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Abstract

Genetic variants of leucine-rich repeat kinase 2 (LRRK2) were reported to alter the risk for Parkinson’s disease (PD).
However, the genetic spectrum of LRRK2 variants has not been clearly disclosed yet in Taiwanese population.
Herein, we sequenced LRRK2 coding region in 70 Taiwanese early onset PD patients (age at onset ≤ 50), and found
six amino acid-changing single nucleotide polymorphisms (SNPs, N551K, R1398H, R1628P, S1647T, G2385R and
M2397T), one reported (R1441H) and 2 novel missense (R767H and S885N) mutations. We examined the frequency
of identified LRRK2 variants by genotyping 573 Taiwanese patients with PD and 503 age-matched control subjects.
The results showed that PD patients demonstrated a higher frequency of G2385R A allele (4.6%) than control
subjects (2.1%; odds ratio = 2.27, 95% confidence interval: 1.38–3.88, P = 0.0017). Fewer PD patients (27.7%)
carried the 1647T-2397T haplotype as compared with the control subjects (33.0%; odds ratio = 0.80, 95% confidence
interval: 0.65–0.97, P = 0.0215). However, the frequency of 1647T-2385R-2397T haplotype (4.3%) in PD patients
was still higher than in control subjects (1.9%, odds ratio: 2.15, 95% confidence interval: 1.27–3.78, P = 0.0058).
While no additional subject was found to carry R767H and R1441H, one more patient was observed to carry the
S885N variant. Our results indicate a robust risk association regarding G2385R and a new possible protective
haplotype (1647T-2397T). Gene-environmental interaction and a larger cohort study are warranted to validate our
findings. Additionally, two new missense mutations (R767H and S885N) regarding LRRK2 in PD patients were
identified. Functional studies are needed to elucidate the effects of these LRRK2 variants on protein function.
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Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder in the world [1]. It affects 1% of the
population aged over sixty, and is characterized by a slowness
of movement (bradykinesia) and a difficulty in initiating
movement (akinesia) [1]. The pathogenesis of PD is associated
with progressive degeneration of dopaminergic (DA) neurons
and the presence of eosinophilic cytoplasmic inclusion bodies
(Lewy bodies) with enrichment of α-synuclein in the ventral
midbrain [2].

The etiology of PD remains to be explored. Mutations in the
gene for leucine-rich repeat kinase 2 (LRRK2) account for
some patients with autosomal dominantly inherited PD [3,4].

LRRK2 gene encodes a large multidomain protein that includes
ANK (ankyrin repeat), LRR (leucine-rich repeat), ROC (Ras of
complex proteins; GTPase), COR (C-terminal of ROC),
MAPKKK (mitogen-activated kinase kinase kinase) and WD40
domains [5,6]. Up to now, a number of putatively mutations and
single nucleotide polymorphisms (SNPs) in the LRRK2 gene
have been reported (the Human Gene Mutation Database,
http://www.hgmd.cf.ac.uk/ac/index.php?gene=LRRK2).

In Taiwan, the LRRK2 G2385R and R1628P variants may
play significant roles in susceptibility to PD [7–10]. In contrast,
LRRK2 G2019S, a common mutation amongst PD patients in
North America, Europe and North Africa [3,4,11–14], has not
been found in Taiwanese PD patients [15]. The disease
penetrance for G2019S carriers is age dependent, increasing
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from less than 20% at age 50 years or younger to 80~85% at
age 70 years [16,17]. Age at onset (AAO) of mutation carriers
is broad, ranged from 28 to 73 years, and mutation carriers
were clinically indistinguishable from idiopathic PD [18,19]. To
further examine the genetic variations of LRRK2 in Taiwanese
PD, we sequenced the LRRK2 coding region in 70 Taiwanese
PD patients and assessed the association of identified SNPs
with the risk of PD by utilizing a large case-control cohort of
patients and controls, to provide more insight into LRRK2
variants in Taiwanese PD patients.

Results

Mutation analysis of LRRK2
LRRK2 cDNA fragments encompassing ANK to WD40

domains from 70 patients with the age at onset of PD ≤ 50
were amplified for sequence analysis. In addition to twelve
exonic variants (N551K, L953, R1398H, K1423, G1624,
R1628P, K1637, S1647T, G1819, E2108, G2385R and
M2397T) (Table 1), one reported (R1441H) [20–23] and five
novel (R767H and S885N in Figure 1A; R1483, Y2018 and
N2047, data not shown) variants were identified. The three
missense substitutions were then examined using PCR-based
BspHI RFLP (R767H), ARMS test (S885N), or BstUI RFLP
(R1441H) (Figure 1B) in PD patients (n = 612) and controls (n
= 508). While no additional subject was found to carry R767H
and R1441H, one more patient was observed as carrying the
S885N variant. No controls were observed carrying the novel
variants R767H and S885N. R767H, S885N, and R1441H are
located in the ANK, in between ANK and LRR, and in the ROC
domain, respectively. The three missense variants are highly
conserved among the known mammalian homologues of the
LRRK2 protein (Figure 1C).

Case-control study of N551K, R1398H, R1628P, S1647T,
G2385R and M2397T

A case–control study in a cohort of PD (n = 573) and
ethnically matched controls (n = 503) was conducted to assess
the association of the six amino acid-changing variants with
risk of PD. The genotype distributions in PD and controls did
not deviate significantly from Hardy–Weinberg equilibrium for
any of the six variants examined (data not shown). The
SNPSpD method was employed for correction of multiple SNP
testing. SNPSpD output of six λs was shown in Table 2. As
described by Cheverud [24], high correlation among variables
leads to high λs. In this case, the first λ (2.37) was less than 6
(the number of variables in the correlation matrix), suggesting
that not all variables are completely correlated. The magnitude
of pair-wise LD was quantified by the metrics D’ and Δ2. The D’
and Δ2 coefficients of 551 and 1398 sites were 0.94 and 0.77,
respectively, suggesting less historical recombination and more
LD between 551 and 1398 sites. This was also true for 1647
and 2397 sites, with a D’ coefficient of 0.93 and a Δ2 coefficient
of 0.59.

The genotype and allele distributions of the six variants for
both patients and controls are outlined in Table 3. A statistically
significant difference in G2385R A allele (4.6% vs. 2.1%, P =
0.0013) distribution between patients and controls was

observed. When odds ratios of the at-risk genotype/allele were
calculated, an increase in risk of developing PD was
demonstrated for G2385R A allele (odds ratio: 2.27, 95%
confidence interval: 1.38 - 3.88, P = 0.0017). The allele
distribution of G2385R was further analyzed after being
stratified by age. In the early onset PD (EOPD) group (AAO ≤
50), a significant difference in G2385R A allele (5.1% vs. 0.8%,
P = 0.0063) distribution between patients and controls was
observed. EOPD patients with A allele have odds ratio 6.61
(95% confidence interval: 1.72 - 43.35, P = 0.0155) as
compared with controls. In the late onset PD (LOPD) group
(AAO > 50), a significant difference in G2385R A allele (4.5%
vs. 2.5%, P = 0.0295) distribution between patients and
controls was also observed. The LOPD patients with A allele
has an odds ratio of 1.84 (95% confidence interval: 1.08 - 3.26,
P = 0.0288) as compared with controls. The difference in A
allele distribution between EOPD and LOPD groups were not
significant (5.1% vs. 4.5%, P = 0.7329). The allele distribution
of other variants did not show a significant difference between
early and late onset PD patients groups as well as controls.

To examine if there is any haplotype of LRRK2 551, 1398,
1628, 1647, 2385 or 2397 site may associate with PD, pairwise
haplotype analysis in the LRRK2 gene was performed and the
results (frequency ≥ 1%) are shown in Table 4. The
1647T-2397T haplotype was notably lower in PD patients than
the controls (27.7% vs. 33.0%, P = 0.0244), with a trend toward
decrease in risk of developing PD (odds ratio: 0.80, 95%
confidence interval: 0.65 - 0.97, P = 0.0215). However, when
G2385R was linked to 1647T-2397T (1647T-2385R-2397T
haplotype), an increase in risk of developing PD (odds ratio:
2.15, 95% confidence interval: 1.27 - 3.78, P = 0.0058) was still

Table 1. Exonic variants identified in early-onset PD.

Exon  Accession no.   
Amino acid (nucleotide)
change  Remarks

14 rs7308720 N551K (AAC>AAG) Polymorphism

19  R767H (CGT>CAT)
Novel mutation Novel
mutation

20  S885N (AGT>AAT) Novel mutation
22 rs7966550 L953 (TTA>CTA) Polymorphism
30 rs7133914 R1398H (CGT>CAT) Polymorphism
30 rs11175964 K1423 (AAG>AAA) Polymorphism
31 ss48398558 R1441H (CGC>CAC) Mutation*

31  R1483 (CGA>AGA) Novel variant
34 rs1427263 G1624 (GGC>GGA) Polymorphism
34 rs33949390 R1628P (CGT>CCT) Polymorphism
34 rs11176013 K1637 (AAA>AAG) Polymorphism
34 rs11564148 S1647T (TCA>ACA) Polymorphism
37 rs10878371 G1819 (GGT>GGC) Polymorphism
41  Y2018 (TAC>TAT) Novel variant
42  N2047 (AAT>AAC) Novel variant
43 rs10878405 E2108 (GAG>GAA) Polymorphism
48 rs34778348 G2385R (GGA>AGA) Polymorphism
49 rs3761863 M2397T (ATG>ACG) Polymorphism

* Reported [20–23]
doi: 10.1371/journal.pone.0082001.t001
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observed, suggesting that 1647T-2397T haplotype cannot
counteract the genetic effect of 2385R in PD.

Discussion

The present study consolidates the role of LRRK2 G2385R
as a risk factor of PD, and supports that S1647T-M2397T
haplotype may lower the susceptibility of PD among Taiwanese
population. We also identify one reported (R1441H) and two
novel missense mutations (R767H and S885N) of LRRK2.
Although the genome-wide association studies (GWAS)
reported a strong association between LRRK2 genetic
variations and PD [25,26], the GWAS association signal has
not been driven by identified missense variant as the G2385R,
which may be due to this risk variant is ethnic specific.

The G2835R variant on the WD40 domain was first reported
in a PD patient from Taiwan, with less than 1% frequency in

Caucasian controls [20]. This variant is more common in Asia
and is associated with an increased risk of PD in Japan,
Singapore and Mainland China [27–30], in addition to Taiwan
[7–9]. When over-expressed in human HEK cells, the G2835R
variant was more toxic and associated with a higher rate of
apoptosis under condition of oxidative stress [27]. Acting
differently from the common LRRK2 kinase-activating G2019S
mutation [31], the G2385R mutant causes a partial loss of the
kinase function of LRRK2 [32]. In M17 neuroblastoma cell line,
G2019S mutation decreased the average length of neurites
and G2019S/G2385R double mutants counteract the neurite
shortening effect of G2019S, suggesting that the impact of
G2385R is strong enough to overcome the kinase-activating
effect of the G2019S [32]. Since both loss and gain of kinase
function variants are pathogenic, it is likely that the kinase
activity of LRRK2 can be tolerated over only a narrow range. It
is also possible that the G2385R mutation leads to pathogenic

Figure 1.  Mutation identification and amino acid sequence alignment.  a Chromatograms of direct cDNA sequencing of
R767H, S885N and R1441H. b Restriction enzyme RFLP or ARMS analysis of R767H, S885N, R1441H mutations. On agarose gel,
R767H results restriction by BspHI and leads to additional 419 and 154 bp bands, whereas R1441H prevents restriction by BstUI
and leads to an additional 715 bp band. c Evolutionary conservation of the regions of LRRK2 R767H, S885N and R1441H using the
program Vector NTI.
doi: 10.1371/journal.pone.0082001.g001
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effects via other mechanism, which raises another therapeutic
aspect for PD.

The protective LRRK2 variants and haplotypes have been
reported in PD patients. For example, R1398H and N551K
reduce the risk of PD in Han-Chinese population [33].
Individuals carrying haplotype 551K-1398H-1423K have a
significant reduction of PD risk in the white, Asian, and Arab-
Berber populations [34]. Herein we identified a new LRRK2
haplotype 1647T-2397T related to the reduced risk for PD,
although results seen in single variant disease-association
analysis does not find risk alterations in these two
polymorphisms. S1647T is located at the highly evolution-
conserved COR domain, which is thought to be a regulator of
ROC GTPase activity [35]. In a Taiwanese study, S1647T is
associated with increased PD risk, after considering the
interaction effects with pesticide exposure [36]. These results
contrast with the effect of 1647T-2397T to reduce PD risk,
suggesting that other, yet unknown, molecular mechanisms are
involved. Located on WD40 domain, M2397T is a risk-
associated polymorphism in inflammatory bowel disease [37].
This variant decreases the amount of LRRK2 by altering the
protein stability when expressed in HEK-293 cells [38]. This
mechanism may contribute to its protective role in PD. As the
risk of developing PD with 1647T-2385R-2397T haplotype is
similar to that with 2385R allele alone, the protective effect of
1647T-2397T haplotype may be absent in the population
carrying G2385R risk variant. Alternatively, the protect effect of
1647T-2397T may be attributable to the absence of G2385R
variant. A larger cohort study will be needed to delineate the
genetic effect of 1647T-2397T haplotype on PD risk reduction.

Two novel (R767H and S885N) and one reported (R1441H)
missense mutations were identified in this population study.
R767H is located in the ANK domain [6], which may play a role
in protein folding [39]. Although the substitution of arginine with
histidine would not dramatically affect the protein polarity, the
newly added guanidine group may affect the protein stability by
modifying the folding structure of LRRK2. S885N mutation
substitutes serine with asparagine at the hinge between the
ANK and LRR domains. The molecular mechanism of this
mutation remains elusive. R1441H lies within the ROC GTPase

Table 2. Pairwise linkage disequilibrium measures for
LRRK2 SNPs.

  D’

  N551K R1398H R1628P S1647T G2385R M2397T
Δ2 N551K 2.37 0.94 1.00 0.96 0.88 0.72
 R1398H 0.77 1.45 1.00 0.93 0.98 0.77
 R1628P 0.00 0.00 0.96 0.96 0.04 0.87
 S1647T 0.05 0.05 0.04 0.87 0.89 0.93
 G2385R 0.00 0.00 0.00 0.05 0.23 0.94
 M2397T 0.05 0.07 0.02 0.59 0.04 0.12
Lewontin’s standardized disequilibrium coefficients (D’) are given above the
diagonal and the squared pairwise correlations (Δ2) are given below the diagonal;
the eigenvalues (λs) associated with the LD correlation matrix are given along the
diagonal (bold, italic).
doi: 10.1371/journal.pone.0082001.t002

domain, and more recently identified mutations affecting the
same amino acid (R1441C, R1441G) have been described in
affected PD patients [4,20]. R1441C mutation has been shown
to increase LRRK2 kinase activity [31]. Both R1441C and
R1441G mutations affect the GTPase activity of LRRK2 [40].
Lymphoblastoid cell lines carrying R1441H mutation showed
increased apoptosis following exposure to proteasome inhibitor
[41]. Thus, these mutations act dominantly and most likely
cause enzymatic or structural gain-of-function that leads to
neuronal toxicity.

Table 3. Genotype and allele distribution and association
analysis.

 Frequency (%) P-value   
Odds
ratio(95% CI) P-value

 
PD
(n=573)

Controls
(n=503)      

Age
(years)

62.1 ±
11.5

59.4 ±
12.9

     

Sex
(female)

44.7% 49.3%      

N551K     N551K   

CC, CG,
GG

85.7,
13.6,
0.7

83.9,
15.7, 0.4

0.5118  
CG+GG
vs. CC

0.87
(0.62-1.21)

0.4134

G allele 7.5 8.3 0.5209  G allele
0.91
(0.67-1.25)

0.5770

R1398H     R1398H   

GG, GA,
AA

84.3,
15.0,
0.7

80.9,
18.9, 0.2

0.1224  
GA+AA
vs. GG

0.79
(0.58-1.08)

0.1442

A allele 8.2 9.6 0.2413  A allele
0.84
(0.62-1.23)

0.2418

R1628P     R1628P   
GG, GC,
CC

94.1,
5.9, 0.0

95.6,
4.4, 0.0

0.2504  
GC vs.
GG

1.38
(0.80-2.42)

0.2521

C allele 3.0 2.2 0.2568  C allele
1.37
(0.80-2.39)

0.2586

S1647T     S1647T   

TT, TA,
AA

40.5,
46.4,
13.1

36.4,
49.7,
13.9

0.3851  
TA+AA vs.
TT

0.84
(0.66-1.08)

0.1675

A allele 36.3 38.8 0.2381  A allele
0.90
(0.76-1.07)

0.2381

G2385R     G2385R   
GG, GA,
AA

90.8,
9.2, 0.0

95.8,
4.2, 0.0

0.0010  GA vs. GG
2.34
(1.41-4.02)

0.0014

A allele 4.6 2.1 0.0013  A allele
2.27
(1.38-3.88)

0.0017

M2397T     M2397T   

TT, TC,
CC

29.3,
50.6,
20.1

25.8,
52.5,
21.7

0.4318  
TC+CC
vs. TT

0.84
(0.64-1.10)

0.2041

C allele 45.4 47.9 0.2391  C allele
0.90
(0.76-1.07)

0.2391

doi: 10.1371/journal.pone.0082001.t003
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Although our results are significant, there are limitations in
this study. The role of gene-environmental interaction has not
been evaluated. The sample size in our study may not be able
to identify an association when the genetic effect of the allele is
weak. This may explain the lack of protective effects of
R1398H and N551K and increased risk of R1628P seen in a
Chinese multicenter study [33]. Additionally, there is insufficient
segregation to prove the pathogenicity of the two novel
mutations (R767H and S885N). Nevertheless, our population
study provides more information about the genetic variant of
LRRK2 in Taiwanese PD patients, and discovers two novel
LRRK2 mutations. Further study is needed to identify the
functional implications of these genetic variants, which may
shed light on developing new therapeutic strategies for PD.

Materials and Methods

Ethics statement
This study was performed according to a protocol approved

by the Institutional Review Board of Chang Gung Memorial
Hospital (ethical license No: 97-2476A3), and all examinations
were performed after obtaining written informed consents.

Patient population
A total of 573 unrelated Taiwanese PD subjects (44.7%

females) were recruited from the neurology clinics of Chang

Table 4. Haplotype distributions of LRRK2 polymorphisms
in patients with Parkinson’s disease (PD) and controls and
associations in PD risks.

Haplotype*
PD / NC
(%) P-value

Odds ratio (95%
CI) P-value

Wild type (N551-R1398-
R1628-S1647-G2385-
M2397)

000000
51.2 /
48.6

0.3923 1.00  

2397T 000001 3.7 / 2.6 0.1595
1.35
(0.82-2.25)

0.2479

1647T 000100 1.3 / 1.5 0.7210
0.83
(0.40-1.73)

0.6218

1647T-2397T 000101
27.7 /
33.0

0.0244
0.80
(0.65-0.97)

0.0215

1647T-2385R-2397T 000111 4.3 / 1.9 0.0019
2.15
(1.27-3.78)

0.0058

1628P-1647T-2397T 001101 2.8 / 2.0 0.2311
1.33
(0.76-2.40)

0.3243

1398H-2397T 010001 1.0 / 1.4 0.3538
0.65
(0.29-1.45)

0.2984

551K-1398H 110000 1.0 / 0.9 0.7209
1.11
(0.47-2.74)

0.8135

551K-1398H-2397T 110001 5.8 / 6.7 0.4504
0.83
(0.58-1.19)

0.3190

* Wild type = 0, variant = 1; examples: N551-R1398-R1628-S1647-G2385-M2397
nominated as 000000, 1647T-2397T nominated as 000101, 1647T-2385R-2397T
nominated as 000111.
doi: 10.1371/journal.pone.0082001.t004

Gung Memorial Hospital (CGMH). All patients were diagnosed
with probable idiopathic PD according to the published criteria
[42] by two neurologists specialized in movement disorders (Y.-
R. Wu and C.-M. Chen). Subjects with a prior history of multiple
cerebrovascular events or other causes of parkinsonian
symptoms (e.g. brain injury or tumor, encephalitis,
antipsychotic medication) were excluded. The mean age at
onset of PD was 62.1±11.5 years, ranging between 19 and 93
years. A group of 503 normal controls without
neurodegenerative diseases were recruited from the same
ethnic community. Control subjects (49.3% females) had mean
age at examination of 59.4±12.9 years, ranging between 20
and 90 years.

Genetic analysis
Genomic DNA was extracted from peripheral blood

lymphocytes using standard protocols. For PD patients with
onset ≤ 50 (n = 70), RNA was extracted using PAXgene Blood
RNA Kit (PreAnalytiX). The RNA was DNase (Stratagene)
treated, quantified, and reverse-transcribed to cDNA using
High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). Using overlapping primers, LRRK2 cDNA
encompassing ANK, LRR, ROC, COR, MAPKKK and WD40
domains was polymerase chain reaction (PCR) amplified
(Table 5), gel purified and sequenced directly using the ABI
PRISM 3130 Genetic Analyzer (Applied Biosystems). The
reported R1441H (ss48398558) and the novel R767H and
S885N mutations were verified by genomic DNA PCR (Table 5)
and sequencing. For population screening, the R767H and
R1441H were examined using the BspHI (gain of site) and
BstUI (loss of site) restriction enzymes, respectively;
amplification refractory mutation system (ARMS) PCR was
designed for S885N population screening (Table 5). For case–
control studies, the N551K (rs7308720), R1398H (rs7133914),
R1628P (rs33949390), S1647T (rs11564148), G2385R
(rs34778348) and M2397T (rs3761863) SNPs were determined
using the EarI (gain of site), BspHI (gain of site), FspBI (gain of
site), AflIII (loss of site), AccI (gain of site) and TaaI (gain of
site) restriction enzymes, respectively (Table 5). In addition,
primers and probes for allele specific primer extension assay
(Table 6) were designed for N551K, R1398H and M2397T
SNPs determination.

Statistical analysis
The genotype frequency data and the expected genotypic

frequency under random mating were computed and Chi-
square tested for Hardy-Weinberg equilibrium using a
standardized formula. The genotype and allele association
analysis was carried out using the Chi-square test. The
SNPSpD method [43] was used to generate an adjusted
significance threshold for correction of multiple SNP testing
(http://genepi.qimr.edu.au/general/daleN/SNPSpD/). The
experiment-wide significance threshold of 0.0092 was required
to keep the type I error rate at 5%. Measures of pairwise
linkage disequilibrium (LD) between SNPs, including
Lewontin’s standardized disequilibrium coefficients (D’), the
squared pairwise correlations (Δ2), and eigenvalues (λs) were
computed with the LDMAX software-part of the GOLD

LRRK2 Variations in Taiwanese PD
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Command Line Tools package [44]. PHASE version 2.1 was
used to infer the LRRK2 gene haplotypes [45]. The LRRK2
pairwise haplotype frequencies were computed and Chi-square
tested for significance. Odds ratios with 95% confidence
intervals (95% CI) were calculated to test association between
genotype/allele/haplotype and disease.
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Table 6. Primers and probes for allele specific primer extension (ASPE) assay of LRRK2 N551K, R1398H and M2397T
polymorphisms.

 Forward primer Reverse primer Probe
551 C/G cagggaggatacagaatttcatc ccccactgtcatcttatgtct cctagcagctttgaa[C/G]
1398G/A cggttgctgacaaatatgc ctcgctgcgtcataaaatgg [G/A]tgaggaattctatagtact
2397T/C tggtggtggtgtcatgtttt cctccagttcctatccaaagag [T/C]ggtaaaagaaaacaagg

doi: 10.1371/journal.pone.0082001.t006
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