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Earlier studies investigating the pathogenesis of chronic vascular inflammation associated
with atherosclerosis described pro-inflammatory and vascular barrier disruptive effects of
lipid oxidation products accumulated in the sites of vascular lesion and atherosclerotic
plaque. However, accumulating evidence including studies from our group suggests
potent barrier protective and anti-inflammatory properties of certain oxidized
phospholipids (OxPLs) in the lung vascular endothelium. Among these OxPLs, oxidized
1-palmitoyl-2-arachdonyl-sn-glycero-3-phosphocholine (OxPAPC) causes sustained
enhancement of lung endothelial cell (EC) basal barrier properties and protects against
vascular permeability induced by a wide variety of agonists ranging from bacterial
pathogens and their cell wall components, endotoxins, thrombin, mechanical insults,
and inflammatory cytokines. On the other hand, truncated OxPLs cause acute endothelial
barrier disruption and potentiate inflammation. It appears that multiple signaling
mechanisms triggering cytoskeletal remodeling are involved in OxPLs-mediated
regulation of EC barrier. The promising vascular barrier protective and anti-inflammatory
properties exhibited by OxPAPC and its particular components that have been
established in the cellular and animal models of sepsis and acute lung injury has
prompted consideration of OxPAPC as a prototype therapeutic molecule. In this
review, we will summarize signaling and cytoskeletal mechanisms involved in OxPLs-
mediated damage, rescue, and restoration of endothelial barrier in various
pathophysiological settings and discuss a future potential of OxPAPC in treating lung
disorders associated with endothelial barrier dysfunction.
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INTRODUCTION

In various pathological conditions, especially during inflammation and oxidative stress, circulating
and cell membrane phospholipids undergo oxidation to form a diverse group of oxidized
phospholipids (OxPLs). These bioactive OxPLs possess profound biological activities and exert
both beneficial and harmful effects on human body governed by their biochemical and biophysical
n.org November 2021 | Volume 12 | Article 7944371
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properties. It has been long recognized that OxPLs accumulate in
atherosclerotic lesions (1–3), and later studies have shown
OxPLs elevation in other cardiopulmonary disorders driven by
increased inflammatory responses [Reviewed in (4)]. However,
emerging evidence suggests that OxPLs not only induce and
propagate inflammatory response but may also contribute to the
host response, resolution of inflammation and protection of
vascular endothelial barrier properties (5). Endothelial cell
(EC) lining of the vascular lumen forms a barrier that controls
the passage of fluids, macromolecules, and immune cells between
the blood and underlying tissue. The disruption of this selective
and semi-permeable barrier results in uncontrolled passage of
harmful substances leading to the development of pulmonary
edema and acute lung injury (ALI) observed in many disorders:
sepsis, severe infection, trauma, toxin inhalation, etc., and
culminating in acute respiratory distress syndrome (ARDS)
(6, 7). OxPLs play a dual role in regulating endothelial
function: some species of OxPLs have been involved in
enhancing endothelial barrier integrity while others increased
endothelial permeability. The wide structural heterogeneity of
OxPLs has been suggested to be responsible for their contrasting
biological activities (8, 9). For instance, full length oxidation
products of a major membrane phospholipid 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC, focus of
this review) possess potent endothelial barrier protective and
anti-inflammatory properties (10). On the other hand, truncated
or fragmented products of PAPC oxidation induce acute
endothelial barrier disruption and inflammation (11). Multiple
signaling pathways including receptor-mediated and cytoskeletal
reorganization have been implicated in OxPAPC-induced
upregulation of endothelial function which will be discussed in
detail in the following sections.
GENERATION OF OxPLs

A diverse spectrum of OxPLs are generated from the oxidation of
phospholipids that contain polyunsaturated fatty acids (PUFA)
at their sn-2 position. PUFAs are highly prone to oxidative
modifications by a group of specific enzymes such as
cyclooxygenases (COX) and lipoxygenases (LOX) or reactive
oxygen species (ROS)-mediated non-enzymatic lipid oxidation
(9, 12, 13). Briefly, fatty acids such as arachidonic acid (AA) and
linoleic acid (LA) are released from membrane phospholipids by
phospholipase A2 (PLA2). In turn, COX-mediated oxidation of
AA produces prostaglandins (PGs) and thromboxanes whereas
LOX-catalyzed metabolic pathways yield leukotrienes, lipoxins,
resolvins, protectins and eoxins. Multiple studies have shown the
Abbreviations: AJ, adherens junction; ALI, acute lung injury; ARDS, acute
respiratory distress syndrome; COX, cyclooxygenases; EC, endothelial cell; FA,
focal adhesion; LOX, lipoxygenases; LPS, bacterial lipopolysaccharide; MLC,
myosin light chain; MYPT1, myosin phosphatase 1; OxPLs, oxidized
phospholipids; OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine; PGs, prostaglandins; ROS, reactive oxygen species; S1P,
sphingosine 1-phosphate; TLR, toll-like receptor; TJ, tight junction; TNF-a,
tumor necrosis factor-a; VEGF, vascular endothelial growth factor; VILI,
ventilator-induced lung injury.
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modulation of endothelial function by PGs but it is out of the
scope of this manuscript. Briefly, PGI2, PGE2 and PGA2
exhibited potent, although transient barrier protective activities
in pulmonary endothelium in comparison to OxPAPC effects
(14, 15). These PGs enhanced endothelial barrier by stimulating
cAMP production leading to PKA-dependent activation of Rac
and PKA-independent activation of Epac/Rap1/Rac1 signaling
cascade (14). PGE2, PGI2, and PGA2 also protect against
thrombin-induced hyperpermeability in vitro and LPS-induced
lung injury in vivo (15, 16). Similarly, PGD2 has been shown to
enhance endothelial barrier function and protect against ALI
(17–19). Furthermore, stable analogs of PGs such as beraprost
and iloprost possess protective and anti-inflammatory activities
in pulmonary endothelium (20–23). Both COX and LOX are
involved in the generation of hydroxyeicosatetraenoic acids
(HETEs) from AA oxidation and hydroxyoctadecadienoic acids
(HODEs) from LA oxidation. Free radicals-mediated non-
enzymatic oxidation of phospholipids produces a heterogenous
mixture of bioactive OxPLs species through the classical pathway
of lipid peroxidation characterized by initiation, propagation,
and termination steps (24).

PAPC, a major membrane phospholipid, undergoes oxidation
resulting in generation of wide varieties of full length as well as
fragmented oxidized products. The full-length OxPAPC
products contain same number of carbon atoms in oxidized
arachidonic fatty acid chain as in their precursor. Examples of
such products include 1-palmitoyl-2-(5, 6-epoxyisoprstane E2)-
sn-glycero-3-phosphatidyl choline (PEIPC) and 1-palmitoyl-2-
(5,6 epoxycyclopentenone) sn -glycero-3-phsphocholine (5,6-
PECPC), among others. Conversely, fragmented OxPAPC
products are oxidatively truncated at the sn-2 position. 1-Palmitoyl-
2-(5-oxovaleroyl)-sn-glycero-phosphatidylchonine (POVPC),
1-palmitoyl-2glutaroyl sn-glycero-phosphocholine (PGPC),
1-(palmitoyl)-2-(5-keto-6-octene-dioyl)phosphatidylcholine
(KOdiA-PC) represent examples of such products (25). Besides
phosphatidylcholine, other phospholipids containing different
polar groups such as 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphatidylethanolamine (PAPE) and 1-palmitoyl-
2-arachidonoyl-sn-glycero-3-phosphatidylserine (PAPS) are
also subjected to oxidative modifications and exhibit similar
effects on endothelial barrier regulation and inflammation (15).
Furthermore, lipid peroxidation also results in the production
of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde
(MDA) (24).
CONTRASTING EFFECTS OF OxPLs ON
ENDOTHELIAL FUNCTION

A continuous monolayer of EC covers vascular lumen and
provides a highly selective semi-permeable barrier between the
circulation and underlying tissues. EC barrier controls the
passage of fluids, solutes, and cells across the vascular
endothelium. Various injurious stimuli disrupt the endothelial
barrier integrity leading to an increased endothelial permeability
for macromolecules and immune cells that is a hallmark of
November 2021 | Volume 12 | Article 794437
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numerous disorders such as pulmonary edema, ARDS, sepsis,
and other pathologies (26–29). Bioactive lipid mediators may
have both, positive and negative impact on endothelial barrier
function (Figure 1). The principal reason behind the contrasting
effects of various species of OxPLs is best explained by structure-
function analysis. It appears that different molecular species
present in OxPAPC govern its function on endothelial barrier.
Precisely, full-length OxPLs species such as PEIPC and PECPC
mediate barrier protective and barrier-enhancing effects of
OxPAPC whereas sn-2-fragmented OxPLs such as PGPC and
POVPC induce endothelial permeability (11, 30). Likewise, polar
head groups present in OxPAPC also modulate its barrier
function. OxPLs with negatively or positively charged polar
head groups such as oxidized phosphocholine and
phosphoserine exerted potent and sustained barrier-protective
effects (31). But oxidized glycerophosphate lacking polar head
group had only transient EC barrier protective effects (31).

A role of OxPLs in various cardiopulmonary disorders
including ALI (32), ARDS (33), pulmonary hypertension (34),
asthma (35), and cystic fibrosis (36) has been suggested by many
studies showing the presence of elevated levels of lipid
peroxidation products. Furthermore, OxPLs have a direct
impact on EC function, as evidenced by OxPLs-driven effects
in chronic vascular inflammation associated with atherosclerosis
and manifested by enhanced adhesion of monocytes to EC,
augmented expression of several inflammatory genes and
secretion of inflammatory cytokines and chemokines such as
interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)
(2, 8, 37). OxPLs are also shown to cause pro-thrombotic
phenotype of EC (38, 39) and act as potent oxidative stress
inducers in EC (40, 41).

In contrast to these pathological roles of OxPLs, multiple
studies have demonstrated potent anti-inflammatory and
Frontiers in Endocrinology | www.frontiersin.org 3
endothelial barrier protective functions of OxPLs in host
defense against bacterial pathogens. Init ial studies
demonstrated a protective role of OxPAPC against endothelial
dysfunction caused by bacterial wall lipopolysaccharide (LPS) in
cultured EC as well as in murine models of ALI (30, 38, 39). Later
studies have reported the involvement of OxPAPC in rescue and
repair of endothelial function disrupted by various injurious
factors: live and killed bacteria, components of bacterial wall,
edemagenic agonists (thrombin), inflammatory cytokines
(TNFa, IL-6), and pathologic mechanical forces: high
amplitude cyclic stretch, disturbed flow [Reviewed in (42)].
Several signaling pathways mediating beneficial effects of
OxPLs have been described in endothelium (14). Anti-
inflammatory roles of OxPAPC have been summarized in our
recent reviews (10, 42). This review will solely focus on
OxPAPC-mediated endothelial barrier function.
MECHANISMS OF OxPAPC-INDUCED
ENHANCEMENT OF ENDOTHELIAL
BARRIER FUNCTION

Endothelial barrier is a dynamic structure that constantly
undergoes remodeling in response to mechanical forces and
various agonists that positively or negatively regulate barrier
function. Altered expression of cell junction proteins, the
assembly-disassembly dynamics of adherens junction (AJ -
VE-cadherin, a, b, g, and p120-catenins, nectin) and tight
junction (TJ - claudin-5, ZO-1, 2, 3, afadin) protein complexes
and reorganization of endothelial cytoskeleton in response to
chemical and mechanical stimulation are the major determinants
of endothelial barrier integrity. While barrier-disruptive insults
(edemagenic agonists or high magnitude cyclic stretch) stimulate
FIGURE 1 | Dual role of phospholipids in endothelial function. Full-length oxidized products of phospholipids and some groups of PGs enhance endothelial barrier
integrity. In turn, truncated OxPLs and some products of arachidonic acid such as thromboxane and leukotrienes disrupt endothelial barrier.
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stress fiber formation, actomyosin contraction, disassembly of
cell junction complexes leading to cell retraction and formation
of inter-cellular gaps, barrier-enhancing agonists (OxPAPC,
hepatocyte growth factor, sphingosine 1-phosphate) or
physiologic mechanical forces (laminar flow, low magnitude
cyclic stretch) stimulate enhancement of cortical cytoskeleton,
assembly and cooperation of AJ and TJ protein complexes (43,
44). Remodeling of cell junctions and actomyosin cytoskeleton is
precisely controlled by signaling protein kinases and
small GTPases.

Receptor-Mediated Pathways
A number of receptor-associated signaling pathways mediating
OxPAPC actions on lung endothelium has been described. The
earlier studies discovered important anti-inflammatory effects of
OxPAPC via interference with toll-like receptors (TLRs)
inflammatory signaling cascade activated by LPS (45, 46).
Analysis of OxPAPC-mediated endothelial barrier enhancing
mechanisms revealed Akt-dependent transactivation of
sphingosine 1-phosphate receptor 1 (S1P1) via threonine
phosphorylation in caveolin-enriched microdomain that
stimulated Rac1- and Rap1-dependent pathways of peripheral
F-actin and cell junction enhancement (47). The role of caveolin
and S1P1 in mediating the protective effects of OxPAPC was
further verified in vivo in VILI-induced lung injury where
siRNA-mediated knockdown of caveolin or S1P1 abolished the
OxPAPC-mediated protection of vascular leak (47). Further
analysis elaborated that OxPAPC-induced activation of S1P1 is
dependent on the binding of OxPAPC to HTJ-1, a co-factor of
cell surface receptor GRP78 (48). siRNA-mediated depletion of
HTJ-1 in EC abolished OxPAPC-induced cortical actin
formation and knockdown of mouse HTJ-1 homologue
suppressed the protective effects of OxPAPC against IL-6 or
VILI-induced lung vascular leak (48). Prostaglandin E receptor-4
(EP4) also appears to be involved in endothelial barrier-
enhancing responses of OxPAPC as recent study demonstrated
that EP4 mediates sustained phase of OxPAPC-induced barrier
protective effects (49). A selective role of EP4 in mediating
OxPAPC effects was established by the findings that OxPAPC
specifically increased EP4 mRNA expression levels in EC and
inhibitors targeting EP4 but no other receptors such as EP1-3,
PGI2, PGF2, PGD2, and thromboxane had no inhibitory effects
on OxPAPC-induced enhancement of EC barrier (49). The role
of EP4 in mediating the protective effects of OxPAPC was further
established in murine model of ALI as OxPAPC-administered
endothelial specific EP4 knockout mice failed to recover from
LPS-induced vascular leak and inflammation (49). We recently
reported that lipoxin A4 formyl peptide receptor-2(FPR2/ALX)
is involved in OxPAPC-induced protection against endothelial
permeability caused by TNF-a (50). The endogenous depletion
of only FPR2 but no other FPR subtypes inhibited OxPAPC-
mediated attenuation of TNF-a-induced increase in endothelial
permeability and inflammation suggested the specific
involvement of FPR2. Moreover, FPR2 specific inhibitor and
FPR2 knockout mice showed reduced inhibition of LPS-induced
ALI by OxPAPC further confirmed an essential role of FPR2 in
Frontiers in Endocrinology | www.frontiersin.org 4
mediating protective effects of OxPAPC (50). Interestingly, FPR2
depletion did not have any inhibitory effects on OxPAPC-
induced protection against thrombin-caused EC permeability,
suggesting that FPR2 dependent protective pathways also rely on
the nature of agonist (e.g., acute vs. chronic effects) that requires
further investigations.

Rho GTPases-Mediated
Cytoskeletal Remodeling
Ras superfamily of small GTPases specifically Rho GTPases
(RhoA, Rac1 and Cdc42) and Rap1 are critical regulators of
endothelial barrier in physiological and pathological conditions
(51). These GTPases control endothelial permeability by cycling
between GTP-bound active and GDP-bound inactive states
thereby driving the reorganization of EC junction-associated
actin cytoskeleton (52, 53). Among the GTPases, RhoA
mediates endothelial barrier disruption caused by various
agents while Rac, Cdc42 and Rap1 are involved in maintaining
and protecting EC barrier (44, 51, 52, 54). Our initial study
showed that cytoskeletal remodeling driven by the combined
activation of Rac1 and Cdc42 mediates OxPAPC-induced
upregulation of endothelial barrier function (30). The follow-up
study revealed that Rac/Cdc42-specific guanine nucleotide
exchange factors (GEFs) Tiam1 and betaPIX are involved in
Rac-mediated endothelial barrier protective effects of OxPAPC
(55). The mechanistic analysis demonstrated that a novel
interaction between focal adhesion (FA) and AJ complexes
facilitated by the association of paxillin and beta-catenin is
essential for Rac/Cdc42-dependent barrier protective responses
of OxPAPC (56). Furthermore, Rac effector p21-activated kinase
(PAK1)-mediated phosphorylation of paxillin serves as a
positive-feedback regulatory pathway contributing to sustained
enhancement of endothelial barrier by OxPAPC (57). A further
evidence of crucial role of Rac signaling in mediating barrier
protective effects of OxPAPC was substantiated by our recent
study where knockdown of Rac1/Cdc42 effector IQGAP1
inhibited OxPAPC-induced enhancement of endothelial barrier
by suppressing membrane accumulation of AJ proteins VE-
cadherin and p120-catenin, and cortactin (58). Consistent with
the role of RhoA in endothelial barrier disruption, Rac-mediated
barrier protective effects of OxPAPC were achieved by the
activation of p190RhoGAP, a negative regulator of RhoA (59).
Briefly,OxPAPC-stimulatedECs showed tyrosine phosphorylation
and peripheral translocation of p190RhoGAP leading to its
association with AJ protein p120-catenin. More importantly,
knockdown of p190RhoGAP abolished the protective effects of
OxPAPC against the vascular leak induced by pathological cyclic
stretch in vitro and ventilator-induced lung injury (VILI) in vivo
(59). Later studies have shown that interaction of p120-cateninwith
p190RhoGAP was essential for the recruitment of the latter at cell
periphery to inhibit Rho signaling (60). This notionwas established
from the findings that transient expression of p120-cateninmutant
lacking 820-843 amino acids residues at C-terminal domain
inhibited membrane translocation of p190RhoGAP causing an
attenuation of OxPAPC-induced endothelial barrier
enhancement resulted from the sustained activation of Rho
November 2021 | Volume 12 | Article 794437

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Karki and Birukov Oxidized Phospholipids-Mediated Regulation of Endothelial Barrier
signaling and suppression of Rac1 (60). In addition to Rac1/Cdc42,
Rap1 is also involved in mediating the barrier protective signals of
OxPAPC.Membrane accumulationand increased associationofAJ
proteinsVE-cadherin, p120-catenin, andb-catenin andTJ proteins
ZO-1,Occludin, and JAM-Awere dependent onOxPAPC-induced
Rap1 activation (61). An important role of Rap1 in OxPAPC-
induced beneficial effects on vascular endothelium was further
substantiated by the findings that Rap1 knockdown suppresses
OxPAPC-derived enhancement of EC barrier and represses
OxPAPC-induced protection against VILI (61). Our study also
demonstrated an essential role of Afadin during Rap1-mediated
barrier protective responses of OxPAPC (62). In this regard,
OxPAPC treatment of ECs caused Rap1-dependent accumulation
ofAfadin at cell periphery and its increased associationwithAJ and
TJ proteins- p120-catenin and ZO-1, respectively (62).
Consistently, siRNA-mediated knockdown of Afadin or Rap1
binding-defective mutant of Afadin inhibited OxPAPC-induced
enhancement of endothelial barrier andAfadin-depletedmicewere
no longer protected byOxPAPC against VILI-caused vascular leak.
Lastly, one of our studies have suggested an existence of Rho
GTPase-independent interaction of junction proteins that play a
role in OxPAPC-induced positive regulation of endothelial barrier
function. In this line, mechanosensitive adaptor protein vinculin
seems to be an important regulator of OxPAPC-induced
endothelial barrier protection via its interaction with AJ protein
VE-cadherin (63). The direct activation of Rac1 and Rap1 by
OxPAPC leading to enhanced assembly of endothelial cell
junction complexes and cytoskeletal remodeling leading to
strengthening of endothelial barrier are the best known two
critical mechanisms of OxPAPC-induced positive regulation of
endothelial barrier (Figure 2).
Frontiers in Endocrinology | www.frontiersin.org 5
Intracellular Signaling Pathways
A role of intracellular signaling pathways involving various
kinases has also been described to mediate the barrier
protective signals of OxPAPC. OxPAPC-stimulated ECs
showed time-dependent activation of protein kinase A (PKA),
protein kinase C (PKC), Raf-MEKMAP kinase cascade, and JNK
MAP kinase (64). Furthermore, OxPAPC treatment also induced
a transient increase in global tyrosine phosphorylation and Src
kinase-dependent phosphorylation of FA proteins- paxillin and
FA kinase in EC (64). By employing pathways-specific
pharmacological inhibitors, our study showed that PKA, PKC,
Src family kinases, and tyrosine kinases play essential roles
during OxPAPC-induced enhancement of endothelial barrier
(14). The same study ruled out the involvement of Rho kinase,
PI3 kinase, and p38 MAP kinases in mediating Rac-mediated
barrier enhancing responses of OxPAPC. OxPAPC has been
shown to induce the expression of anti-inflammatory proteins
such as heme oxygenase-1 via activation of PKA, PKC, and MAP
kinase pathways (65), and via Nrf2 activation (66) but its impact
on endothelial barrier function needs to be investigated. An
elevation of cAMP levels via PKA-mediated or PKA-
independent and Rap-mediated pathways induced by OxPAPC
are also suggested to play roles in barrier protective effects of
OxPAPC (14). Figure 2 demonstrates a network of signaling
pathways activated by OxPAPC and involved in EC barrier
regulation. Of note, EC barrier protective effects of OxPAPC
seems to vary among different EC types. In general, EC of
microvascular origin tend to be more sensitive towards
OxPAPC effects with more pronounced protective effects
against agonist-induced permeability (67). It will be interesting
to study if a variation of OxPAPC effects exists in the
FIGURE 2 | Mechanisms of OxPLs-mediated regulation of endothelial barrier. OxPAPC-induced activation of S1P1 in Akt or GRP78-dependent manner leads to an
increased interaction between various AJ, TJ, and FA proteins resulting in enhancement of endothelial barrier integrity. Similarly, OxPAPC-mediated activation of
Rac1 and Rap1 induces cytoskeletal reorganization favoring stabilized junctional assembly. On the other hand, truncated OxPLs-stimulated EC produce ROS that
activates Src which phosphorylates tyrosine residues in VE-cadherin causing its internalization, degradation, and ultimately leading to disrupted endothelial barrier.
Src also activates VEGFR2 that induces endothelial permeability via enhanced actomyosin contractility caused by increased myosin light chain phosphorylation.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Karki and Birukov Oxidized Phospholipids-Mediated Regulation of Endothelial Barrier
endothelium from different vascular beds such as lung, heart,
and brain.
MECHANISMS OF OxPLs-INDUCED
DISRUPTION OF ENDOTHELIAL BARRIER

As discussed above, truncated products of phospholipids
oxidation possess endothelial barrier disruptive properties.
Moreover, even OxPAPC at higher concentration (≥ 50 µg/ml)
causes barrier disruption as opposed to its barrier enhancing
function at lower concentrations (5-20 µg/ml) (11, 68). These
contrasting biological effects of OxPLs on lung endothelium are
largely due to the different signaling pathways activated by them.
This notion was best exemplified by one of our studies where the
same protein vinculin associated with two distinct proteins- with
FA protein talin during thrombin-induced barrier disruption
and with VE-cadherin during OxPAPC-induced barrier
enhancement (63). The selective activation of various signaling
pathways depending on the dose and structural variations of
OxPLs appears to be the primary determinants of their
biological function.

Role of Vascular Endothelial Growth
Factor Receptor 2 (VEGFR2)
The binding of VEGFA to VEGFR2 results in the
phosphorylation of the latter leading to the signaling cascades
that regulate endothelial survival, proliferation, and migration
but VEGFR2 activation is also linked to increased endothelial
permeability (69, 70). Interestingly, OxPLs are shown to activate
VEGFR2 in EC in Src-dependent manner (71). A role of
VEGFR2 in OxPLs-induced endothelial barrier disruption was
revealed by our study where only higher concentrations of
OxPAPC increased endothelial permeability via VEGFR2
activation (72). Mechanistically, higher OxPAPC dose-induced
endothelial barrier disruption was accompanied by Rho
activation-led increased actomyosin contractility evidenced by
increased phosphorylation of myosin phosphatase (MYPT1) and
myosin light chain (MLC) that were attenuated by siRNA-
mediated knockdown of VEGFR2 (72).

Reactive Oxygen Species (ROS)-Mediated
VE-Cadherin Phosphorylation
VE-cadherin is the major adhesive protein present in human EC
that is critically essential for maintenance of endothelial barrier
integrity (73). Tyrosine phosphorylation of this AJ protein leads
to its disassociation from the complex with catenin proteins
resulting in increased endothelial permeability (74). ECs treated
with higher doses of OxPAPC showed the increased tyrosine
phosphorylation of VE-cadherin at tyrosine-658 and tyrosine-
731 that was absent in cells treated with low, barrier enhancing
doses of OxPAPC (68). The endothelial barrier disruption
induced by higher doses of OxPAPC was associated with
increased protein tyrosine phosphorylation, activation of Src
with phosphorylation at tyrosine 418 and dissociation of VE-
cadherin complex with p120- and b-catenin. Furthermore, only
Frontiers in Endocrinology | www.frontiersin.org 6
high doses of OxPAPC exceeding 50 µg/ml exposure to EC
resulted in elevation of ROS levels and anti-oxidant N-acetyl
cysteine rescued endothelial barrier disruption caused by
OxPAPC (68). An identical pathway of ROS production, Src
activation, and VE-cadherin phosphorylation at tyrosine 658 and
731 was observed in ECs treated with PGPC, a truncated OxPLs
product (11). Likewise, particulate matter-induced endothelial
barrier disruption that is associated with increased production of
truncated OxPLs involves similar mechanisms of increased
oxidative stress-mediated tyrosine phosphorylation of VE-
cadherin (75). Thus, ROS-mediated activation of Src followed
by tyrosine phosphorylation of VE-cadherin leading to its
internalization and degradation appears to be a unifying
mechanism of OxPLs-induced endothelial barrier disruption.
OxPLs IN ENDOTHELIAL DYSFUNCTION-
DERIVED LUNG DISEASES

It is now widely accepted that OxPLs play dual roles on
regulating the function of vascular endothelium and thus they
can be either potentially developed into therapeutics or utilized
as targets of therapeutic interventions for various cardiopulmonary
diseases that are developed secondary to endothelial dysfunction.
In particular, with its proven endothelial barrier-protective and
anti-inflammatory activities against a broad spectrum of
injurious insults such as bacterial pathogens (76), thrombin
(30), LPS (45, 77, 78), and mechanical forces represented by
VILI or cyclic stretch (67), OxPAPC holds a strong therapeutic
potential against these agonists-induced ALI, ARDS and
sepsis. The central role of Rac/Rap1-mediated cytoskeletal
reorganization in OxPAPC-induced upregulation of endothelial
barrier function makes this molecule attractive therapeutic
candidate since the activation of these GTPases act as a
common platform for conveying barrier enhancing signals
originating from numerous barrier protective agents. The
involvement of a number of receptors and kinases in
mediating the beneficial actions of OxPAPC on the lung
endothelium further provides the opportunity to consider these
multiple molecules and associated pathways for the therapeutics.

Some OxPLs products are detected at the site of tissue injury,
inflammation and their deleterious effects on vascular
endothelium has been well documented (2, 4). More recent
studies suggest that these groups of OxPLs can also act as
secondary injurious insults and exacerbate endothelial
dysfunction. For instance, EC or mice lungs exposed to
particulate matter from polluted air resulted in the generation
of truncated OxPLs species such as POVPC, PGPC, and lyso-PC
that caused acute endothelial barrier disruption (75).
Furthermore, when combined with suboptimal dose of
particulate matter that does not cause endothelial barrier
dysfunction on its own, OxPLs augmented endothelial
permeability, indicating their additive role in exacerbation of
endothelial function in pre-existing disease conditions. This
phenomenon was further evident with the presence of higher
basal level of truncated OxPLs in aged mice and corresponding
November 2021 | Volume 12 | Article 794437
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enhanced increase and delayed clearance of these phospholipids
in LPS-treated aged mice compared to their younger
counterparts (79). Aged mice were more susceptible to TNF-a-
induced lung injury and non-toxic dose of POVPC when
combined with TNF-a caused similar levels of lung
inflammation. These observations suggest that generation of
truncated OxPLs and their additive harmful effects with
inflammatory agents further exacerbate lung injury/
inflammation in aged population who may already have
impaired anti-oxidant system. The definite role of truncated
OxPLs as secondary injurious agonist was established by the
selective removal of these lipids with platelet-activating factor
acetyl hydrolase 2 (PAFAH2) which specifically hydrolyzes
truncated OxPLs. The overexpression of PAFAH2 in EC
rescued particulate matter- or inflammatory cytokines-induced
endothelial barrier disruption, while pharmacological inhibition
of PAFAH2 worsened lung injury in TNF-a-challenged mice
(75, 79). A few other studies have also reported the presence of
higher levels of truncated OxPLs in aged mice (80, 81), and
increased production of fragmented phosphatidylcholine in
human blood plasma as well as higher levels of ester-linked
but lower level of ether-linked phosphatidylcholine in aged
human individuals (82, 83). The changes in the levels of lipid
profile of ester- vs ether-linked with aging has been attributed as
a potential risk factor for the development of various diseases in
elderly population. Specifically, ether-linked phospholipids are
known to possess anti-oxidant activity and decreased serum
levels of these PLs is linked to type 2 diabetes and
hypertension (84, 85). Likewise, the oxidation of mitochondrial
phospholipid cardiolipin has been shown to contribute to EC
necrotic death and increased permeability (86), and hyperoxic
lung injury (87). The profile of cardiolipin also undergoes
changes with ageing as evidenced by the decrease of total
cardiolipin content in mitochondria accompanied by an
increase in oxidized forms in heart and brain from aged rats
(88, 89). All of these findings suggest that altered lipid profile
caused by excessive accumulation of bioactive truncated OxPLs
due to exaggerated oxidative stress during aging may play a
critical role in propagating associated adverse pathologies. On a
positive note, targeting such lipid program switch to selectively
inhibit the production or remove pre-formed harmful OxPLs
products may provide a potential therapeutic avenue.
FUTURE DIRECTIONS OF OxPL
RESEARCH AND CLINICAL
APPLICATIONS

Although OxPLs oxidized in vitro are increasingly recognized for
their anti-inflammatory and lung barrier-protecting activities in
vitro and in vivo, they have a number of serious limitations
precluding their therapeutic use. PAPC oxidation in vitro yields a
complex, structurally diverse mixture of OxPLs. Such natural
OxPLs are ineffective for in vivo therapy due to their various
shortcomings. First, natural OxPLs with either barrier-protective
Frontiers in Endocrinology | www.frontiersin.org 7
or barrier-disruptive properties are rapidly degraded by
phospholipases A that are very abundant in blood plasma,
tissues, and cells. Second, natural OxPL mixtures contain a
large proportion of oxidatively fragmented molecular species
which demonstrate low anti-inflammatory activity in
combination with increased toxicity and unwanted effects such
as disruption of lung endothelial barrier. Therefore, engineering
and synthesis of novel class of phospholipase-resistant
phospholipids that have enhanced stability and better
biological activities could lead to the discovery of effective
drugs that preserve and protect endothelial function and
ultimately can be used in the prevention and treatment of
endothelial dysfunction-driven diseases. To overcome these
limitations, we designed, synthesized, and experimentally
tested biological properties of a phospholipase resistant
phospholipid incorporating a prostaglandin I2 stable analog
iloprost (ILO) as a prototype synthetic phospholipid
compound with barrier-protective and anti-inflammatory
properties (90). Such incorporation of ILO into synthetic
phospholipid backbone led to more prolonged EC barrier
enhancement and more pronounced anti-inflammatory effect,
credited to its ability to cause a prolonged activation of Rap1 and
Rac. In our continued efforts to synthesize such optimal
phospholipids derivatives, recently an alkyl-amide OxPLs was
synthesized that retained endothelial barrier enhancement and
anti-inflammatory effects (91). As demonstrated by these
examples, chemically modified phospholipase-resistant
phospholipids may exhibit simultaneously two types of
activities. First, these compounds inhibit signaling induced by
TLRs (92). Second, these synthetic compounds enhance vascular
endothelial barrier, reverse action of edemagenic mediators and
prevent formation of lung edema in vivo (90, 91). Such poly-
pharmacological mode of action can make these compounds
especially effective for treatment of severe infections leading to
the development of lung edema.

The generation of chemically diverse species of OxPLs and
corresponding contrasting biological effects requires precise
structure-function analysis of these lipid mediators to define
their accurate pathophysiological roles. The advancements in
liquid chromatography-mass spectrometry (LC-MS) techniques
along with the use of sophisticated bioinformatics analysis has
now made possible to detect minor modifications in OxPLs
structure and its possible impact on biological activities. These
advanced analysis and detection techniques combined with
omics analysis approaches including lipidomics, metabolomic,
transcriptomic, and proteomics will reveal the signaling
cascades associated with OxPLs that will assist in identifying
potential therapeutic targets for OxPLs-derived diseases.
Furthermore, oxidative phospholipidomics analysis may serve
as a valuable tool for identification of biomarkers as suggested
by a recent study characterizing oxygenated cardiolipins
and phosphatidylethanolamines as predictive biomarkers of
apoptotic and ferroptotic cell death, respectively (93). Future
projects also should consider exploring the role of OxPLs in the
pathogenesis of other diseases besides its established role in
cardiopulmonary disorders since recent findings suggest their
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involvement in other diseases including aging (79) and traumatic
brain injury (94). The translation of potent beneficial effects of
OxPAPC into clinics is the most exciting challenge ahead and
other additional molecular targets such as receptors and Rho
GTPases that mediate OxPAPC actions on lung endothelium
could also be considered for therapeutic targets. Moreover,
enzymes such as PAFAH2 represent another category of
potential therapeutic candidates to prevent excessive
accumulation of deleterious OxPL products.
CONCLUSION

It is now widely appreciated that the complexity of contrasting
biological effects of OxPLs largely relies on their structural
heterogeneity with full-length oxidized products exerting
beneficial effects and truncated species acting as pathogenic factor
in various cardiopulmonary disorders. The studies so far have
established that OxPAPC itself or signaling intermediates that
mediate its functions on endothelium, barrier-disruptive OxPLs
targeting enzymes such as PAFAH2, and structure-based synthetic
analogues of barrier-protective OxPLs could be developed into
therapeutics against acute endothelial dysfunction associated with
Frontiers in Endocrinology | www.frontiersin.org 8
injury, infection, or sepsis. The utilization of LC-MS advanced
detection techniques in combination with next generation omics
analytical tools has enabled to precisely monitor the lipid
modifications and possibly use these modifications as biomarkers
for various pathologies. Thus, the dual biological nature of OxPLs
presents the opportunity to consider both “good” and “bad”
oxidized products of circulating or membrane phospholipids for
therapeutic interventions.
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