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Abstract

Background: The risk reclassification table assesses clinical performance of a biomarker in terms of movements across
relevant risk categories. The Reclassification- Calibration (RC) statistic has been developed for binary outcomes, but its
performance for survival data with moderate to high censoring rates has not been evaluated.

Methods: We develop an RC statistic for survival data with higher censoring rates using the Greenwood-Nam-D’Agostino
approach (RC-GND). We examine its performance characteristics and compare its performance and utility to the Hosmer-
Lemeshow goodness-of-fit test under various assumptions about the censoring rate and the shape of the
baseline hazard.

Results: The RC-GND test was robust to high (up to 50%) censoring rates and did not exceed the targeted
5% Type I error in a variety of simulated scenarios. It achieved 80% power to detect better calibration with
respect to clinical categories when an important predictor with a hazard ratio of at least 1.7 to 2.2 was
added to the model, while the Hosmer-Lemeshow goodness-of-fit (gof) test had power of 5% in this
scenario.

Conclusions: The RC-GND test should be used to test the improvement in calibration with respect to clinically relevant
risk strata. When an important predictor is omitted, the Hosmer-Lemeshow goodness-of-fit test is usually not significant,
while the RC-GND test is sensitive to such an omission.
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Background
Risk prediction is viewed as an important part of clinical
decision making. For cardiovascular disease and breast
cancer, the development of a new risk prediction model
has led to changes in practice guidelines. For example, the
American College of Cardiology/American Heart Associ-
ation (ACC/AHA) 10-year cardiovascular disease (CVD)
risk model developed from pooled cohorts is currently
used in cardiovascular medicine [1], and the Gail model of
5-year risk of developing breast cancer is an application of
risk prediction models in cancer [2].
Risk prediction model development typically follows the

following steps [3]. First, biomarkers for the new model are
selected usually based on significance of their regression

coefficients (from Wald or likelihood ratio tests). Once
association is established, model performance is assessed
usually in terms of its discrimination (measured by area
under the receiver operating characteristic curve (AUC)
and net reclassification improvement (NRI) among others)
and calibration (i.e., Hosmer-Lemeshow goodness-of-fit
test, calibration slope, etc.).
Given that absolute risk often defines the treatment

prescribed, it is very important to ensure that the model
is well calibrated (or that predicted risk is close to its
true value). A model can perform well based on tests of
association or measures of discrimination but have poor
calibration characteristics. Van Calster et al. introduced
a four-level hierarchy of risk calibration [4]: mean (or
calibration in the large, i.e., the average of predicted risk
is the same as observed average risk), weak (or calibra-
tion intercept and slope equal zero and one respectively
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[5, 6]), moderate (or calibration in subgroups of risk
assessed with calibration plot, Hosmer-Lemeshow test
[7]), and strong (or calibration in various covariate
patterns). When the true biological model is known (in
terms of inclusion of all important predictor variables in
correct functional form), then maximum likelihood esti-
mation of model parameters will produce an asymptotic-
ally strongly calibrated model. In practice, the true
model is never known and we can only hope that the
given model is close to the true model, produces reason-
able approximation of risk estimates, and performs well
in important subgroups. When the true model is
unknown, maximum likelihood estimation guarantees
only calibration in the large. It does not guarantee for
example a good discrimination and calibration in
subgroups as noted by Zhou et al. [8].
Calibration in subgroups defined by risk strata is im-

portant for assessing the impact of a new predictor on
medical decision-making process. Risk stratification is
routinely used in clinical practice. Since in most clinical
areas, physicians have a choice of relatively few treat-
ment options, risk is often stratified and different treat-
ments are prescribed for different risk strata. For
example, the most recent ACC/AHA cholesterol guide-
lines recommend that treatment be guided by overall
cardiovascular risk. Specifically, in primary prevention,
for those aged 40–75 years, 10-year risk should be
assessed, and if it is above 7.5%, then consideration of
moderate to high intensity statin therapy is recom-
mended along with patient discussion [1]. The Ameri-
can Society of Clinical Oncology recommends
consideration of tamoxifen/raloxifene/exemestane ther-
apy as an option to reduce the risk of invasive breast
cancer if 5-year breast cancer risk is at least 1.66% in
premenopausal women aged 35 years and above [9].
The National Osteoporosis Foundation chose a 10-year
hip fracture probability of 3% as an osteoporosis inter-
vention treatment threshold [10]. These examples show
that risk stratification is an important component of
the medical decision-making process.

When risk stratification is of interest, a relevant question
is how adding a given biomarker to a risk model affects
clinical decision making [11]. Does it result in more (or
less) intensive treatment assignment? A biomarker result-
ing in many very small adjustments to absolute risk might
lead to a significant test of association but in practice may
not affect ranges of clinical interest and therefore will have
very small effect on clinical decision making. On the other
hand, if many individuals change risk strata, this may
translate into differences in monitoring or treatment. As
we have mentioned earlier, maximum likelihood methods
do not guarantee good calibration in the subgroups includ-
ing those defined by risk strata. The risk reclassification
table [12] is one of the tools that can be used to assess clin-
ical performance in terms of movements across relevant
risk strata. Besides assessing discrimination, it can be used
to assess calibration within subgroups defined by these risk
strata. While it was originally developed for binary out-
come data, it has been used in low-censoring survival data
[13]. The performance of the reclassification calibration
(RC) statistic for moderate to high censoring rates has not
been evaluated. Below, we provide an adaptation of the
statistic to the survival setting and explore its properties.
While the extent of change in risk strata is important

clinically, whether these changes lead to better model
calibration must be considered. A reclassification table is
an informative way to display these data. The risk reclas-
sification table was introduced by Cook et al. [12] and is
defined in the following section.

Methods
Definition of the risk reclassification table
In Table 1, we use the reclassification table generated from
the Women’s Health Study (WHS) data to compare models
with and without current smoking (left) and the unin-
formative biomarker (right) predicting hard CVD events.
The WHS is a large-scale nationwide 10-year cohort study
of women, which commenced in 1992 [14]. Data include
27,464 women with a median age at baseline of 52 years
with an age range of 38 to 89 years. The median follow-up

Table 1 Reclassification table for informative and uninformative predictors in Women’s Health Study (N = 27,464)

Risk category 0–5% 5–7.5% 7.5%+ Risk category 0–5% 5–7.5% 7.5%+

0–5% ev 289 21 27 0–5% ev 328 9 0

ne 23,843 346 217 ne 24,313 93 0

5–7.5% ev 26 48 12 5–7.5% ev 7 73 6

ne 471 688 130 ne 81 1162 46

7.5%+ ev 0 18 145 7.5%+ ev 0 3 160

ne 0 263 920 ne 0 47 1136

Left: rows—categories defined by the reduced model (controlling for age, total cholesterol, HDL cholesterol, systolic blood pressure and diabetes) and columns—categories
defined by the reduced model + current smoking
Right: rows—categories defined by the reduced model and columns—categories defined by the reduced model + uninformative predictor
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is 10.2 years up through March 2004. A total of 600
women developed hard CVD by 10 years of follow-up, and
36.6% of women were censored prior to year 10, most of
the censoring occurring after year 8 (with only 1.4%
censored prior to year 8). The 2013 ACC/AHA guidelines
recommend that “initiation of moderate-intensity statin
therapy be considered for patients with predicted 10-year
‘hard’ ASCVD risk of 5.0% to < 7.5%” [1]. We used these
thresholds to define risk prediction categories in RC tables
presented in Table 1. The left column and the top row in
each table define the risk categories produced by the
reduced and by the full model correspondingly.
On the diagonal is the number of people (non-events and

events) who do not change categories. Based on the left
table, inclusion of current smoking resulted in transition of
21 and 346 non-events from the lowest to the middle risk
category, while 23,843 and 289 events remained in the
lowest risk category. Addition of the non-informative
biomarker resulted in the reclassification table with very
few observations in the off-diagonal cells.
Risk categories are sometimes used in clinical decision

making to assign treatment as is the case in cardiovascular
disease and breast cancer. When choosing between two
risk prediction models, we then should consider groups of
patients who will be affected by the switch to a new risk
prediction model and evaluate whether the proposed re-
classification is beneficial. We can ask the question
whether the new risk categorization is closer to the actual
risk, and we can use the RC test to test this hypothesis.
While reclassifications can improve the fit, movement due
to chance must also be accounted for. To evaluate the
quality of reclassification, a reclassification calibration stat-
istic was introduced [12, 13, 15]. It evaluates similarity be-
tween observed and expected counts in each cell of the
reclassification table. The test of the RC statistic in logistic
regression and in the survival setting with low censoring
rates has the following form [15]:

χ2RC ¼
XG

g¼1

Og−ngpg
h i2

ngpg 1−pg
� � ð1Þ

where Og is observed number of events in the gth cell,
pg is the average of predicted probabilities for the model

in question, ng is the number of observations in the gth

cell, and G is the number of cells in the RC table. The test
is similar to the Hosmer-Lemeshow test using categories
defined by the cross-tabulation of risk strata from the two
models. Its performance characteristics have been de-
scribed [13], and the power and Type I error found to be
appropriate in this setting. In this paper, we developed a
robust test of RC statistic in survival setting.
The reclassification table by construction compares

the performance of two models; therefore, there are two
ways to calculate the expected counts of events in each
cell in (1). One is based on predicted probabilities from
the full, and the other is based on the reduced model’s
predicted probabilities. Technically, the two RC tests can
result in four possible testing combinations, as illus-
trated in Table 2.
Typically, when a new important predictor is added to

a model, or a fuller model is used, the RC test for the
old model indicates significant deviation from the ob-
served rates, while the new model matches the observed
rates more closely, as in Table 2 (cell B). More rarely,
when the new model is significant (Table 2 (cells A and
C)), then the new model is miscalibrated or uses an in-
correct functional form. If both models show significant
deviations (Table 2 (cell A)), both are miscalibrated. If
the models are not nested, it is possible that each model
contains unique predictors that are important to predic-
tion. If there is little reclassification, both RC statistics
may be non-significant. In this case, either model could
be used or other criteria, such as model simplicity or
cost, should be used to choose between the models. In
practice, we observe mostly the situation described by
cells B and D in Table 2.

Risk reclassification and calibration for survival data
Notation
For all N observations in the dataset, we assumed that the
following data are collected: covariates measured at base-
line (x1,…,xp), event occurrence, and T = time of event or
administrative censoring (i.e., all observations who did not
have an event by the year 10 are censored at T = 10). We
assume that event times can be right censored and made
the usual assumption of independent censoring. We
denote δ as an event indicator (δ = 1, if the event was
observed; δ = 0, if censored) and we observe T = time of
event or censoring time, whichever occurs first.

Table 2 The implications of RC testing

RC test based on predicted probabilities from the new model

Statistically significant Not significant

RC test based on predicted
probabilities from the old
model

Statistically significant A. Both new and old models are miscalibrated
or use incorrect functional form

B. New model provides improved
calibration across risk classifications

Not significant C. New model is miscalibrated or uses incorrect
functional form. Old model is preferable.

D. Reclassification is not choosing
between models.

Comparison of RC test with expected counts calculated from the old model with RC test with expected counts calculated from the new model
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In order to apply this test to studies with long follow-up
and censored observations, we need to extend the test (1)
to the survival setting. Cook and Ridker [15] applied the
Nam-D’Agostino test [16] to the reclassification table in
the survival setting with low censoring rate and suggested
estimating the observed proportion Og/ng using the
non-parametric Kaplan-Meier estimator. Expected prob-
abilities in the original formula (1) are replaced with
model-based predicted probabilities (i.e. based on Cox
model) calculated at a fixed time t and averaged for each

cell (denoted as pðtÞg ) as illustrated in Table 1. In order to

test improvement of classification, expected probabilities
in each cell are estimated as an average of predicted prob-
abilities from the new model.

χ2RCðtÞ ¼
XG

g¼1

½KMg−pðtÞg �
2

pðtÞgð1−pðtÞgÞ=ng
∼H0 χ2G−1 ð2Þ

where KMg is the observed probability of an event in
group g estimated using Kaplan-Meier non-parametric es-
timate. In Fig. 1, we present results using simulated data
to compare the size of this version of the RC test for sur-
vival with low and high censoring rates. In the absence of
censoring, the RC test performs well at the targeted 5%
significance level, but then quickly deteriorates and be-
comes too conservative for higher censoring rates. In this
paper, we investigate ways of adapting the original RC test
to higher censoring rates in the survival setting, discuss
their performance under a variety of scenarios, and com-
pare its performance to the Hosmer-Lemeshow test.
To adapt (2) to the survival setting with high censoring

rates, we considered two options: the Grønnesby-Borgan
(GB) [17, 18] and the Greenwood-Nam-D’Agostino (GND)
[19] tests. These two tests extend Hosmer-Lemeshow style
goodness-of-fit tests for survival models and both perform
well in a variety of settings [19]. Differences in underlying
principles behind the two tests lead to different advantages
and different limits of applicability.

Greenwood-Nam-D’Agostino test
Nam and D’Agostino formulated a test which is also
based on the difference between observed and expected
number of events, but uses scaled up versions of the
observed counts [16]. Their test uses the Kaplan-Meier
estimate of the number of events that would occur with-
out censoring. Their test is valid for low-censoring sce-
narios and has been extended for higher censoring rates
in [19]. The new version of this test is called
Greenwood-Nam-D’Agostino (GND) test, because it uses
the Greenwood variance formula [20] in the denomin-
ator. The GND test performs well for higher censoring
rates and is defined as

χ2GNDðtÞ ¼
XG

g¼1

½KMgðtÞ−pðtÞg �
2

VarðKMgðtÞÞ ∼H0 χ2G−1 ð3Þ

Grønnesby-Borgan test
Using martingale theory, Grønnesby and Borgan devel-
oped a test of fit for Cox proportional hazards regression
models [18]. It is based on the difference between the
observed and expected number of events in deciles, but
it can be applied to any grouping. Previously [19], we
showed that the GND test has comparable or sometimes
superior performance to the Grønnesby and Borgan
(GB) test. In this paper, we applied the GB and the GND
tests to the reclassification table, denoting them RC-GB
and RC-GND. We concluded that the GND test is
superior; therefore, in this paper, we focused on the
RC-GND test. Results related to the performance of the
RC-GB test are presented in Additional file 1: Figure
S1, and Additional file 2: Figure S2.
The goal of this paper is to extend the RC statistic to

the survival setting with higher censoring rates, compare
its performance to the Hosmer-Lemeshow goodness-of-
fit, and relate it to existing measures of performance of
risk prediction models. In the following sections, we
compared performance of the two tests in simulations,

Fig. 1 Size of the original RC test (1) for low and high censoring rates. An uninformative new marker is added to a baseline model. Size is calculated
as a fraction of significant RC statistics
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discuss differences between the reclassification table and
HL type approaches, and apply our findings to the prac-
tical example.

Simulation setup
Samples of size N = 1000, 5000, and 10,000 were gener-
ated 1000 times. Event times were generated from the
Weibull distribution with the shape parameter α set to 3.0
for models with increasing baseline hazard and 0.3 for
models with the decreasing baseline hazard. The scale par-
ameter of the Weibull distribution was proportional to
exponentiated risk score of the data-generating model, i.e.,
rs = ln(8)x1 + ln(1.0,1.3,1.7,2.0,3.0)x2, where x1~N(0,0.5)
and x2~N(0,0.5). The scale parameter of the Weibull dis-
tribution was also calibrated to an 0.1 event incidence rate.
Censoring times were uniformly distributed to generate 0,
25, and 50% censoring rates. Cox proportional hazards
models were used to fit the data. The RC table was calcu-
lated with cutoffs of 5 and 20% for the simulated data.
Two models were compared: the full model with x1

and x2 and a reduced model with only one predictor
variable x1. To estimate the size of the proposed
tests, probabilities from the full model were used to
estimate the expected proportions in (3). In this case,
we would expect the RC statistic to be
non-significant because the data are generated under
the null. To estimate the power of the proposed tests,
probabilities from the reduced model were used to es-
timate the expected proportions in (3). In this case,
we would expect the RC statistic to be significant be-
cause the data are under the alternative. We evaluate
power in other scenarios as well. Simulations were
performed using R statistical software [21].
In a reclassification table, off-diagonal elements can

be small or even zero. Bias of the Greenwood vari-
ance estimator in such small subgroups is negative
and can be as high in absolute value as 25% [22]. For
these reasons, the GND test deteriorates for small cell
sizes. To accommodate this, we used the following
collapsing strategy. All cells with less than five events
were collapsed with the nearest cell which is closer to
the diagonal and the null setting. In this way, we
keep all the data and avoid problems with small cells,
although we are biasing the test toward the reference
model to some degree. If collapsing was performed,
then the degrees of freedom of the test should be
adjusted accordingly. The collapsing strategy is
illustrated in Table 3.

Results
Performance of the GND test for the RC statistic
Size
As described in the previous section, we generated a re-
classification table for the full model with two predictor

variables x1 and x2 and a reduced model with only one
predictor variable x1. Full model was used to generate
data and to estimate the expected proportions in the RC
statistic formula. Detailed explanation of the simulations
is presented in the Additional file 3: Table S1. In Fig. 2,
we show the size of the RC-GND tests for decreasing
(left) and increasing (right) baseline hazards. The
RC-GND test is robust to censoring when compared to
Fig. 1. In general, the RC-GND test does not exceed tar-
geted Type I error rate (we used 5% significance level in
this paper) but can be too conservative when effect size
is moderate.

Power
To evaluate power, we considered several scenarios,
including omission of an important predictor variable,
omission of a squared term, and omission of an inter-
action term. Simulations scenarios are summarized in
the Additional file 3: Table S1.

Power of RC-GND when omitting an important
predictor variable Data were simulated according to the
correct full model, but the reduced model was used to esti-
mate the expected proportions in the RC statistic formula,
thus mimicking the situation when an important predictor
variable was omitted. Based on Fig. 3, the RC-GND test
loses power for hazard ratios less than 2.0 and achieves
80% power for HR > 2.0 and decreasing baseline hazard.

Power of RC-GND when omitting squared term In
Fig. 4, we generated survival times according to the
model with two predictor variables: x1 and x21 , in the
reclassification table and we compared it to the model
with only x1, thus omitting the squared term. RC-GND
is robust to censoring for a decreasing baseline hazard
(Fig. 4).

Table 3 Collapsing strategy of the reclassification table

Full model with total cholesterol

0–5% 5–7.5% 7.5%+

Without total cholesterol

0–5% ev 302 15 ←1

ne 24,137 282 ←6

5–7.5% ev 14 54 19

ne 215 852 137

7.5%+ ev 0→ 10 167

ne 3→ 141 1105

Cells with less than five events are collapsed with the next cell closer to the
diagonal. Columns—categories defined by the full model (controlling for age,
total cholesterol, HDL cholesterol, systolic blood pressure, current smoking,
and diabetes) and rows—categories defined by the full model without
total cholesterol
ev number of events, ne number of non-events
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Power of RC-GND when omitting an interaction
term Similar results were obtained when omitting an
interaction term and are presented in the Fig. 5.

Connection between the RC statistic, the NRI, and the HL
test
The RC statistic and net reclassification improvement (NRI)
The NRI is a measure of improvement in predictive
model performance [23] which gained popularity in re-
cent years. Its categorical version is defined as the frac-
tion of correct movements across categories among
events plus the fraction of correct movements among
non-events:

NRIcat ¼
catupev−catdownev

n1
−
catupne−catdownne

n0

The NRI conditions on event status, while the RC stat-
istic conditions on the specific cells. NRI penalizes
events that move down and non-events that move up
while the RC statistic penalizes individual cells that have
poor fit. The two statistics were created for different
purposes and cannot be formally compared: the RC stat-
istic assesses model calibration in defined risk strata,
and NRI is solely a measure of discrimination ability of
one model versus the other [24–27]. From this point of
view, the RC statistic is closer to another measure of
goodness-of-fit—the Hosmer-Lemeshow statistic.

The RC statistic and the HL gof test
The Hosmer-Lemeshow test combines data across cat-
egories of predicted probabilities (often deciles). There-
fore, the HL statistic can be viewed as a test of the
horizontal margin of the reclassification table, had we
used clinical risk categories rather than deciles as a
grouping variable (Table 4). The RC statistic tests
whether the fit is good in a more informed set of

categories than the Hosmer-Lemeshow test statistics, which
are determined by risk strata of the alternative model.
In Figs. 3, 4, and 5, we calculated the power of the

Hosmer-Lemeshow test when omitting an important
new biomarker, a squared term, and an interaction term
to compare the power of the RC test based on clinical
categories defined by 5% and 7.5% thresholds to the HL
test based on deciles of predicted probabilities. We
present results for an increasing baseline hazard only;
simulations with decreasing baseline hazard are compar-
able and are included in Additional file 2: Figure S2.
From Fig. 5, the HL test is unable to detect an important

omitted predictor variable for any considered sample size
whereas the reclassification table does have power to de-
tect it. In the reclassification table, information about the
omitted variable is present in the form of the horizontal
grouping, while for the HL statistic, this information is not
provided. The lack of power of the HL statistic to detect
an omitted predictor has been previously reported [13].
The RC-GND and HL tests have similar power to

detect an omitted squared term (Fig. 4) when its hazard
ratio is moderate to strong. The RC test also has more
power to detect the omitted interaction term (Fig. 5).
The RC-GB test has more power in the considered

scenarios. The GB test is semi-parametric which allows
it to gain power but limits its application to the Cox
proportional hazards model. The RC-GND test is
non-parametric and can be applied in a wider range of
scenarios. When detecting an omitted predictor variable,
RC-GND and RC-GB require a sufficiently large sample
size (at least 5K for an event rate of 0.1) and a large haz-
ard ratio (2.0 and above). For smaller sample sizes,
counts in the off-diagonal cells of the RC table are too
small and are comparable to what could be observed
under the null due to stochastic variation. Only when
the signal is strong enough can it become visible over
the background noise.

Fig. 2 Size of the RC Greenwood-Nam-D’Agostino test (RC-GND) (2) for 0, 25, and 50% censoring rates. Comparing full (y~ x1 + x2) and reduced
(y~ x1) models with decreasing (left) and increasing (right) baseline hazard functions. N = 5000, p = 0.1, collapse when evg < 5
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Application: the Women’s Health Study
We used data from the Women’s Health Study (WHS)
to illustrate how to apply the RC test in a real data ex-
ample. To calculate the 10-year risk of major CVD, we
used Cox proportional hazards regression with age, total
cholesterol, high-density lipoprotein cholesterol (HDL),
systolic blood pressure, current smoking, and diabetes as
predictor variables in the full model. “Hard” CVD is de-
fined as non-fatal myocardial infarction, a non-fatal
stroke, or death from cardiovascular causes. The analysis
was performed using SAS software [28] using macros

available at ncook.bwh.harvard.edu. We used RC table
cutoffs of 5 and 20% in this example. In Table 5, we
tested seven reclassification tables, comparing the full
model to one without the predictor in the first column
of Table 5 (reduced model).
In Table 5, the beta coefficients are significant for all

six informative predictor variables. However, total chol-
esterol and HDL cholesterol have a non-significant ef-
fect on reclassification into clinical categories:
corresponding p-values when the reduced model prob-
abilities were used show a good fit (χ2 = 7.48 and 8.00,

Fig. 3 Power when an important predictor is omitted for 0, 25, and 50% censoring rates. The RC statistic was calculated for the full (y~ x1 + x2)
and reduced (y~ x1) models. Data were simulated according to the full model, but the reduced model was used to estimate the expected
proportions in the RC statistic formula. Left panel—decreasing baseline hazard, right panel—increasing baseline hazard. N = 1000 (top row), 5000
(middle row), 10,000 (bottom row), p = 0.1, collapse when evg < 5
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one-sided p-values = 0.28 and 0.24), while the RC statis-
tic using the new model is also not significant. In that
case, we would choose the more parsimonious model
without the variable in question. This finding is due to
the fact that total cholesterol and HDL cholesterol are
correlated and result in very few clinical reclassifica-
tions. It also illustrates our point that a significant bio-
marker with a small beta estimate can result in a
limited number of reclassifications, and therefore, it
will have only minor impact in clinical practice. In
contrast, a removal of current smoking from the full

model results in a highly significant RC-GND test when
predicted probabilities were used from the reduced
model (χ2 = 24.84, p-value < .001).
When the predicted probabilities were used from the

model with smoking, a good fit was found (χ2 = 7.38, p-value
= 0.39), confirming that the full model reclassifies observa-
tions into better calibrated groups, using Kaplan-Meier to
estimate the observed event rate in each group.
In the last row, we added an uninformative biomarker

to the full model. We expected the RC-GND test to be
non-significant no matter whether one uses the full or

Fig. 4 Power when a squared term is omitted for 0, 25, and 50% censoring rates. The RC statistic was calculated for the full (y~ x1 and x1
2) and reduced

(y~ x1) models. Data were simulated according to the full model, but the reduced model was used to estimate the expected proportions in the RC statistic
formula. Left panel—decreasing baseline hazard, right panel—increasing baseline hazard. N= 1000 (top row), 5000 (middle row), 10,000 (bottom row),
p= 0.1, collapse when evg< 5
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reduced model to calculate predicted probabilities in a
cell. Indeed, both tests had non-significant p-values (.56
and .54), indicating that the smaller model has a good fit
and the addition of the new biomarker does not improve
it. Nor does it negatively affect it (because the full model
with uninformative biomarker is also well calibrated).
However, we prefer a more parsimonious model since it
performs at least as well. In practice, if the uninformative
marker displayed no association with the outcome using
likelihood ratio testing or other established methods, we
would not proceed to examine reclassification.

Discussion
Risk reclassification extends evaluation of risk predic-
tion models from traditional approaches informed by
discrimination and calibration measures (such as the
AUC and Hosmer-Lemeshow test) toward assessments
focused on the clinical relevance of a new model and
implications on present-day treatment decisions [11,
29–31]. Appropriate statistical methodology for mea-
sures of reclassification is still an active field of
research, and it is crucial to develop valid statistical
tests [11].

Fig. 5 Power when an interaction term is omitted for 0, 25, and 50% censoring rates. The RC and HL statistics were calculated for the following
reduced and full models: y~ x1 and y~ x1 + x2; y~ x1 and y~ x1 + x1

2; and y~ x1 + x2 and y~ x1 + x2 + x1 * x2. Data were simulated according to the
full model, but the reduced model was used to estimate the expected proportions in the RC statistic formula. Left column—power of the
RC-GND test, right column—power of the HL gof test. N = 1000 (top row), 5000 (middle row), 10,000 (bottom row), p = 0.1, collapse when evg < 5
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The RC statistic is an important reclassification tool
which compares performance of predictive models with
respect to clinically relevant decision categories [12, 15,
32–34]. Performance of new markers may vary across sub-
groups [35], and it will be of interest to identify subgroups
for which the new markers may or may not be useful. The
reclassification table helps to visualize and to better
understand movements between categories, see which
groups of patients are influenced more by the inclusion of
a given biomarker, and test significance of improvement.
The RC test falls between the moderate and strong

calibration categories in the Van Calster hierarchy of risk
calibration [4]. It goes beyond testing in standard
Hosmer-Lemeshow risk groups defined by a single model
and looks at movements across risk groups defined by
both full and reduced models. It also can be repeated for a
variety of covariate patters but does not exhaust all possi-
bilities. Therefore, it is not performing a full assessment to
assure “strong” calibration, but it goes beyond the moder-
ate calibration within standard HL deciles.
In this paper, we extend the RC statistic to the survival

setting with higher censoring rates. We recommend
using the RC-GND test to test the reclassification table
with survival data. The RC-GND test is fully
non-parametric and therefore can be applied in a wide

variety of situations. It does not refit the baseline hazard
as, for example, the Grønnesby-Borgan test does [19], so
it can detect a lack of calibration in either model.
In our simulations, the RC-GND is very sensitive to

omission of an important predictor variable (Fig. 3), a
quality that some other goodness-of-fit tests do not share.
It achieves 80% power when an important new predictor
with HR > 2.0 was omitted, though this depends on the
sample size. Many authors noted that improving discrim-
ination of a strong baseline model also requires a strong
enough predictor variable [36]. Therefore, if an established
model has a relatively strong discrimination (as for ex-
ample Framingham ATPIII model with c-statistic of 0.83
for women [37]), then to improve significantly in terms of
discrimination (measured by c-statistic) or in terms of
calibration, a strong predictor variable is required.
Limitations of the RC statistic include its dependence on

the existence of clinically relevant risk stratification categor-
ies. Oftentimes, however, clinically relevant cutoffs are not
established. In this situation, we recommend producing an
RC table for a set of sensible risk cut points, possibly cen-
tered around the disease incidence [13]. As we have men-
tioned earlier, treatment guidelines in several fields do rely
on established risk categories [1, 9]. In this situation, an-
other important issue is how sharp are the boundaries of

Table 4 Building blocks of HL and RC statistics

Full model

0–5% 5–7.5% 7.5%+

Reduced model 0–5% ½KM11ðtÞ−pðtÞ11�
2 ½KM12ðtÞ−pðtÞ12�

2 ½KM13ðtÞ−pðtÞ13�
2

5–7.5% ½KM21ðtÞ−pðtÞ21�
2 ½KM22ðtÞ−pðtÞ22�

2 ½KM23ðtÞ−pðtÞ23�
2

7.5%+ ½KM31ðtÞ−pðtÞ31�
2 ½KM32ðtÞ−pðtÞ32�

2 ½KM33ðtÞ−pðtÞ33�
2

Components of HL statistic

½KM1ðtÞ−pðtÞ1�
2 ½KM2ðtÞ−pðtÞ2�

2 ½KM3ðtÞ−pðtÞ3�
2

½KM31ðtÞ−pðtÞ31�
2
is one of the terms in the RC statistics formula. It corresponds to observations that moved from risk category 3 according to the reduced model

to the risk category 1 of the full model. The reclassification table is more informative when evaluating two models because it displays the transitions from one
category to another under different models

Table 5 Results of seven RC statistics tests, comparing the full model to one without the predictor in the first column of this table
(reduced model)

Based on pp from the reduced model Based on pp from the full model

Beta p-value (beta) RC statistic p-value RC statistic p-value

AGE 5.08 < 0.001 80.49 < 0.001 3.97 0.86

TOTC 0.93 < 0.001 7.48 0.28 4.16 0.65

HDLC − 0.95 < 0.001 8.00 0.24 6.71 0.35

CURRSMOKING 1.01 < 0.001 24.84 < 0.001 7.38 0.39

SBP 3.90 < 0.001 57.04 < 0.001 8.60 0.28

DIABETES 1.32 < 0.001 33.66 < 0.001 5.74 0.57

RANDOM − 0.05 0.20 2.99 0.56 3.08 0.54

The GND test was used for testing the reclassification table. We used age, total cholesterol (TOTC), HDL cholesterol (HDLC), current smoking (CURRSMOKING),
systolic blood pressure (SBP), and diabetes status (DIABETES) as well as a random null variable (RANDOM) as predictor variables in the full model
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clinically established risk categories. If a patients’ risk falls
in a proximity of a cutoff point (for example risk of 7.4%
with the cutoff of 7.5%), then how certain are we that the
treatment regimen should be that for intermediate risk ra-
ther than for a high risk? It may make sense to establish
“transition areas” where assignment to a risk category is
mute. A prediction confidence interval for the predicted
risk is available in most statistical software packages and
can be included in risk calculators for patient’s estimated
risk. If prediction confidence interval covers the threshold,
then patient’s risk falls in the transition area from one risk
category to another. This is an important information to
consider when making a treatment decision. Alternatively,
if there is a single risk cutoff, then additional cutoffs on ei-
ther side of it could be established in a four-category classi-
fication to allow for uncertainty. A single category below
the cut point could also be used for “watchful waiting” or
further follow-up.
Additionally, we also did not consider competing events,

although these could be taken into account in a similar
fashion [38]. Sensitivity to small cell sizes is another disad-
vantage of the RC-GND test. If sample size is too small
and the hazard ratio of the new biomarker is not large
enough, the RC-GND test does not have enough power to
detect an improvement over the baseline model, and
therefore, the RC-GND test is too conservative.
We compared the Hosmer-Lemeshow style test to the

RC test. The Hosmer-Lemeshow test can be viewed as a
test of the margin of the reclassification table. An important
limitation of the HL test is its inability to detect an omitted
biomarker. Our Fig. 3 illustrates that non-significance of
the HL test should not be viewed as an evidence that the
model contains all important biomarkers. If a decision must
be made about inclusion of a biomarker in a risk-prediction
model, the HL statistic will always show a good fit if the
categories are defined by a model without that biomarker.
In other words, if a model has a good fit based on the HL
test, it does not guarantee at all that the model has all
important variables in it. In the reclassification table, the
biomarker is used to define risk categories, so the RC statis-
tic is sensitive to the omission of an important biomarker.
In general, however, these measures focus on calibration,
and more direct model comparisons, such as likelihood
ratio or related measures, can be used to assess whether a
new biomarker is important.

Conclusions
The reclassification table is a step toward better under-
standing of the clinical utility of one model versus the
other. It can be used to visualize movements of patients
across categories and examine whether a new model has
an impact on clinical treatment assignment. The associ-
ated RC statistics can assess calibration of both models
and indicate areas where fit may be lacking. Unlike the

GB test, the GND test does not rely on the assumptions
of proportionality of hazards [19]; therefore, we recom-
mend the GND test for inference in a variety of settings,
particularly when the Cox model is not in use.
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