311 15 × 101 5 × 101 153
Chlorides mg/L 25.8 5146 23 × 102 9 × 102 153
Sulphates mg/L 41 4808 23 × 102 7 × 102 153
Electrical

conductivity µS/cm 2098 18410 9 × 103 3 × 103 153

Dissolved oxygen
(DO) mg/L 2.21 15.0 9 8 153

3.1. Preliminary Statistical Study to Analyse the Influence of Different Variables on
DO Concentration

The selection of the variables with the greatest influence on DO concentration in the
freshwater of the El Albujón watercourse was carried out through Pearson correlation
studies. Table 2 shows the results obtained.

From the Pearson correlation coefficients obtained, it was concluded that temperature
and pH presented a significant correlation on DO concentration in the analyzed waters
(p < 0.05). Likewise, nitrate concentration was also included in the models developed,
because compared to the other variables, it presented a difference approximately 10 times
greater than the rest of the variables. In addition, it is widely known that eutrophication
episodes, which cause a decrease in the DO in a given body of water, are due to the presence
of high concentrations of nutrients, such as nitrates, so in this study it is considered as a
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relevant variable. The rest of the variables (chlorides, sulphates and electrical conductivity)
can be discarded from the model, because they did not have a significant influence based
on the low values obtained for their respective Pearson correlation coefficients (r), which is
related to the characteristics of the water studied, which is a freshwater.

Table 2. Values obtained for the Pearson correlation coefficients between DO and different variables.

Pearson Correlation (r)

Variables DO

Chlorides −0.067
Nitrates 0.188

Sulphates −0.038
Temperature −0.507

pH 0.540
Electrical conductivity 0.017

3.2. MLR Model

From the variables selected in the preliminary statistical study, the MLR model was
developed with DO as the independent variable, and nitrate concentration, temperature
and pH as dependent variables. The summary of the MLR model is shown in Table 3.

Table 3. Summary of the MLR model developed.

R R2 Adjusted R2 Standard Error Durbin-Watson

0.66 0.44 0.43 0.1625024 1.541

The results obtained indicated that DO is explained in an extension of 44% by the vari-
ables temperature, pH and nitrate concentration, according to the MLR model considered.

The equation that fits the data were as follows:

DO = 0.157 + 0.6313 pH − 0.281 T + 0.27 N (1)

where
DO: Dissolved oxygen,
pH: pH value,
T: Temperature,
N: Nitrate concentration,
To verify that these variables can be related using the proposed MLR model, the ver-

ification of the assumptions of linearity was checked, together with the independence,
homoscedasticity and normality of residuals.

3.2.1. Linearity

Table 4 shows the results of the ANOVA analysis of the MLR model, and it can be
concluded that the linearity assumption is met because the p-value is significant because it
is lower than the significance level (α < 0.05).

Table 4. Results of the ANOVA analysis of the MLR model.

Model Sum of Squares df Mean Square F Sig.

Regression 3.45 3 1.048 39.703 0.000
Residuals 3.94 149 0.26

Total 7.08 142
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3.2.2. Independence

According to the value obtained for the test of independence of the Durbin–Watson
residuals, shown in Table 3, these can be considered independent because this value is
within the range 1.5–2.5.

3.2.3. Homoscedasticity

To test the model homoscedasticity, the correlation between the absolute value of the
residuals and their estimated values was calculated. The results are shown in Table 5.

Table 5. Correlation between the absolute value of the residuals and their estimated values.

ABS Residuals Predicted Value

ABS Residuals
Pearson correlation coefficient 1 0.054

p-value 0.509
N 153 153

Predicted Value
Pearson correlation coefficient 0.054 1

p-value 0.505
N 153 153

The results obtained showed that the p-value obtained was higher than the level of
significance (α = 0.05), so the null hypothesis H0 was accepted, and it can be affirmed
that there is no correlation between the variables. Therefore, the model homoscedasticity
was proved.

3.2.4. Normality

To check the assumption of normality of the residuals, the Kolmogorov–Smirnov (K-S)
test was performed. The results of this test are shown in Table 6.

Table 6. K-S Test Results.

Unstandardized Residual

N 153

Normal parameters Mean 0.00000000
Deviation 0.16089077

Most extreme differences
Absolute 0.043
Positive 0.043

Negative −0.035
Kolmogorov–Smirnov Z 0.043

p-value 0.200

As it can be observed, the p-value is 0.200, so it is higher than 0.05 and it is assumed
that the variable is distributed according to a normal probability function.

Therefore, from the results obtained regarding the linearity and characteristics of the
residuals, it can be concluded that the MLR model can be a valid prediction model for DO
as a function of pH, temperature and nitrate concentration.

3.3. ANN Model

The ANN architecture proposed for the prediction model of the DO present in the
waters of the mouth of the El Albujón watercourse in the Mar Menor is shown in Figure 4.

From the study of the distribution ratio of the data for training and validation of the
model, it was found that the optimum distribution to obtain the best results with the model
was as follows: 70% training data and 30% validation data. This data distribution was
also the most efficient, since it minimizes execution times and the prediction showed the
lowest error.
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3.4. Comparison between the MLR and ANN Models

The comparison between the theoretical models developed was based on the calcula-
tion of three statistical parameters: the mean square error (RMSE), the mean absolute error
(MAE), and the coefficient of determination R2. The best method will be by presenting the
minimum values of RMSE and MAE, and the R2 value closer to 1.

Figures 5 and 6 show the experimental data of DO present in the waters of the mouth
of the El Albujón watercourse, and the data that can be predicted by the proposed MRL
model and ANN model, respectively.
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Figure 6. Comparison between experimental DO data and those obtained by neural network method
(a) Correlation between measured and predicted DO; (b) Date profile of measured and predicted DO.

Table 7 shows the RMSE, MAE and R2 values of the proposed models.

Table 7. RMSE, MAE and R2 values of the MRL model and the ANN model.

Model RMSE MAE R2

MLR 0.159842825 0.130820391 0.4443
ANN 0.140726705 0.102803977 0.8516

As it can be observed, the ANN model presented a coefficient of determination value
closer to 1 than the MRL model (0.85 versus 0.44), as well as the lowest values of RMSE
and MAE. Therefore, it can be concluded that a higher estimation accuracy was achieved
by the ANN model than by the MLR model. This can also be observed in the curve profiles
shown in Figure 2B (MLR model) and Figure 3B (ANN model).

Other authors have also concluded that neural networks are effective methods for
the theoretical determination of DO in both lakes and rivers. This is the case of, for exam-
ple, Ay and Kisi [22], who designed a neural network using four variables, such as pH,
temperature, electrical conductivity and flow rate, obtaining satisfactory results for the
determination of DO in a river in El Paso, Colorado. In the present work, the preliminary
statistical study showed that electrical conductivity was not relevant in the variation of DO
in the water discharged into the Mar Menor lagoon, through the El Albujón watercourse.
On the other hand, it can be highlighted that the main contribution of this paper is the
method used to create the ANN model, since the neural network architectures for predict-
ing DO were obtained using the Knime application, which is an open-source tool, selected
because it is easy to use and requires few computer resources.

4. Conclusions

The DO concentration in the waters can be estimated by theoretical models as a
function of different physicochemical variables. In this study, available data regarding water
quality were: temperature, pH, nitrates, chlorides, sulphates and electrical conductivity.
The preliminary statistical analysis carried out showed that the variables that most affect
the variation of DO in the studied waters were temperature, pH and nitrate concentration.

Based on these three variables, two theoretical models were developed to estimate
the DO in the waters of the mouth of the Albujón watercourse, using an MRL model and
a back-propagation ANN model, which is a method of learning from a predefined set of
inputs and outputs, using a propagation cycle, which finally led to an improvement of
the model. On the other hand, the Knime application was used to develop the neural
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network architectures. This application is an open-source tool, easy to use and requires
few computer resources. However, it presents the drawback that a lower precision can be
obtained in the predicted values, but in the present work, a commitment situation between
computer resources, time and precision was reached, and satisfactory results were obtained.

Between both methods, the one that provided a higher precision in the DO results was
the ANN model, which presented a coefficient of determination, R2, of 85.16%, compared
to the 44.43% obtained by the MLR model. Regarding the errors, both the mean square
error and the mean absolute error were lower in the case of the ANN model.

Therefore, it can be affirmed that the neural network designed, using the back-
propagation model and the Knime application, was a satisfactory method to predict the
variation of DO in the waters studied, and can be a useful, economical and effective tool
to collaborate in the management of the water quality in an area as sensitive as the Mar
Menor coastal lagoon in Murcia, Spain.
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