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Summary 23 

Despite abundant genomic and phenotypic data across individuals and environments, the 24 

functional impact of most mutations on phenotype remains unclear. Here, we bridge this gap by 25 

linking genome to proteome in 800 meiotic progeny from an intercross between two closely related 26 

Saccharomyces cerevisiae isolates adapted to distinct niches. Modest genetic distance between the 27 

parents generated remarkable proteomic diversity that was amplified in the progeny and captured 28 

by 6,476 genotype-protein associations, over 1,600 of which we resolved to single variants. 29 

Proteomic adaptation emerged through the combined action of numerous cis- and trans-regulatory 30 

mutations, a regulatory architecture that was conserved across the species. Notably, trans-31 

regulatory variants often arose in proteins not traditionally associated with gene regulation, such 32 

as enzymes. Moreover, the proteomic consequences of mutations predicted fitness under various 33 

stresses. Our study demonstrates that the collective action of natural genetic variants drives 34 

dramatic proteome diversification, with molecular consequences that forecast phenotypic 35 

outcomes. 36 

 37 

Keywords 38 

systems genetics; proteomics; genotype-phenotype mapping; adaptation; gene expression 39 

evolution; transgression; variant interpretation; omnigenic model 40 

 41 

Highlights 42 

- Proteome diversity arises from natural genetic variants, with divergent proteomes in 43 

closely related parents and progeny. 44 

- Cis-regulatory elements had strong individual impacts, but coherent trans effects 45 
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combined to dominate protein expression. 46 

- Directional selection and frequent transgression suggest much of the proteome is under 47 

selective pressure. 48 

- Many trans-regulators are enzymes or transporters, with fewer than 4% of pQTLs linking 49 

known interactors. 50 

- Genome-to-proteome connections predicted the fitness impact of mutations under various 51 

stresses, including a strong but hidden causal variant in IRA2/NF1. 52 

  53 
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Introduction 54 

Genetic variation plays a central role in health and disease, yet, three decades into the genomic 55 

era, we are unable to predict the phenotypic effects of most mutations. For example, the ClinVar 56 

database1 compiles variants linked to significant clinical effects in well-studied disease genes. 57 

Approximately one-third of these variants are classified as being of uncertain significance, and 58 

this number continues to grow. The problem is even more acute for rare mutations, which are often 59 

presumed to be deleterious but cannot be characterized by population genetics2. Nonetheless, 60 

accurate functional predictions, if achieved, hold tremendous clinical promise: a study of patients 61 

with a monogenic multisystem disease of STAT3, for instance, revealed that all bore mutations 62 

causing a biochemical gain-of-function of the protein3. These linked challenges arise because we 63 

lack a systems-level understanding of how the effects of DNA mutations propagate to other 64 

molecular layers and ultimately impact cellular physiology, even in the best-studied organisms. 65 

The problem is extremely complex, as mutations may exert their effects on organismal phenotypes 66 

by changing the abundance, fold, activity, or otherwise altering the functions and interactions of 67 

biomolecules in manifold ways.  68 

Due to rapid progress in nucleic acid sequencing technology, many large-scale efforts to 69 

associate mutations with molecular phenotypes have focused on mRNA levels4 or mRNA 70 

splicing5. Yet it is the proteome that predominantly exerts function, and pioneering experiments 71 

established the possibility of mapping the effects of variants on protein levels directly6,7. This 72 

approach has been revolutionized by large-scale antibody-, aptamer- and mass spectrometry-based 73 

technologies, primarily focusing on the human plasma proteome8. However, two barriers have 74 

limited the explanatory power of these datasets. First, the plasma proteome only indirectly 75 

represents the primary events of gene expression regulation, being controlled by an interplay of 76 
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protein excretion by the liver, the tissue leakage of proteins, and glomerular filtration by the 77 

kidney. Second, human populations harbor a large excess of rare polymorphisms. As a 78 

consequence, genetic associations explain little of the variation observed in plasma protein levels 79 

(e.g., 2.7% median genetic contribution in a study with more than 10,000 participants9). 80 

On the other hand, a direct link between genetic variation and the proteome can be made 81 

in single-cell organisms: the budding yeast Saccharomyces cerevisiae is at a sweet spot of genetic 82 

tractability due the combination of small genome size and the ability to readily cross and segregate 83 

haploid progeny in the laboratory. Crosses of yeast strains have linked genetic variants to changes 84 

in mRNA and protein expression at the genome-wide scale6,10–13, as well as investigating the 85 

regulation of model transcripts and proteins14–16. These studies revealed a complex regulatory 86 

architecture conserved across eukaryotes, composed of strong cis-acting variants alongside 87 

pleiotropic trans-regulatory mutations (so-called hotspots)11,17. Yet the number of proteins or 88 

strains examined in proteomic studies of yeast has often been small (~ 100 segregants)13,18,19, and 89 

even large collections of wild yeast isolates20 are not well-suited to genetic mapping21 due to the 90 

large number of rare variants. Studies in such panels and in inbred crosses typically cannot resolve 91 

linked genomic regions to individual causal polymorphisms, or unambiguously implicate causal 92 

genes.  93 

We have shown that this barrier can be overcome by intercrossing the progeny of two 94 

closely related wild isolates. Six rounds of meiosis and mating – in contrast to most prior 95 

approaches which limited intercrossing to one or two generations – resulted in a panel of haploid 96 

segregants in which the genetic linkage between neighboring mutations has been broken, allowing 97 

genetic associations to be mapped to individual polymorphisms22. Here, we combined precise, 98 

systematic proteomics using analytical flow-rate chromatography and Scanning SWATH 99 
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acquisition23 with nucleotide-resolution genetic mapping in a large library of 851 segregants22 to 100 

comprehensively chart a natural genotype-to-protein map at high resolution. The resulting 101 

molecular atlas consisted of thousands of variant-protein associations, many resolved with single-102 

nucleotide resolution and revealed solely at the level of proteins. Notably, the progeny exhibited 103 

widespread transgression in proteins not differentially expressed in their ancestors, highlighting 104 

the latent potential of the genome to create proteome diversity. Indeed, selection on variants 105 

throughout the genome engaged modular regulons to dramatically remodel the proteomes of the 106 

two closely related parental strains, revealing general molecular principles underlying causality. 107 

Overlaying these molecular data on a complementary genotype-to-phenotype map revealed that 108 

the variants controlling protein levels in the absence of stress drove resistance to diverse 109 

perturbations. These results suggest that genotype-to-protein maps are conserved across 110 

environments and broadly predict phenotypes, charting a path forward to forecast the molecular 111 

and phenotypic consequences of genetic variation.  112 
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Results 113 

Mass spectrometry-based proteomics to probe molecular adaptation 114 

Two ubiquitous obstacles in understanding the mechanistic influence of the genome on the 115 

proteome are the excess of rare polymorphisms in natural populations and the difficulty of directly 116 

obtaining measurements of protein levels in cells at sufficient scale and precision. Here, we 117 

addressed these challenges using 851 F6 isolates from a large population of haploid yeast derived 118 

from a single mating of two parents, one isolated from the mucosa of an immunocompromised 119 

patient (YJM975; henceforth YJM)24 and the other isolated from a California vineyard (RM11; 120 

henceforth RM)25. Despite their substantial phenotypic diversification, they harbor a low level of 121 

polymorphism (~ 0.1%), comparable to that between two unrelated humans. The segregating 122 

mutations are in very low linkage disequilibrium, enabling high-resolution genetic mapping22. 123 

To measure protein levels in these strains, we took advantage of recent developments in 124 

mass spectrometry-based data-independent acquisition (DIA) proteomics using scanning 125 

sequential window acquisition of all theoretical mass spectra (Scanning-SWATH)23 and new data 126 

processing strategies using deep neural networks implemented in the DIA-NN software suite26. 127 

The high acquisition speed and the ability to match precursor masses with MS2 fragments in 128 

Scanning SWATH allowed its integration with high-flow rate analytical chromatography, 129 

increasing throughput while maintaining high proteomic depth and excellent quantitative 130 

precision. We achieved a measurement throughput of 4.8 min./proteome, compared to, e.g., 120 131 

min./proteome in previous proteome mapping experiments in yeast13. We assessed biological and 132 

technical variability using numerous controls. The segregant library was cultivated in twelve 96-133 

well plates, each of which included at least three replicates of each parental haploid from which 134 

the mapping panel was derived [Fig. 1A]. Alongside these, we measured n = 117 samples of a 135 
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pooled sample to detect and correct for batch effects. As a benchmark of species-wide proteome 136 

diversity, we also included 22 diverse isolates from the Saccharomyces Genome Resequencing 137 

Project (SGRP)27 [Supplemental Table S1; Supplemental Table S2]. We observed low technical 138 

variability (C.V. 15.6 - 19.9%) and negligible effects of plate or batch [Fig. S1ABC], such that the 139 

genetic background was the predominant contribution to proteome variation across the proteomes 140 

we acquired [Fig. 1B]. The quantified proteins accounted for ~ 70% of the proteome on a molar 141 

basis, and the estimated protein quantities correlated well with absolute protein levels reported 142 

previously28 [Fig. S1D]. 143 

 144 

Standing and latent variation in the proteome 145 

Despite modest genetic distance (~ 12,000 mutations; ~ 1 - 2 x 106 divisions since the last common 146 

ancestor29) and similar growth properties in standard laboratory conditions [Fig. S1E], the 147 

proteomes of the parents were highly diverged. For 826 of the 1,225 proteins quantified in the two 148 

parents (67.4%), we obtained significantly different intensities (n = 36 - 39; B.-H. corrected q 149 

value < 0.05; 190 with fold-change > 1.5; 66 with fold-change > 2) [Fig. 1C]. The most up- and 150 

down-regulated subsets of the proteome were highly functionally coherent: for example, the 151 

clinical isolate (YJM) had higher levels of amino acid and purine biosynthesis and gluconeogenesis 152 

proteins, whereas the vineyard isolate (RM) had higher levels of proteins associated with oxidative 153 

phosphorylation and the TCA cycle [Supplemental Table S3]. These differences correspond 154 

broadly to the two key metabolic states of budding yeast, reflecting a fermentative versus a 155 

respiratory metabolism, respectively. 156 

Protein abundance spanned a large dynamic range, both between the parents and amongst 157 

the F6 progeny, as many protein levels in progeny transgressed beyond their abundance in the 158 
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parental strains [Fig. 1D]. Despite this, our approach yielded very high broad-sense heritability 159 

(median 76.2%), which depended only modestly on protein abundance [Fig. 1E] and was limited 160 

primarily by technical variability rather than gene-by-environment interactions [Fig. S1F]. 161 

Transgression was common, and, indeed, the variation amongst the progeny was greater than that 162 

between the parents for 77.9% proteins we measured (955 of 1,225). Strikingly, the proteomic 163 

variation released in the F6 progeny was most pronounced for the proteins that were also highly 164 

variable across genetically diverse wild yeast isolates spanning the diversity in this species 27 (r = 165 

0.74; p < 10-213) [Fig. 1F]. Thus, the proteomic diversification released by meiosis in our 166 

experiment was broadly representative of species-wide variation, perhaps reflecting conserved 167 

layers of modular regulation in this organism. 168 

 169 

A nucleotide-resolution proteogenomic map in a model eukaryotic species 170 

Based on these high-quality measurements and the statistical power afforded by the F6 segregant 171 

panel, we performed genetic mapping22 to identify variants associated with changes in protein 172 

abundance. Briefly, we conducted global and cis-focused (local) mapping by multivariate 173 

regression [Fig. 1A], including growth differences as a covariate. This proved important for a 174 

small subset of proteins, as found previously12,30 [Fig. S1G]. The effects of associations that were 175 

discovered in both local and global mapping agreed well [Fig. S1H]. 176 

Global mapping, which encompassed all segregating polymorphisms and allowed us to 177 

compare cis- and trans-acting effects, identified 6,476 variant-protein associations (pQTLs) 178 

controlling the abundance of 923 proteins (~ 10% FDR; by permutation; see Methods) 179 

[Supplemental Table S4]. Of these, 1,650 of the associations (25.5%) fine-mapped to a single 180 

underlying polymorphism, granting an unprecedented molecular window onto the genome-to-181 
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proteome map. In the case of the mitochondrial NADH-cytochrome b5 reductase Mcr131, for 182 

example, we identified a coding SNP (Mcr1Gly240Ser) that was associated with reduced Mcr1 levels 183 

in cis [Fig. 1GH]. Upon reconstruction of the variant by genome editing, subsequent proteome 184 

analysis revealed that the Mcr1240Ser mutation alone was sufficient to decrease Mcr1 level by nearly 185 

40% [Fig. 1I]. 186 

Our model explained a median of 30.4% of the broad-sense heritability in protein level, 187 

and, due to the high heritability of protein abundance in our experiment, we explained 22.8% of 188 

the variance in protein abundance [Fig. 1J]. This was comparable to mapping of mRNA abundance 189 

in yeast (median 21.9% variance explained12). Our approach, however, achieved much higher 190 

resolution: the median confidence interval in prior studies of yeast crosses ranged from 48 kb 191 

(mRNA eQTL12) to 68 kb (protein X-pQTL14). Moreover, approaches such as X-pQTL mapping 192 

that rely on tagged proteins freeze the immediate genomic context, prohibiting direct assessment 193 

of cis-acting effects. We were well-powered to detect additional associations of modest effect had 194 

they been present (sensitivity ~ 95% for effects of 0.1 standard deviations; ~ 63% for 0.025 s.d.) 195 

[Fig. S1I]. Thus, residual missing heritability in our map was likely due to numerous additional 196 

pQTLs of small effect or, potentially, epistatic interactions.  197 

As expected given the high sensitivity of our mapping panel, the rate at which we 198 

discovered additional unique trans pQTLs declined as we considered additional proteins [Fig. 1K], 199 

suggesting that we captured a comprehensive overall picture of protein regulation. At the same 200 

time, downsampling real data to 50% of the strains in the experiment yielded just 3,498 201 

associations (54% of the complete atlas), confirming that we were well-powered to chart the 202 

regulatory network. In concordance with widespread transgression, we identified at least one 203 

pQTL for 233 of the 399 proteins that were not differentially expressed between the parents (mean 204 
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2.63 pQTLs per protein) [Fig. S1J]. Accordingly, the true biological variability released in the 205 

cross (C.V. amongst the F6 progeny normalized to technical C.V.) was highly predictive of the 206 

number of pQTLs discovered for a protein (r = 0.60; p < 10-117) [Fig. S1K]. Overall, across the 207 

~1,200 proteins we robustly quantified, at least 1,000 were subject to genetic control (as indicated 208 

by differential expression or regulation by a pQTL), even in the closely related isolates we 209 

analyzed. Thus, our approach presents an opportunity to understand the molecular genetic basis of 210 

both standing and latent variation in the proteome.  211 
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 212 

Figure 1. A variant-resolution genome-to-proteome map. (A) Schematic of the mass 213 
spectrometry-based proteomics and genetic mapping approach. (B) Representative reproducibility 214 
across biological replicates of the vineyard (RM) isolate; Pearson’s r as indicated. (C) Volcano 215 
plot illustrating log2 fold-change in protein abundance (abscissa) and Benjamini-Hochberg-216 
corrected t test p value (ordinate) between the vineyard (RM) and clinical (YJM) parents. n = 36 - 217 
39. (D) Estimated abundance of Mcr1 and Gap1 (polygenic) and Rnr4 and Erg11 (transgressing) 218 
in RM parent (blue), YJM parent (orange), F6 progeny (grey), and SGRP wild strains (green). 219 
Boxes show median and upper and lower quartiles; whiskers show 1.5 times the interquartile 220 
range. (E) Mean broad-sense heritability of protein abundance (ordinate) as a function of estimated 221 
absolute protein abundance (abscissa) for all proteins measured in at least 80% of samples. (F) 222 
Normalized C.V. amongst the SGRP wild strains as compared to the mean C.V. in the parental 223 
isolates (ordinate) as a function of normalized C.V. amongst F6 progeny (abscissa). Pearson’s r as 224 
indicated. p value by t statistic. (G) Genetic mapping of a cis-acting SNP controlling the abundance 225 
of Mcr1. (H) Schematic and predicted AlphaFold2 protein structure of a cis-acting missense 226 
variant in Mcr1. (I) CRISPR reconstruction and mass spectrometry to validate the effect of the 227 
Mcr1Gly240Ser variant. n = 6; p value by two-sided t test. (J) Histogram of the fraction of total 228 
variance explained by the global (cis- and trans-acting) model in this study (blue) and in a highly 229 
powered eQTL mapping study in budding yeast (pink) 12. (K) Rarefaction plot of unique trans-230 
acting pQTL associations (blue) discovered, ordered by decreasing estimated protein abundance. 231 
Also shown in grey is the same statistic for downsampled real data using only 50% of the F6 232 
progeny. See also Figure S1.  233 
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Testing the impact of causal variants across the species 234 

As a test of our mapping findings, we next examined the penetrance of pQTL effects across other 235 

natural isolates, exploiting the transcriptomes and proteomes32 of the 1,002 Yeast Genomes 236 

collection20 [Fig. 2A]. Across these diverse wild strains, both Odc2 and Rdl1 transcript and protein 237 

levels, for example, were affected by the cis-acting variants identified [Fig. 2B]. Broadly, cis-238 

acting variants affected the same protein abundances across the divergent natural strain 239 

backgrounds in this independent experiment (Mann-Whitney U test p < 10-3; 46 concordant out of 240 

67 cis-pQTL associations tested) [Fig. S2A]. Strikingly, we also identified several instances (e.g. 241 

Faa1 and Map1) in which protein cis-regulatory effects were evident at the proteome but not at the 242 

transcriptome [Fig. 2B]. Thus, our protein-oriented mapping captured both mRNA regulation that 243 

propagated to protein levels as well as the molecular basis of regulation that emerged primarily in 244 

the proteome33, with these effects evident species-wide. 245 

 246 

mRNA- and protein-level gene regulation 247 

We then compared our protein mapping data with allele-specific mRNA expression (ASE) analysis 248 

of the F0 hybrid of the parents of our genetic mapping panel [Fig. S2B]34. Interestingly, only 30 of 249 

127 proteins with a cis-pQTL had a significant mRNA allelic imbalance, even though we were 250 

well-powered to detect allele-specific expression of these mRNAs (117 of the cis-pQTLs had a tag 251 

SNP in the associated ORF; median depth 183 read counts) [Supplemental Table S5]. These data 252 

indicate that many cis effects arise more strongly at the protein level rather than at the mRNA. 253 

This could occur if a variant affects the translation, folding, trafficking, or localization of the 254 

encoded protein. 255 
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To examine this property in detail, we selected two regulatory cis-pQTNs, one mutation 256 

upstream of the NCP1 gene encoding a P450 reductase and one in the 3’ untranslated region (UTR) 257 

of SER2, which encodes phosphoserine phosphatase. The effect of the NCP1 mutation was only 258 

significant for protein level (no mRNA ASE was detected), while the SER2 variant impacted 259 

mRNA and protein levels in similar fashion. We then used CRISPR genome editing to reconstruct 260 

these mutations35 and used proteomics to measure protein abundances. In both cases, the exchange 261 

of the variant recapitulated the predicted effects: the NCP1A-177T mutation resulted in an 262 

upregulation of Ncp1 (p < 10-4), while introducing SER2G*14A downregulated Ser2 (p < 10-4) [Fig. 263 

2CD].  264 

 265 

Non-canonical regulators underlying trans-acting hotspots 266 

Our genotype to proteome atlas reflects considerable complexity in the regulation of protein 267 

expression: the median protein was controlled by 5 loci and 22.6% of proteins were controlled by 268 

more than 10 pQTLs [Fig. S2C]. 98% of associations involved distant, presumably trans-acting 269 

loci (> 1 kB from the target gene in the compact S. cerevisiae genome) while the remainder were 270 

nearby and likely acted in cis. A large proportion of these associations were due to a small number 271 

of trans-regulatory hotspots10,11 that controlled a disproportionate number of targets: the 100 most 272 

pleiotropic trans-pQTL genes (out of ~ 2,000) accounted for more than 44% of associations.  273 

The transcription factor PHO2, for instance, controlled the adenine biosynthetic pathway 274 

[Fig. S2D]. Notably, however, many hotspots did not arise from DNA-binding proteins or 275 

regulatory factors, but rather metabolic enzymes or membrane transporters [Fig. 2E] The uracil 276 

transporter FUR4 controlled the uracil biosynthetic pathway, and the inosine monophosphate 277 

dehydrogenase IMD2, involved in GTP synthesis, controlled the abundance of a variety of other 278 
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metabolic enzymes [Fig. S2D]. The effects of these highly functionally coherent regulons 279 

combined with cis-acting variants to produce large changes in protein abundance amongst the 280 

haploid progeny. Although nearby cis-acting variants were of larger effect (mean 5.29% of 281 

variance explained vs. 1.66%, p < 10-17 by Mann-Whitney U test) [Fig. 2F], the cumulative effect 282 

of trans regulation on a typical protein was much larger (mean 10.9% of variance explained in 283 

trans vs 0.74% in cis across all proteins, p < 10-263 by Mann-Whitney U test) [Fig. 2G]. This 284 

comprehensive atlas positioned us to investigate how natural genetic variation drives proteomic 285 

adaptation through the action of multiple trans-regulatory hotspots throughout the genome.  286 
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 287 
Figure 2. Mutation-to-molecule atlas reveals protein-level regulation. (A) Schematic of 288 
statistical replication strategy. (B) Left: Genetic mapping of cis-acting effects on Odc2 and Rdl1 289 
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protein abundance and replication of this signal in the orthogonal 1,002 Yeast Genomes 290 
transcriptomes and proteomes. Right: As left, but for Faa1 and Map1; these signals were evident 291 
only at the proteomic level in the replication data. Data shown are median and s.e.m. (C) Left: 292 
Genetic mapping of cis-acting effect on Ncp1 protein abundance. Right: CRISPR reconstruction 293 
and mass spectrometry to test the effect of the NCP1A-177T variant. n = 6; p value by two-sided t 294 
test. (D) As in (C), but for the SER2G*14A variant. (E) Bubble plot indicating the genomic position 295 
of all pQTLs. pQTL positions and encoding genes are arranged in genome order. Orange dots 296 
indicate clinical (YJM) allele increases protein level; blue indicates vineyard (RM) allele increases 297 
level. Dots are sized by genetic mapping p value. Indicated above is the number of target proteins 298 
controlled by each locus (aggregated by gene); highlighted are trans hotspots color-coded by gene 299 
function as indicated. (F) Variance explained by pQTLs with the indicated distance to the encoding 300 
gene for the target protein; p values by Student’s t test. Dots indicate mean and bars standard error. 301 
(G) Cumulative effect of cis- and trans-acting pQTLs across all proteins. Dots indicate mean and 302 
bars standard error; p value by Student’s t test. See also Figure S2.  303 
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Regulatory adaptation underlying diverged proteomes 304 

Examining the proteins upregulated in the parental isolates, transcription factor target analyses36 305 

indicated that the YJM-upregulated gene set was highly enriched for targets of the Sfp1, Stb3, 306 

Dot6, Tod6, and Gcn4 transcription factors, whereas the YJM-downregulated module was likely 307 

regulated by Sut1, Msn2/4, Hap3/5, and Gis1 [Supplemental Table S6]. Yet there were no trans-308 

regulatory hotspots at the genes encoding these factors. We therefore scrutinized our genotype-to-309 

protein map further to identify other possible origins of these proteomic changes. We found that 310 

three of the most pleiotropic trans-acting loci in our experiment (IRA1, IRA2, and PDE2) were 311 

centered at genes in the Ras/PKA pathway37–39, a signaling pathway conserved from yeast to 312 

humans40. The Ras/PKA network integrates nutritional signals to control metabolism and 313 

proliferation and is associated with adaptation to fermentation41 as well as virulence in pathogenic 314 

yeasts42. Two well-characterized targets of the Ras/PKA signaling pathway (via the kinase 315 

Rim1543) are the Gis1 and Msn2/4 transcription factors, consistent with our transcription factor 316 

target analyses. 317 

The three hotspots at IRA1, IRA2, and PDE2 [Fig. 3A] controlled the abundance of 50 to 318 

over 300 proteins, with coherent subsets of proteins up- and down-regulated by each parental 319 

allele. The abundance of Mcr1, for example, ranged nearly 3-fold depending on the genotype at 320 

just 3 hotspot loci and a single cis-acting SNP at the MCR1 locus [Fig. 3B]. To visualize the 321 

concerted effects of these alleles, we generated a t-distributed stochastic neighbor embedding (t-322 

SNE) of the correlations in protein abundance. Proteins that were significantly upregulated in the 323 

clinical and vineyard strains formed pronounced clusters, and we noted that a similar set of proteins 324 

was differentially regulated by each Ras/PKA hotspot [Fig. 3C]. Consistent with our hypothesis 325 

that these variants controlled downstream transcriptional activation, our genetic mapping results 326 
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agreed well with the effects of IRA1, IRA2, and PDE2 deletions on transcript abundance [Fig. 327 

S3A]44. 328 

 329 

Directional selection drives proteomic divergence 330 

Many pQTL mutations occur at high frequencies in natural yeast populations20 [Fig. S3B]. Strains 331 

bearing the IRA1RM/IRA2RM (vineyard) allele combination, for instance, were isolated from 332 

strikingly similar ecological niches, including grape must, soil below a rotten apple, Uruguayan 333 

wine, Tokay grapes, and orange juice concentrate20. To understand the molecular consequences of 334 

the Ras/PKA hotspot variants across these backgrounds, we examined their proteomic effects32. 335 

Our atlas accurately forecasted the effects of the RM and YJM IRA1 and IRA2 genotypes across 336 

the wild isolates: the differences in protein levels between strains with IRA1RM/IRA2RM and 337 

IRA1YJM/IRA2YJM genotypes agreed well with mapping predictions [Fig. S3C]. Thus, just as for 338 

the cis-acting variants above, trans regulatory effects identified in the F6 segregant panel are highly 339 

penetrant across other genetic backgrounds, despite wild strains harboring hundreds of thousands 340 

of other variants. 341 

The convergence of the pleiotropic hotspots and their evident effects across divergent yeast 342 

isolates suggested that selection might have driven polygenic adaptation via these mutations, with 343 

one set of niches favoring higher expression of the RM-upregulated module and another the YJM-344 

upregulated module. We formalized this hypothesis in a variation on Orr’s sign test45, in which we 345 

calculated the fraction of pQTLs impinging on a given protein that acted in the same direction 346 

[Fig. 3D]. We compared this statistic to the null hypothesis that the extent of coherence (the 347 

fraction of pQTL-pQTL pairs acting on a given protein that have the same sign) should be no 348 

greater than the average coherence across all variant-protein associations. A significant deviation 349 
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in the observed extent of coherence suggests that we can reject neutrality and conclude that 350 

directional selection acted to shape the concerted action of trans-pQTLs. 351 

Strikingly, the effects of pQTLs on protein level were much more coherent than expected 352 

by chance (binomial test p < 10-250 for pQTL-pQTL pairs with p values < 10-10). The coherence 353 

was pronounced across a wide range of pQTL p value thresholds [Fig. 3E], and the trends we 354 

observed were driven by both RM-higher and YJM-higher coherent pQTL-pQTL pairs [Fig. S3D]. 355 

These data indicate that the RM and YJM parental backgrounds have undergone directional 356 

selection on the expression of these proteins, driven by multiple variants controlling the same 357 

regulatory modules. The coherence in trans-pQTL effects we observed, therefore, is likely 358 

adaptive and ecologically relevant. 359 
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 360 

Figure 3. Polygenic adaptation reflecting natural selection on protein abundance. (A) 361 
Schematic of Ras/PKA signaling highlighting the Ira1, Ira2, and Pde2 proteins which harbored 362 
trans-acting hotspots. (B) Mcr1 protein levels as a function of F6 progeny genotypes at the PDE2, 363 
IRA2, IRA1, and MCR1 loci, as indicated. Boxes show median and upper and lower quartiles; 364 
whiskers show 1.5 times the interquartile range. (C) tSNE embeddings highlighting proteins 365 
upregulated by the vineyard (blue) and clinical (orange) alleles of IRA1, IRA2, and PDE2, as 366 
indicated. (D) Schematic illustrating the principle of the pQTL sign test. (E) Mean fraction of 367 
coherent trans-pQTLs across all mapped associations (ordinate) as a function of trans-pQTL p 368 
values (abscissa). Actual mapping data is shown in purple; random expectation across all trans-369 
pQTLs, regardless of protein target, is shown in grey; p values by binomial test. See also Figure 370 
S3.  371 
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Coding variation driving protein abundance in trans 372 

Protein abundance can be controlled either by coding (protein-altering; non-synonymous) or non-373 

coding (regulatory, and also potentially synonymous) mutations either in cis or in trans [Fig 4A]. 374 

Both coding and non-coding variants altered protein abundance in cis: just under half of the cis-375 

acting pQTNs we identified altered protein-coding sequences, and both protein-altering and 376 

regulatory variants had similar effect sizes [Fig 4B]. On the other hand, protein-altering trans-377 

pQTNs exerted much larger effects on their targets [Fig. 4C]. The Asn201Ser missense variant in 378 

Ira2, for instance, was identified in our map to strongly affect the abundance of Mcr1 (among 379 

many other targets) [Fig. 3B]. To confirm that this variant was causally responsible, we 380 

reconstructed the allele of the clinical strain, by introducing the single, trans-acting nucleotide 381 

variant in the vineyard strain background by genome editing. We observed a pronounced decrease 382 

in Mcr1 levels (p < 0.0002) also in the vineyard background [Fig. 4E]. Thus, the homeostatic 383 

network of cells may buffer the proteomic effects of regulatory trans-pQTNs relative to their 384 

protein-coding counterparts. 385 

The strength of these effects led us to speculate that coding trans pQTNs–which perturb 386 

the protein products of the genes in which they arise–might help us to understand the biochemical 387 

features of missense variants that impact function. We first used a classic metric (BLOSUM6246) 388 

to assess the conservation of missense trans pQTNs as compared to all other segregating missense 389 

variants. To our surprise, missense pQTNs were more conservative (in terms of BLOSUM62 390 

score) than the control variants (p < l0-9) [Fig. 4F], suggesting that knowledge of the reference and 391 

alternate amino acid residues was insufficient to predict functional outcomes. With this in mind, 392 

we used the FoldX variant effect prediction algorithm–which incorporates protein structures–to 393 

score the pQTNs and the set of control missense variants47. This analysis indicated that trans 394 
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pQTNs were indeed more disruptive to protein stability than other segregating missense mutations 395 

(median ΔΔG ~ 0.83 vs. 0.54 kcal/mol; p < 10-6) [Fig. 4F]. 396 

The discrepancy between the BLOSUM62 and FoldX predictions suggested that local 397 

context within a protein was important. Consistent with this idea, amongst the pleiotropic trans 398 

hotspots we identified, perturbative missense trans-pQTNs often occurred outside of the core 399 

functional domains of the encoded protein: Ira2Asn201Ser (356 targets) lay outside of the Rho GTPase 400 

domain; Gcs1Ala147Pro (50 targets) outside of the ArfGAP catalytic domain; and Snf5Lys174Thr (37 401 

targets) in a disordered region outside of the conserved SNF5/SMARCB1 domain [Fig. 4G]. The 402 

opposite was true for conservative substitutions: Rim15Thr986Ile (36 targets) lay in the kinase 403 

domain; Pho90Ile234Met (31 targets) in the SPX domain; and Prp2Val528Ile (24 targets) in the helicase 404 

domain [Fig. 4H]. We also noted that Ura5Gly73Val, which controlled 79 targets, lay in the core 405 

phosphoribosyltransferase domain of the enzyme – this may account for its strong and widespread 406 

effects. 407 

Generalizing this idea, we hypothesized that two parameters might capture key aspects of 408 

the structural context: 1) a residue’s solvent-accessible surface area and 2) the number of other 409 

alpha-carbon atoms within 10Å (a proxy for the local complexity of the protein fold). Together, 410 

we expected these metrics to capture the proximity of a residue to a protein’s core folded and 411 

functional domains. Exploiting the availability of AlphaFold2-predicted backbone structures48, we 412 

calculated these statistics for every residue in the yeast proteome. Reasoning that missense variants 413 

that fixed in wild strains might themselves represent a conservative subset of the possible 414 

mutational spectrum, we first compared all segregating missense variants in our cross to all 415 

possible missense SNPs that could arise in the proteome (see Methods). Indeed, the mutations 416 

present in the F6 progeny used in our experiments were both more solvent-exposed and occurred 417 
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in less-complex regions of the protein fold (p < 10-20; p < 10-90; respectively) [Fig. 4I; Fig. S4A]. 418 

The same was true when considering only transitions or only transversions, suggesting that this 419 

finding was independent of biases in the origin of the natural mutations. Nevertheless, amongst 420 

these fixed mutations, both structural metrics distinguished missense pQTNs from all other 421 

segregating missense variants: pQTNs were more buried and occurred in more complex regions 422 

of the fold relative to other segregating variation (p < 0.04; p < 0.02; respectively) [Fig. 4J]. 423 

Collectively, these data illustrate how nucleotide-resolution genotype-to-molecule maps can reveal 424 

biochemical mechanisms changing protein abundance and, in turn, explain the prevalence of 425 

natural genetic variants.  426 
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 427 

Figure 4. Biochemical constraints revealed by proteomic mapping. (A) Schematic illustrating 428 
possible molecular mechanisms of cis and trans regulation (B) Effect size of protein-altering, 429 
synonymous, and regulatory cis-pQTNs, as indicated. Boxes show median and upper and lower 430 
quartiles; whiskers show 1.5 times the interquartile range. (C) Effect size of protein-altering, 431 
synonymous, and regulatory trans-pQTNs, as indicated. Boxes show median and upper and lower 432 
quartiles; whiskers show 1.5 times the interquartile range. p values by two-sided t test. (D) 433 
Predicted effect from genetic mapping of the IRA2Asn201Ser missense variant on Mcr1 levels. p value 434 
by F test. (E) CRISPR reconstruction and mass spectrometry to validate the effect of the 435 
IRA2Asn201Ser variant on Mcr1 levels. n = 15; p value by two-sided t test. (F) BLOSUM62 (top) and 436 
FoldX scores (bottom) for missense trans-pQTNs (blue) as compared to all other segregating 437 
missense variants (grey). Boxes show median and upper and lower quartiles; whiskers show 1.5 438 
times the interquartile range. p values by Mann-Whitney U test. (G) Illustrative conservative 439 
pQTN substitutions and (H) perturbative pQTN substitutions with functional domains of the 440 
mutated proteins indicated. (I) Solvent-accessible surface area and number of Cα within 10Å for 441 
all possible missense SNPs (purple; also shown are subsets resulting from transitions and 442 
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transversions) and all missense variants segregating in the F6 mapping panel (grey). (J) As in (I) 443 
for all possible missense SNPs (purple), missense pQTNs identified in this study (blue), and all 444 
other missense variants segregating in the F6 mapping panel (grey). p values by Mann-Whitney U 445 
test. See also Figure S4.  446 
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Covariation of protein abundances reveals foundational proteome architecture 447 

Precise deletion and knockdown experiments yield rich information on the molecular and 448 

functional connectivity of gene products30,49,50, but remain challenging in non-model organisms 449 

and for essential genes. In large proteomic datasets, protein covariation analysis is a powerful 450 

alternative strategy to learn about protein function, and is particularly effective for essential 451 

proteins, which are enriched for high abundance and low variability51. We first calculated the 452 

correlation in protein abundance across our mapping cohort for all pairs of observed proteins, 453 

noting many covariation signals that reflected known metabolic functionality. For instance, levels 454 

of Hxk2, the glycolytic hexokinase that predominates during growth on glucose, were strongly 455 

anticorrelated with its paralog Hxk1 and the hexokinase Glk1 [Fig. S5A]. Both Hxk1 and Glk1 456 

are directly repressed by nuclear localization of Hxk2 under low glucose concentrations52. Hxk1 457 

and Glk1 levels were themselves tightly correlated, as was Emi2, a paralog of Glk1 with 458 

hexokinase activity53. Indeed, these relationships were reflective of the broad tradeoff between 459 

fermentative and respiratory gene expression programs: glycolytic and citric acid cycle enzymes 460 

[Fig. 5A] were coherently controlled by the IRA2 alleles described above [Fig. 5B]. These regulons 461 

formed pronounced covarying clusters [Fig. 5C]; notably, this covariation structure was much 462 

more evident amongst the F6 progeny than in biological replicates of the parents alone [Fig. 5D].  463 

We then asked whether covariation in these closely related F6 progeny was representative 464 

of covariation across natural and synthetic genetic diversity in S. cerevisiae. We compared the 465 

correlations in protein abundance in our dataset to those in a species-wide survey54, as well as the 466 

correlations observed within the proteomes of ~ 5,000 viable gene deletion strains30. The 467 

architecture of covariation was conserved, with protein covariation coefficients correlating well 468 

between these independent experiments (Pearson’s r = 0.56 for F6 haploids vs. 1,002 Yeast 469 
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Genomes; 0.52 for F6 haploids vs. precise deletions) [Fig. S5B]. Thus, the modest genetic 470 

divergence harbored by our mapping panel drives proteome diversity that is representative of a 471 

much broader range of genetic variation. 472 

 473 

Systems biology of variant-protein associations 474 

To probe the physical and genetic connections embedded in these data, we first assessed whether 475 

members of the same macromolecular complex55 co-varied in their abundance. Indeed, the mean 476 

Pearson correlation between complex members was 0.224, as compared to 0.038 for all protein-477 

protein pairs (p < 10-195 by Mann-Whitney U test) [Fig. 5E]. These data were sufficient to resolve 478 

the fine details of complexes and metabolic pathways: we found, for instance, that the F1 core 479 

structural subunits (particularly the alpha (Atp1), beta (Atp2), gamma (Atp3), and a component of 480 

the stator (Atp4) of the mitochondrial ATP synthase) were highly correlated [Fig. S5C]. Similarly, 481 

the levels of enzymes with functional overlaps or that physically associate (e.g. Idh1/Idh2, 482 

Kgd1/Kgd2) covaried tightly [Fig. S5D]. Abundance correlations were also reflective of other 483 

measures of connectivity. The STRING database co-expression metric, which aggregates mRNA 484 

and protein data56, was significantly correlated with protein covariation in our measurements (p < 485 

10-250) [Fig. S5E]. So too was the genetic interaction similarity score from The Cell Map (p < 10-486 

191)57 [Fig. S5F], which measures functional relatedness based on genetic epistasis analysis. 487 

Protein covariation can be caused by physical interactions between proteins. We thus 488 

speculated that some of the architecture of our mutation-to-protein atlas could be mechanistically 489 

explained by interactions between complex subunits (from ComplexEBI58) and genetic or protein-490 

protein interactions (obtained from BioGRID59) [Fig. 5F]. Only one trans-pQTL connected two 491 

members of the same complex: Sss1 and Sec61 participate in the conserved Sec61/SecYEG 492 
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translocon complex and, notably, Sss1 plays a key role in the stability of the Sec61 protein [Fig. 493 

5G]60. A further 204 (~ 3.2%) trans-pQTL-target pairs connected protein-protein interactors [Fig. 494 

5F]. Of these, 155 were genetic interactors, 35 physical, and 14 both genetic and physical. A 495 

variant in IRA2, for instance, controlled the abundance of the PKA regulatory subunit Bcy1; these 496 

proteins physically interact as part of the Ras/PKA signaling complex [Fig. 5H]61. Similarly, a 497 

variant at PDE2 controlled an array of its genetic interactors, including Cox6, Cox12, Cyt1, Qcr2, 498 

and Qcr7, all of which are involved in respiration–a process tightly linked to cAMP signaling 499 

mediated by Pde2 [Fig. 5I]39. Thus, trans-pQTL relationships reflect known physical and 500 

functional associations between proteins, while also describing a rich regulatory network not 501 

captured by complementary interaction metrics. 502 

 503 

Functionalizing the proteome reveals cryptic regulatory activity 504 

A surprising example of these noncanonical regulatory networks arose at FRE1, a gene encoding 505 

a ferric reductase important in iron and copper uptake and metabolism [Fig. 5J]62. The pleiotropic 506 

hotspot, attributable to a frameshift in FRE1 in the clinical (YJM) background, controlled the 507 

levels of 79 proteins (56 upregulated by the vineyard allele and 23 by the clinical allele) [Fig. 5K]. 508 

Only 2 of the regulated genes exhibited genetic interactions with FRE1 in BioGRID, and none 509 

were physical interactors. Strikingly, however, many of the targets and their associated complexes 510 

depended on heme or iron-sulfur clusters for their activity (e.g., Cor1, Cox2/4/6/13, Cyt1, Qcr2/7, 511 

Rip1, Sdh3) or were otherwise involved in respiration (e.g., Atp1/2/3/5/7/15/17/19, Cit1, Fum1, 512 

Kgd1/2, Mdh1, Sdh1/3) [Fig. 5L]. Indeed, iron metabolism and mitochondrial function are 513 

intimately linked63. 514 
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The downregulated set of proteins was also highly enriched (p < 10-19)36 for targets of the 515 

Heme Activator Proteins (Hap) 2/3/4/5 transcription factor complex, which respond to intracellular 516 

heme levels64,65. Conversely, the set of proteins upregulated in the FRE1 loss-of-function 517 

background were enriched for targets of Nhp6 (p < 10-4), which acts with Aft1 (Activator of 518 

Ferrous Transport) in the upregulation of iron transport66. Thus, impaired heme and iron-sulfur 519 

cluster synthesis–due to loss of Fre1 activity–led to widespread downregulation of enzyme 520 

components that depend on iron to function and an upregulation of compensatory transport 521 

machinery. The ubiquity of these noncanonical hotspots in our atlas suggests that connecting 522 

mutations to molecules can reveal previously unappreciated regulatory relationships–indeed, some 523 

may be mediated directly by cofactors or metabolites.  524 
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Figure 5. pQTLs reveal molecular and functional connectivity. (A) Schematic of metabolites 526 
and enzymes of glycolysis (purple) and citric acid cycle (green). (B) As in (A), with metabolites 527 
highlighted in blue and orange if an enzyme catalyzing a reaction involving that metabolite is 528 
regulated by IRA2RM or IRA2YJM alleles, respectively. (C) Heatmap of pairwise SWATH-MS 529 
abundance correlations amongst enzymes shown in (A). Highlighted in blue and orange are blocks 530 
of coregulated enzymes regulated by the IRA2RM or IRA2YJM alleles, respectively. (D) As in (C), 531 
but for correlations within replicate measurements of parental isolates. (E) Pairwise SWATH-MS 532 
abundance correlations between complex members as compared to all possible pairs of measured 533 
proteins. p value by Mann-Whitney U test. Dots indicate mean and bars standard error. (F) 534 
Cumulative frequencies of pQTL-target connections reflecting (left) BioGRID interactions (blue) 535 
and all other pQTL-target pairs (grey) and (right), amongst BioGRID interactions, those annotated 536 
as genetic (blue), physical (purple) or both genetic and physical (green). (G) Sss1 abundance in 537 
vineyard and clinical parents and in F6 progeny with SEC61 genotypes as indicated. (H) Bcy1 538 
abundance in vineyard and clinical parents and in F6 progeny with IRA2 genotypes as indicated. 539 
(I) Schematic of pQTL-target connections between PDE2 and various targets upregulated by 540 
vineyard allele, as indicated. p values by F test. (J) Schematic of the role of Fre1 in iron reduction 541 
and uptake at the plasma membrane 67. (K) Volcano plot illustrating predicted effects on abundance 542 
from genetic mapping (abscissa) and forward selection F test p value (ordinate) for the FRE1 trans-543 
pQTL. (L) Downstream FRE1 pQTL targets that bind iron or heme or that are targets of Hap4 or 544 
Aft1, as indicated. See also Figure S5.  545 
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Prioritizing causal variants at drug-resistance loci 546 

Variants that impact molecular phenotypes are often thought more likely to underlie organismal 547 

traits. A promising application of mutation-to-molecule maps is therefore to prioritize causal 548 

variants at poorly resolved loci that are implicated by genotype-to-phenotype mapping (e.g., based 549 

on GWAS)9. To assess the validity of this heuristic in our real-world dataset, we analyzed a 550 

complementary high-resolution genotype-to-phenotype map34 across an array of carbon sources, 551 

antifungal drugs, mutagens, and toxic metals. Across 12 environments, we mapped 9,321 QTLs 552 

and resolved 2,519 QTNs to a single causal variant (FDR ~ 10%; see Methods), explaining a 553 

median of 64% of the phenotypic variance at the final experimental time point [Supplemental 554 

Table S7]. 555 

We noted that the RM allele of a regulatory variant (ERG11T122014C) adjacent to ERG11 556 

was predicted to upregulate the associated protein Erg11, the mechanistic target of the azole 557 

antifungals in S. cerevisiae68, and to reduce sensitivity to azole treatment. Yet our phenotypic 558 

mapping also implicated a missense variant, Erg11Lys433Asn, as potentially important for 559 

fluconazole sensitivity–albeit without resolving the mutation as a phenotypic QTN [Fig. 6A]. 560 

Upon reconstruction of these mutations in the sensitive background by genome editing, mass 561 

spectrometry confirmed that the upstream regulatory variant controlled protein level, as predicted 562 

[Fig. 6B]. The neighboring missense variant, as expected from our mutation-to-protein map, did 563 

not impact abundance. Both of the variants, however, reduced azole sensitivity in additive fashion 564 

(p < 0.05) [Fig. 6C]; thus, the combination of proteomic and phenotypic mapping revealed two 565 

variants at this locus that contribute equally to drug susceptibility. This example and others22,35,69 566 

emphasize that the architecture of even a single causal locus can be complex, and that non-coding 567 

variation cannot be neglected when identifying and predicting drug resistance70. 568 
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We examined our growth mapping data for other examples to support the notion that 569 

unresolved genotype-to-phenotype associations could be resolved by proteogenomic mapping. 570 

One striking example was the non-coding cis-pQTN NCP1A-177T. Ncp1 associates with the 571 

ergosterol biosynthetic enzyme Erg11, and phenotypic mapping suggested that a causal locus for 572 

fluconazole sensitivity was present, but we failed to implicate a single QTN [Fig. 6D]. Yet when 573 

we reconstructed the putative causal variant and subjected the gene-edited strain to azole treatment, 574 

the higher-expressing NCP1-177T allele indeed exhibited decreased azole sensitivity (p < 10-4) [Fig. 575 

6E]. The NCP1 mutation did not impact growth in the absence of drug [Fig. S6A], nor significantly 576 

increase the levels of Erg11 [Fig. S6B], indicating that the effect on azole sensitivity was likely 577 

directly related to Ncp1 abundance. These case studies illustrate how proteogenomic mapping can 578 

inform detailed hypotheses regarding the function of natural variants. 579 

 580 

Molecular mapping pinpoints a hidden causal variant 581 

Trans-regulatory mutations are often thought to have widespread effects on phenotype due to 582 

changes in the expression of many downstream target proteins16. Considering the large number of 583 

proteins–more than 300–regulated by the IRA2 hotspot, we anticipated a strong phenotypic effect. 584 

To our surprise, however, QTN mapping revealed few variant-phenotype associations at IRA2, 585 

even though dozens of pQTNs were unambiguously identified [Fig. 6FGH; Fig. S6C]. To 586 

understand this discrepancy, we first confirmed that the numerous variant-protein associations at 587 

the trans-pQTL hotspot reflected a change in Ira2 and not a linked mutation in a neighboring gene. 588 

Comparing our mapping results to orthogonal proteomic characterization of an IRA2 deletion 589 

allele30 strongly suggested that the hotspot was attributable to loss of Ira2 function: the proteomic 590 

consequences of the YJM allele of IRA2 were highly concordant with those of the deletion (r = -591 
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0.81; p < 10-80; i.e., the RM allele is hyperactive) [Fig. S6D]. Much weaker correlations were 592 

observed between our mapping data and the proteomic effects of deleting the neighboring ATG19 593 

and REX4 genes (r = -0.08 and r = 0.30, respectively). 594 

We next tested whether the Ira2Asn201Ser mutation alone, and not one of the several other 595 

mutations segregating at IRA2, was responsible for the predicted regulatory effects. Reconstructing 596 

the putative causal variant had widespread effects on protein abundance that agreed very well with 597 

our mapping results: nearly all the proteomic effects in the clinical (YJM) background (94%; p < 598 

10-19) and the majority in the vineyard (RM) background (78%; p < 10-11) agreed with the mapping 599 

prediction [Fig. 6H]. Thus, the Ira2Asn201Ser mutation is a true pleiotropic trans-pQTN. 600 

Although highly sensitive, our phenotypic and pQTL mapping approaches (like most, with 601 

a handful of exceptions, e.g.71) assume a linear model in which the effects of mutations combine 602 

additively. We therefore entertained the possibility that while the regulatory effects of the 603 

Ira2Asn201Ser mutation were as predicted, its effects were modified by nonlinearities not captured 604 

by our linear model (e.g., those arising due to genetic background effects). Indeed, the quantitative 605 

consequences of the IRA2 variant were much more pronounced in the YJM background than in its 606 

RM counterpart, despite widespread directional concordance [Fig. 6I]. This suggested that a 607 

genetic background effect might be at play. 608 

With this in mind, and considering that Ras/PKA signaling is central to nutrient sensing, 609 

we measured the growth of the genome-edited strains bearing the trans-regulatory mutation on 610 

various carbon sources. Strikingly, we found that the Ira2Asn201Ser mutation had fitness effects that 611 

were both strain- and condition-specific: the vineyard allele was highly deleterious in the clinical 612 

background when cells were grown on non-fermentable carbon sources, whereas the clinical 613 

variant had a minimal fitness effect when reintroduced into the vineyard background [Fig. 6J]. 614 
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Conversely, the clinical mutation modestly impacted fermentative growth in the vineyard 615 

background, while the vineyard mutation had no significant effect under such conditions in the 616 

clinical parent [Fig. S6E]. The asymmetric phenotypic effects of the Ira2Asn201Ser polymorphism 617 

were likely obscured in statistical mapping due to the segregation of suppressing alleles 618 

responsible for the strong background effect. Thus, molecular mapping can unmask nonlinearities 619 

that otherwise disguise the fitness effects of even highly pleiotropic regulatory hotspots, and 620 

forecast their impact under the conditions where these effects emerge.  621 
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 622 

Figure 6. Cryptic fitness effects embedded in the mutation-to-protein map. (A) Genetic 623 
mapping of the phenotypic effects of ERG11T1220124C and Erg11Asn433Lys in fluconazole. Shown is 624 
normalized growth of F6 progeny with genotypes as indicated. (B) Mass spectrometry of Erg11 625 
protein levels in clinical (YJM) wild-type and CRISPR-edited YJM ERG11T1220124C, YJM 626 
Erg11Asn433Lys, and YJM ERG11T1220124C Erg11Asn433Lys mutant strains. n = 4; p values by Student’s 627 
t test. (C) Growth of clinical (YJM) wild-type and CRISPR-edited YJM ERG11T1220124C, YJM 628 
Erg11Asn433Lys, and YJM ERG11T1220124C Erg11Asn433Lys mutant strains in fluconazole. n = 96; p 629 
values by Student’s t test. (D) Fine-mapping of Ncp1 cis-pQTN as compared to fine-mapping of 630 
the azole-sensitivity QTL in the vicinity of NCP1. (E) Growth of clinical (YJM), vineyard (RM), 631 
and CRISPR-edited RM NCP1A-177T mutant strains in fluconazole. n = 96; p value by Student’s t 632 
test. (F) Diagram of IRA2 locus and segregating IRA2 mutations. (G) pQTN fine-mapping scores 633 
for the top 50 IRA2-target associations (left) and QTN fine-mapping scores for IRA2 growth QTL 634 
associations. (H) Predicted IRA2 pQTN effects from genetic mapping (this study; ordinate) as 635 
compared to measured effects of (left) CRISPR-edited YJM Ira2Asn210Ser and (right) RM 636 
Ira2Ser201Asn mutants. Mass spectrometry estimated abundances normalized to wild type in each 637 
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case. (I) Measured effects of CRISPR-edited YJM Ira2Asn210Ser (ordinate) and RM Ira2Ser201Asn 638 
(abscissa) mutants. (J) Growth of clinical (YJM), vineyard (RM), and CRISPR-edited RM 639 
Ira2Ser201Asn mutant (left) and YJM Ira2Asn210Ser mutant (right) in ethanol. n = 96; p values by 640 
Student’s t test. See also Figure S6.  641 
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Forecasting variant effects across environments from molecular phenotypes 642 

The proteomic measurements that determined our mutation-to-protein map were made only in the 643 

absence of stress: the causal cis-regulatory variant at ERG11 for instance [Fig. 6A], was identified 644 

as a pQTN in media without azoles, but was a potent regulator of azole sensitivity. Likewise, the 645 

widespread proteomic impact of the IRA2 hotspot mutation was readily apparent in minimal 646 

glucose, even though its fitness consequences emerged more strongly in respiratory conditions. 647 

Moreover, stress-response QTLs were highly condition-specific: we saw little decline in the 648 

identification of unique QTLs as we considered additional environments [Fig. 7A]. In concordance 649 

with an omnigenic model of complex heritability in which many genes contribute to a phenotype72, 650 

stress-response traits were more genetically complex than protein levels and stress-response QTLs 651 

exhibited smaller median effect sizes than pQTLs (p < 10-16) [Fig. 7B]. Consistent with their larger 652 

effects, and in contrast to phenotypic QTLs, rarefaction analysis indicated that we captured a 653 

comprehensive pQTL atlas [Fig. 1K]. Together, these properties suggested that the genotype-to-654 

protein map was well-powered to dissect the molecular mechanisms underlying emergent stress-655 

response QTLs. 656 

Although effects on phenotype arise through diverse mechanisms, and only a subset act via 657 

changes in protein level, our mutation-to-protein map overall contained rich information on 658 

causality: pQTNs were much closer to stress-response QTNs than expected by chance (p < 10-11) 659 

[Fig. 7C]. Moreover, the effect sizes of pQTNs and stress-response QTNs were correlated (r = 660 

0.29; p < 10-16) [Fig. S7A]. We therefore hypothesized that growth phenotypes reflect the effects 661 

of underlying mutations controlling proteins with distinct phenotypic consequences [Fig. 7D]. 662 

Indeed, across all the environments we surveyed, pQTNs discovered in minimal glucose medium 663 
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were much more predictive of causality under stress (p < 10-152) than QTNs from the minimal 664 

glucose condition [Fig. 7E]. 665 

Rapamycin and tebuconazole resistance traits, for instance, shared few large-effect QTLs 666 

in common (e.g. HPF1) and were predominantly driven by distinct loci (e.g. at RICTOR/AVO3 667 

and ERG11, respectively): of the 663 causal loci identified in rapamycin, only 268 (40%) 668 

coincided with one of the 635 causal loci underlying tebuconazole resistance [Fig. 7F]. Strikingly, 669 

on the other hand, the genetic architecture of protein levels had much greater overlap, with 489 670 

tebuconazole-resistance loci (77%) and 534 rapamycin-resistance loci (81%) coinciding with a 671 

pQTL. This was true in general: across the diverse environments we tested, an average of 78% of 672 

stress-resistance QTLs colocalized with a pQTL, in contrast to an average of only 48% of QTLs 673 

coinciding between stress conditions [Fig. 7G]. This suggested that the molecular effects of 674 

genetic diversity that pre-existed in unstressed cells emerged into distinct cellular phenotypes 675 

under stress. Molecular mapping therefore holds powerful promise in forecasting the functional 676 

consequences of mutations, even if the maps are charted before pathologies emerge.  677 
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 678 

Figure 7. Proteomes identify causal variants underlying quantitative traits. (A) Rarefaction 679 
plot of unique growth QTLs discovered as a function of additional environments mapped, as 680 
indicated. (B) Effect size (variance explained) of pQTLs (blue) and growth QTLs (grey). p value 681 
by Mann-Whitney U test. (C) Relative frequency histogram of the distance from al phenotypic 682 
QTNs to (blue) the nearest pQTN and (grey) randomly selected sets of markers of the same size. 683 
p value by Kolmogorov–Smirnov test between real and permuted data. (D) Schematic of pQTNs 684 
(blue), growth QTNs in minimal glucose medium (no stress; grey), and stress-responsive growth 685 
QTNs (various colors). (E) As in (C), but illustrating the distance from stress-responsive growth 686 
QTNs to (blue) the nearest pQTN and (grey) growth QTNs discovered in minimal glucose (no 687 
stress). p value by Kolmogorov–Smirnov test. (F) Example Miami plot of QTLs identified for 688 
growth in rapamycin (top) and tebuconazole (bottom). (G) Heatmap of the relative fraction of 689 
QTLs in common between environments (ordinate) and environments and pQTLs (abscissa), as 690 
indicated. See also Figure S7.  691 
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Discussion 692 

Most mutations, and even many genes, remain of unknown cellular function. A promising bridge 693 

from genotype to phenotype is to map the effects of natural variants on protein levels, because 694 

proteins perform an array of critical cellular functions that link the DNA blueprint to physiology. 695 

Despite this promise, causally linking individual mutations to their proteomic consequences and 696 

phenotypic effects remains a challenge. This is in part because most genetic mapping approaches 697 

yield (at best) gene-level resolution, and also because mutations can alter protein function in 698 

various ways; for example, many proteins function in protein complexes or larger molecular 699 

pathways. Moreover, associating proteins with phenotypes alone often cannot disentangle whether 700 

changes in protein levels are truly causal. Here, building on ‘super-resolution’ phenotype mapping 701 

using a large segregant panel from two closely related yeast parents10,13, we combined this 702 

approach with quantification-precise high-throughput proteomics to link genetic to proteomic 703 

diversity.  704 

Although we do not quantify all proteins, we capture a large fraction on a molar basis. 705 

Quantifying additional marginal proteins would not change the overall regulatory picture we 706 

charted, as indicated by rarefaction analysis (although more cis-acting loci would likely be 707 

identified). Notably, because essential proteins are enriched in the high-abundance protein fraction 708 

well-detected by mass spectrometry30, our map captures essential proteins particularly well, and 709 

thus complements forward and reverse genetic screens. Moreover, because our cross recombines 710 

naturally occurring genetic variation, our study complements deep mutational scans that contain 711 

many variants not found in nature. 712 

Despite their small genetic differences, the two parental isolates harbor highly diverged, 713 

functionally coherent proteomes. While the boundaries set by the parents largely define the 714 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619054doi: bioRxiv preprint 

https://paperpile.com/c/wecPqv/SBTp+DCcH
https://paperpile.com/c/wecPqv/zR5TB
https://doi.org/10.1101/2024.10.18.619054
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

43 

proteomes of the offspring, the offspring exhibited substantial proteomic diversification, as well. 715 

Exploiting the segregation of the underlying genetic diversity in the F6 progeny, we captured 716 

genetic control for most proteins in our atlas, with a surprisingly high number of variants impacting 717 

protein levels. Thus, fixed natural mutations were often far from neutral: even the variation 718 

between two closely related strains proved to be a rich vein of diversity in the proteome. 719 

Notably, proteins that did not differ in abundance between the parents often changed in the 720 

offspring. Termed transgression, this property has been reported for mRNA abundance and 721 

organismal phenotypes10,11,73, but has thus far received limited attention in the proteome. Similar 722 

effects also likely underlie the phenotypic transgression commonly observed in agricultural 723 

genetics73. Further, for several proteins, their abundance in most of the offspring closely resembled 724 

one parent rather than the other. Interestingly, the deviating parent often represented an extreme 725 

relative to other wild isolates, while the typical offspring more closely resembled the average of 726 

natural strains across the species. Both phenomena are explained in our data by multiple loci that 727 

aggregate in controlling the abundance of a protein. Due to different variants driving abundance 728 

in opposing directions, the extremes become less likely–but not inaccessible–compared to typical 729 

protein levels. Natural genetic diversity is thus amplified in the proteome through meiosis; this 730 

emergent proteomic diversity could be a potent source of variation allowing some offspring to 731 

rapidly adapt to new environments. 732 

Our dataset demonstrates the added value of proteomics in interpreting genetic variation. 733 

We achieved explanatory power previously reported only for mutation-to-mRNA maps12, but with 734 

the critical addition of very high resolution–often implicating single causal nucleotides. This 735 

highlighted the complementarity of eQTL and pQTL approaches: many cis-pQTL effects are 736 

detected only at the proteome level, with no evidence of mRNA allelic imbalance for the associated 737 
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mRNAs. These associations likely stem from protein properties that are not represented at the 738 

mRNA level, such translation efficiency, protein stability, and turnover. Conversely, we observed 739 

widespread signatures of trans mRNA regulation in our pQTL map (for example, downstream of 740 

the Ras/PKA pathway). The remaining missing heritability in our and prior studies likely arises 741 

from a large number of small-effect variants, some epistatic contributions, and epigenetic 742 

influences, such as prions, that we have not yet tracked in the meiotic progeny. Previous difficulties 743 

in identifying signatures of mRNA-level effects in proteomes likely arose primarily from 744 

comparatively limited statistical power to identify and colocalize trans-eQTLs and -pQTLs33,74. 745 

Of note, much of trans regulation arose from proteins not usually thought of as regulatory, and 746 

illustrates the profound self-regulatory structure of metabolism. Indeed, trans-regulatory variants 747 

were often found in metabolic enzymes and transporters. 748 

The sheer number of well-resolved pQTLs we identified, and our choice to study the 749 

progeny of two wild isolates, rather than one wild and one domesticated strain, granted excellent 750 

statistical power to assess natural selection on protein levels. Indeed, a sign test on pQTLs revealed 751 

that directional selection had acted to reshape the proteome to fit the niches inhabited by each 752 

parent, despite their relatively recent evolutionary divergence. This further suggests that the levels 753 

of many proteins are relevant to fitness and subject to selection. These and many prior 754 

observations75 call into question the notion that much of segregating genetic variation is 755 

functionally neutral, or nearly so. Rather, natural proteomes likely reflect an intricate interplay 756 

between stabilizing selection–as evidenced by transgression–and directional selection–as reflected 757 

in the striking proteomic divergence of the parents and the results of the pQTL sign test. 758 

Cis-acting effects were balanced between coding and non-coding variants, but coding 759 

variation appears to have a privileged role in trans regulation of protein levels. This may be 760 
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because coding variants can alter both protein function and abundance, while non-coding variants 761 

are expected to leave the former untouched. Given that few genes are haploinsufficient, whether 762 

in yeast or humans, tolerance of small excursions in the amount of a gene product may be a general 763 

property. Indeed, in a recent study addressing aneuploid gene dosage in natural strains, we made 764 

similar observations and hypothesized that the attenuation of trans-acting regulatory variation may 765 

arise from buffering of the proteome against gene expression noise32. Accounting for the structural 766 

context of the trans pQTNs in their host proteins revealed molecular signatures that distinguished 767 

pQTNs from other segregating variants. Thus, the potency of a coding trans-pQTN likely depends 768 

on the amino acid substitution it encodes and the function of the protein domain in which the 769 

mutation occurs. Given that less stable proteins are more quickly degraded, we speculate that many 770 

pQTNs altered protein abundance by reducing stability. Mapping other molecular layers (e.g. 771 

metabolite levels) may help to disentangle effects on protein stability versus catalytic activity, as 772 

may considering the position and role of proteins in the metabolic network, as we have shown 773 

elsewhere on longer timescales of adaptation76. Another intriguing question for future study is 774 

which mutations represent a simple modulation (modest gain or loss) of existing activity versus an 775 

incipient neofunctionalization or gain of new targets. 776 

Abundance covariation amongst the progeny revealed a rich map of functional 777 

associations–much more so than considering covariation only in the parents. The pQTL map 778 

revealed functional connections not captured by prior interaction networks, even in yeast where 779 

these resources are most complete. In a few cases (< 4%), pQTLs reflected known physical or 780 

genetic interactions between the proteins, but to a much larger extent our molecular map reflected 781 

physiological interactions not captured by these metrics. These included global metabolic traits, 782 

such as a cryptic causal variant in IRA2, common in natural strains, which affected the 783 
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respiration/fermentation balance via the Ras/PKA pathway; functional metabolic traits, such as the 784 

iron- and iron-sulfur co-dependency of the respiratory chain; and local metabolic traits such as the 785 

anti-correlation of hexokinases. Additional functional relationships can likely be identified by 786 

extending high-resolution mapping to post-translational modifications18 and protein-protein 787 

interactions77, which are governed by some overlapping and some distinct processes relative to 788 

protein abundance pQTLs. Also of interest is to dissect how many of the surprising pQTL hotspots 789 

we identified (e.g., at FRE1) are mediated by mRNA levels, or whether they are in part due to 790 

direct cofactor binding and posttranslational protein destabilization invisible in the transcriptome. 791 

Indeed, cofactors are highly prevalent for several important enzyme classes, such as 792 

oxidoreductases (80% having a cofactor) and transferases (36%), highlighting the far-reaching 793 

potential of this mechanism78. Moreover, there is emerging evidence of many other metabolite-794 

protein interactions that are only beginning to be characterized79. 795 

High-resolution molecular mapping also proved valuable in identifying cryptic causal 796 

variants hidden in plain sight, such as the epistatic variant we identified in IRA2. Indeed, the low 797 

SNP density in our mapping panel allowed us to readily pinpoint the function of this mutation, 798 

unlike in other genetic backgrounds in which the variant exhibits strong epistasis even within the 799 

IRA2 gene80. Proteomics suggests that the phenotypic masking we observed arises in part from 800 

buffering of the impact of the mutation across all of its targets. This phenomenon likely arises from 801 

multiple suppressor mutations throughout the genome, as in the case of a single segregating 802 

suppressing allele we would likely observe a residual phenotypic mapping signal [Fig. S7B]. 803 

Complex cryptic effects like these are particularly pernicious: they do not manifest as “missing 804 

heritability”81 but rather as “hidden causality,” because they are suppressed in most progeny. An 805 

intriguing area for future investigation is the metabolic basis of this pronounced epistatic effect, 806 
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and we speculate that genotype-to-protein maps may show the way to many cryptic genetic 807 

variants. 808 

Finally, we show that much of the adaptive potential of natural variation under stress can 809 

be forecast from molecular genetic mapping: pQTNs that were initially phenotypically buffered 810 

were highly predictive of fitness effects in new environments. Thus, proteome diversity may 811 

explain emerging phenotypic differences across environments, and may be a mechanistic 812 

explanation for the difficulty in predicting phenotype across conditions using genomic data alone. 813 

This in turn suggests that molecular maps can highlight variants that are likely to emerge to cause 814 

disease even if mutation-to-molecule relationships are mapped before pathologies develop 815 

(although such conclusions will likely require the integration of other data, for instance, on which 816 

genes are causally related to a pathology). Moreover, data from a single tissue or, as with serum, 817 

from a pool of proteins from multiple tissues, likely holds molecular regulatory information to 818 

support inferences in other tissues affected by a disease.  819 
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STAR Methods 855 

Resource availability 856 

Lead contact 857 

Requests for resources and reagents should be directed to and will be fulfilled by the lead contact, 858 

Prof. Daniel F. Jarosz (jarosz@stanford.edu). 859 

Materials availability 860 

All strains and plasmids used in this study are available upon request to jarosz@stanford.edu. The 861 

F6 haploid mapping panel is also available from NCYC. 862 

Data and code availability 863 

Mass spectrometry datasets will be publicly available at the proteomics identification database 864 

(PRIDE) upon publication. 865 

All custom genetic mapping and protein structure analysis code is available on GitHub 866 

(https://github.com/cjakobson/pqtl-mapping; https://github.com/cjakobson/pop-gen-structure). 867 

Analyses and plots for the figures can be reproduced by cloning the pqtl-mapping repository, 868 

downloading the contents of the pqtl-mapping-dependencies folder 869 

(https://www.dropbox.com/scl/fo/3xbcbe9ivwz8aahrlk137/APGxHor01S7jnNX3a1Yk3Og?rlkey870 

=yx81ckrtaq8eb5pu80ggprjhs&dl=0), and running plotting_master_script.m. 871 

The dependencies will be deposited at Zenodo upon publication. 872 

 873 

Experimental model details 874 

Yeast strains 875 

Saccharomyces cerevisiae strains for genetic mapping were generated and genotyped previously 876 

as described in22. Briefly, ~1,000 F6 progeny from a cross between RM11 and YJM975 were 877 
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arrayed from single-colony isolates and subjected to whole-genome sequencing. To avoid 878 

confounding effects of segregating auxotrophic markers in our proteomics experiments, we 879 

selected ~850 strains from the original panel that were auxotrophic only for uracil (leucine 880 

auxotrophy also segregates). In addition to these progeny, we included at least three biological 881 

replicates of the RM11 (YDJ6649) and YJM975 (YDJ6635) haploid parental isolates in each 96-882 

well plate of our measurement campaign. These haploid strains are auxotrophic only for uracil to 883 

match the F6 segregant progeny. Also included were representative haploid wild isolates (22 strains 884 

in up to n = 6 replicates) from throughout the world, as cataloged in the SGRP collection27. The 885 

plate layouts and strain identifiers for the proteomics campaign can be found in Supplemental 886 

Table S1. A table of other yeast strains used in this study can be found in the Key Resources 887 

Table. 888 

Media and culture conditions 889 

Unless otherwise noted, yeast were propagated in minimal glucose medium with uracil (20 g/L 890 

glucose; 6.7 g/L yeast nitrogen base; 20 mg/L uracil; 20 g/L agar as needed for solid medium). 891 

Samples for growth phenotyping were pre-grown for 24-48 hr at 30°C on minimal glucose agar 892 

with uracil on Singer PlusPlates before replica pinning to growth conditions as indicated using a 893 

Singer ROTOR.  894 

For proteomics, samples were spotted from 12x96-well cryo stocks to Singer PlusPlates 895 

with 40 ml agar minimal medium using a Singer ROTOR and grown for 4 hours at 30°C. Cells 896 

were then transferred with the Singer ROTOR to 96-well plates with 200 µl minimal medium, and 897 

incubated for 16 hours. Then, 160 µl of each well of this preculture was transferred to 2 ml wells 898 

in a 96-deep-well plate with 1440 µl minimal medium and with one 2 mm borosilicate bead per 899 

well. Plates were then sealed with a Breathe Easier sealing membrane (Sigma Aldrich) and 900 
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incubated on 4 shakers (Heidolph Titramax 1000, 750 rpm, 30°C, 8 hours). After incubation 1.4 901 

ml were transferred to fresh 96-deep-well plates, and harvested by centrifugation (5 min, 4000 g). 902 

The supernatant was discarded, plates sealed with adhesive aluminum foils,  and the pellets stored 903 

frozen until further processing (-80°C). Subsequently, in each well 1600 µl sterilized water was 904 

added to the ~200 µl culture remaining in original incubation plates, plates were quickly vortexed, 905 

and OD600 was determined using a multi-well plate reader (Spark-Stacker, Tecan). For proteomes 906 

of reconstructed strains, samples were prepared in a similar fashion, containing strains YDJ6635, 907 

YDJ8281, YDJ8436, YDJ8437 (“batch 1”), YDJ6635, YDJ6649, YDJ8524, YDJ8525, YDJ8526 908 

(“batch 2”) and YDJ6635, YDJ6649, YDJ8527, YDJ8528, YDJ8529, YDJ8578 (“batch 3”). 909 

 910 

Method details 911 

Proteomics sample preparation 912 

Frozen pellets were thawed on ice. Segregant samples were processed in 3 batches with 4x96-well-913 

plates each, whereas reconstruction strains were prepared in 96-well plates in their respective 914 

sampling batches. To each well/plate, glass beads (acid washed, 100) were dispensed using a pre-915 

filled custom-made plate releasing approximately 100 mg beads/well, followed by centrifugation 916 

(0.5 min, 4°C, 1000 g). Then, 200 µl of freshly prepared 7M urea, 0.1M ammonium bicarbonate 917 

(ABC) were added to each well. Plates were sealed using Cap Mats and cells were lysed by bead 918 

milling with a Genogrinder (MiniG, SPEX) for 5 min at 1500 rpm, followed by quick 919 

centrifugation (1 min, 4°C, 3000 g). Samples were then processed as previously described32 on a 920 

Biomek i7 pipetting robot. To this end, 20 µl 5 mM DTT was added to each well, mixed, and 921 

shortly centrifuged and incubated for 1h at 30°C. Sample was left at room temperature for 15 min, 922 

and 20 µl 5 mM DTT was added, mixed, and briefly centrifuged, and incubated for 30 min in the 923 
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dark at room temperature. Reduced and alkylated samples were then diluted with 1000 µl 0.1M 924 

ABC, mixed and centrifuged shortly, and 500 µl diluted lysate was transferred to a plate containing 925 

2 µg trypsin/LysC per well, and incubated for 17h at 37°C. The digest was stopped by addition of 926 

25 µl 20% formic acid, and purified using solid-phase extraction in 96-well format. Plates were 927 

conditioned with 200µl methanol (centrifuged at 50 g), washed twice 200 µl with 50% 928 

acetonitrile/water (centrifuged at 50 g), equilibrated thrice with 3% acetonitrile/0.1% formic acid 929 

in water (centrifuged at 50 g, 80 g, 100g). 500 µl per well was loaded (centrifuged at 100 g) and 930 

washed thrice with 200µl 3% acetonitrile/0.1% formic acid in water (centrifuged at 100 g), 931 

followed by another centrifugation step at 180 g. Peptides were eluted in two steps with 120 µl 932 

and 150 µl 50% acetonitrile/water, and dried to completeness in a vacuum concentrator. Samples 933 

were then redissolved in 3% acetonitrile/0.1% formic acid, and ready for analysis. 934 

Liquid chromatography/mass spectrometry 935 

For proteomics, digested peptides were separated on a high-flow chromatographic gradient and 936 

recorded by mass spectrometry using Scanning SWATH23 on an Agilent Infinity II HPLC 937 

combined with a SCIEX 6600 TripleTOF platform. Five micrograms of sample were injected onto 938 

a reverse phase HPLC column (Luna®Omega 1.6µm C18 100A, 30 × 2.1 mm, Phenomenex) and 939 

resolved by gradient elution at column temperature of 30⁰C with 0.1% formic acid in water 940 

(Solvent A) and 0.1% formic acid in acetonitrile (Solvent B). All solvents were of LC-MS grade. 941 

The gradient separation was at a flow rate of 0. 8 ml/min flow with the steps 0 min (1 % B), 0.1 942 

min (5% B), 2.65 min (32% B), 3 min (40% B), followed by wash steps with 1.2ml/min flow at 943 

3.5 min (80% B) to 3.7 min (80% B), and column equilibration with 1 ml/min flow from 3.8 min 944 

(1% B) to 4.8 min (1% B). For mass spectrometry analysis, the scanning SWATH precursor 945 

isolation window was 10 m/z, the bin size was set to 20% of the window size, the cycle time was 946 
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0.41 s, the precursor range was set to 400 - 900 m/z, the fragment range to 100 - 1500 m/z as 947 

previously described in Messner et al. 23. A Sciex IonDrive TurboV source was used with ion 948 

source gas 1 (nebulizer gas), ion source gas 2 (heater gas) and curtain gas set to 50 psi, 40 psi and 949 

35 psi, respectively. The source temperature and ion spray voltage were set to 450⁰C and 5500 V, 950 

respectively.  951 

For validation of reconstructed strains from batch 3, proteome samples were analyzed on 952 

a ZenoTOF 7600 system mass spectrometer (SCIEX), coupled to a 1290 Infinity II LC (Agilent). 953 

Prior to MS analysis, peptides were chromatographically separated on a Phenomenex 954 

Luna®Omega column (1.6μm C18 100A, 30 × 2.1 mm) heated to 50°C, using a flow rate of 0.5 955 

ml / min where mobile phase A & B are 0.1% formic acid in water and 0.1% formic acid in 956 

acetonitrile, respectively. The gradient program was as follows: 1% to 36% B in 5 min, increase 957 

to 80% B at 0.8 mL over 0.5 min, which was maintained for 0.2 min and followed by equilibration 958 

with starting conditions for 2 min. For data independent acquisition Zeno SWATH MS/MS 959 

acquisition scheme was used with 80 variable size windows and 13 ms accumulation time. Ion 960 

source parameters were set to: Ion source gas 1 and 2 were set as 60 and 65 psi respectively; curtain 961 

gas 55, CAD gas 7 and source temperature at 600°C; Spray voltage was set at 4000V.  962 

CRISPR genome editing 963 

Genome editing was conducted as described in35. Briefly, yeast transformed with appropriate 964 

CRISPEY gene editing plasmids were induced for editing in galactose, quenched on YPD, and 965 

single colonies lacking the editing plasmid were isolated by selection on 5-FOA. Candidate edited 966 

strains were genotyped by PCR amplification of the relevant locus followed by Sanger sequencing. 967 

 968 

Quantification and statistical analysis 969 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.18.619054doi: bioRxiv preprint 

https://paperpile.com/c/wecPqv/7xig
https://paperpile.com/c/wecPqv/HSTKK
https://doi.org/10.1101/2024.10.18.619054
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

55 

DIA-NN quantification and data processing 970 

Mass spectrometry data was processed using an experimentally derived gas-phase fractionation 971 

spectral library using the DIA-NN software26 (version 1.8) with MS1 mass accuracy of 1.2x10-5, 972 

MS2 mass accuracy of 2x10-5, and a scan window radius of 6. Blanks and poorly growing samples 973 

(Z-scored OD600 < -2.5) were excluded, as were non-proteotypic precursors and entries with either 974 

Global.Q.Value, Global.PG.Q.Value, Q.Value, or PG.Q.Value > 0.01. Precursors were filtered to 975 

those occurring in > 80% of samples and those with CV > 0.3 in quality control injections were 976 

excluded. To account for plate effects, the plate-wise median for each precursor was adjusted to 977 

the grand median across all samples. Protein groups were quantified using maxLFQ82 in the DIA-978 

NN R package26; a total of 1,225 proteins were identified across 1,042 samples. Proteomic 979 

differences were similarly distributed between high- and low- abundance proteins; with the 980 

exception of the lowest abundance fraction; their higher variance may be due in part to technical 981 

variability. After batch correction, we obtained proteomes with a median technical coefficient of 982 

variation (CV) on proteins of ~ 11.0%. The proteomes contained few missing values, allowing 983 

stringent filtering: peptides shared across at least 80% of samples quantified 1,225 proteins, with 984 

an average of just 2.3% missing values [Supplemental Table S2]. 985 

Simulations and power calculations 986 

We estimated the sensitivity of our pQTL mapping approach using in silico simulated protein 987 

abundance traits. Briefly, we generated simulated protein abundance vectors and performed pQTL 988 

mapping across a range of key parameters, including the number of F6 progeny used and the 989 

number of underlying pQTLs per protein. Summary results of these simulations can be found in 990 

Fig. S7C. Based on these data, we conducted our mapping experiment with the greatest possible 991 
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number of F6 haploid isolates that were auxotrophic only for uracil, to maximize our sensitivity to 992 

pQTLs of modest effect. 993 

Heritability estimates 994 

We estimated broad-sense protein abundance heritability separately for each haploid parent control 995 

(RM11 and YJM975) using a linear mixed effect model that accounted for the harvest optical 996 

density (OD600) of each control sample. These estimates accorded well between the parental 997 

controls [Fig. S7D]. 998 

Genetic mapping 999 

Genetic mapping was conducted essentially as in22 using protein abundance as the quantitative 1000 

trait. Protein group abundance estimates from DIA-NN and maxLFQ were normalized to mean 0 1001 

and standard deviation 1, and we appended to the haploid genotype matrix a ‘pseudo-genotype’ 1002 

representing the harvest OD600 of each sample (see also Fig. S1H). Following coarse mapping of 1003 

pQTLs by stepwise selection, fine mapping of pQTNs was performed by ANOVA as described 1004 

previously22. False discovery rate was estimated per-protein by 100 permutations of real 1005 

abundance data; the empirical p value cutoffs were set to achieve ~ 10% FDR. This procedure was 1006 

conducted for the entire genotype matrix in the so-called ‘global’ mapping. In parallel, we 1007 

conducted ‘local’ mapping that only considered loci within 10 markers of the ORF encoding the 1008 

protein in question. Empirically, we found that putative cis-acting pQTL effects accorded well 1009 

between the global and local approaches [Fig. S1I]; the analyses in the paper are based on the 1010 

global analysis. 1011 

Mutation simulations and protein structure analysis 1012 

Simulations of all possible missense variants were conducted on the basis of the S288C reference 1013 

genome R64. Briefly, we generated in silico all possible single-nucleotide changes to all S288C 1014 
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ORFs and categorized these as missense or synonymous and as transitions or transversions. Allele 1015 

frequencies for extant variants were determined with reference to the 1,002 Yeast Genomes 1016 

genotype matrix. 1017 

 Predicted protein structures of all S. cerevisiae S288C ORFs were retrieved from 1018 

https://alphafold.ebi.ac.uk/download#proteomes-section. Each ORF was analyzed with DSSP83 as 1019 

well as using custom code to calculate the number of neighboring alpha-carbons. Based on these 1020 

analyses, we annotated each possible missense SNP generated above with these structural 1021 

parameters. 1022 

Phenotypic mapping 1023 

Phenotype data for ~15,000 F6 diploid isolates from the RM11 x YM975 cross grown in various 1024 

environmental conditions were released previously as part of our study of the effects of Hsp90 on 1025 

the genotype-to-phenotype map34. Here, we reanalyzed the control dataset (without Hsp90 1026 

inhibition) from that study to identify QTLs and QTNs for growth under stress. Genetic mapping 1027 

was conducted essentially as described above and previously22; complete mapping results can be 1028 

found in Supplemental Table S7. 1029 

  1030 
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