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ABSTRACT
Background  Immune checkpoint inhibitors (ICIs) have 
revolutionized the cancer therapy landscape due to 
long-term benefits in patients with advanced metastatic 
disease. However, robust predictive biomarkers for 
response are still lacking and treatment resistance is not 
fully understood.
Methods  We profiled approximately 800 pre-treatment 
and on-treatment plasma proteins from 143 ICI-treated 
patients with non-small cell lung cancer (NSCLC) using 
ELISA-based arrays. Different clinical parameters were 
collected from the patients including specific mutations, 
smoking habits, and body mass index, among others. 
Machine learning algorithms were used to identify a 
predictive signature for response. Bioinformatics tools 
were used for the identification of patient subtypes and 
analysis of differentially expressed proteins and pathways 
in each response group.
Results  We identified a predictive signature for response 
to treatment comprizing two proteins (CXCL8 and CXCL10) 
and two clinical parameters (age and sex). Bioinformatic 
analysis of the proteomic profiles identified three distinct 
patient clusters that correlated with multiple parameters 
such as response, sex and TNM (tumors, nodes, and 
metastasis) staging. Patients who did not benefit from 
ICI therapy exhibited significantly higher plasma levels 
of several proteins on-treatment, and enrichment in 
neutrophil-related proteins.
Conclusions  Our study reveals potential biomarkers 
in blood plasma for predicting response to ICI therapy 
in patients with NSCLC and sheds light on mechanisms 
underlying therapy resistance.

INTRODUCTION
Over the last decade, immune checkpoint 
inhibitors (ICIs) targeting the programmed 
cell death protein-1 (PD-1)/programmed 
death ligand-1 (PD-L1) axis have emerged as 
standard-of-care treatments for non-small cell 
lung cancer (NSCLC).1 2 These agents disrupt 
the interaction between PD-1 on T cells and 
PD-L1 on tumor cells, thereby enhancing an 
antitumor immune response.3 ICIs represent 

breakthrough treatments for NSCLC due to 
unprecedented durable responses. For example, 
the 5-year survival rate for first-line pembroli-
zumab was found to be 31.9% compared with 
16.3% for chemotherapy in stage IV NSCLC 
patients with tumors expressing high PD-L1 
levels.4 Although ICI therapy achieves impressive 
long-term survival in some patients, the overall 
response rate is modest, ranging from 20% 
to 50% in patients with NSCLC.2 A significant 
proportion of patients display innate resistance 
to ICIs, and many of those who derive initial clin-
ical benefit experience disease progression at a 
later stage.5 The mechanisms underlying innate 
and acquired resistance to ICIs are not fully 
understood. However, multiple tumor-intrinsic 
and tumor-extrinsic mechanisms have been 
proposed. These include aberrations in cell 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Current biomarkers for immunotherapy outcome 
have low predictive power, and are usually based on 
biopsies taken from solid tumors.

WHAT THIS STUDY ADDS
	⇒ Our study employs a machine-learning and 
bioinformatics-based approach on  ~800 plasma 
proteins to identify novel blood-based biomarkers 
that predict response to immune checkpoint inhibi-
tor (ICI) therapy in patients with non-small cell lung 
cancer.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE AND/OR POLICY

	⇒ We have identified a predictive signature that strati-
fies between responders and non-responders with a 
validated receiver operating characteristics area un-
der the curve of ~0.8, and we show that neutrophils 
play a role in ICI therapy resistance. Our approach 
enables the identification of clinically relevant bio-
markers and provides a framework for advancing 
the field of immuno-oncology.
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signaling, T-cell exclusion, immunosuppressive cells, pres-
ence of inhibitory checkpoints, loss of interferon-γ signaling, 
and loss of tumor-related antigenic proteins.3 6 7 Despite 
intensive research in this direction, robust predictive and 
prognostic biomarkers for ICIs remain elusive. In current 
clinical practice, PD-L1 expression, tumor mutational burden 
(TMB) and mismatch repair deficiency in tumors are being 
used as predictive biomarkers for benefit from ICI therapy 
in a variety of cancer types.8 9 These biomarkers, all of which 
are based on tumor-intrinsic factors, have modest predictive 
power.10 11 For example, clinical evidence shows that only 45% 
of patients with NSCLC with tumors highly positive for PD-L1 
have confirmed response to PD-1/PD-L1 blockade.12 Notably, 
several reports demonstrate that integrating PD-L1 and TMB 
biomarkers improves predictive power.13 14 Nevertheless, 
there is still a substantial need for better predictive markers to 
guide treatment decisions. Given the complex and dynamic 
interplay between the tumor and its microenvironment, it is 
likely that a combination of biomarkers covering both tumor 
and host factors will perform better than single biomarkers 
originating solely from the tumor. Indeed, other explored 
biomarkers are related to tumor-infiltrating immune T cells 
(in their different phenotypic states),15 immunosuppressive 
macrophages and myeloid derived suppressor cells,16 periph-
eral T-cell dynamics,17 18 and ratios between checkpoints and 
other key proteins in the immune synapse.19

Our previous studies have highlighted how host-
mediated responses to various cancer treatment modal-
ities contribute to disease progression and therapy 
resistance.20 21 Most recently, in preclinical mouse models, 
we demonstrated that ICI agents induce systemic changes 
in host-derived factors which subsequently enhance 
tumor aggressiveness, with interleukin (IL)-6 playing a 
key role in this process.22 Thus, analyzing therapy-induced 
changes in the levels of circulating factors provides valu-
able insights into the biological mechanisms driving 
response and resistance to therapy.

Here we studied pre-treatment and on-treatment plasma 
proteomic profiles of patients with advanced stage NSCLC 
undergoing ICI-based therapy. Using a machine-learning 
approach, we identified a predictive signature for response 
that is comprised of two proteins and two clinical parameters. 
The study included signature development on training and 
development sets, and validation on an independent test set. 
A further exploration of the proteomic profiles revealed three 
patient clusters with distinct clinical and biological features. 
In addition, patients who did not benefit from ICI therapy 
displayed significantly higher plasma levels of several proteins 
on-treatment, as well as heightened neutrophil activity that 
was amplified on treatment. Collectively, our findings pave 
the way towards predictive biomarker discovery and provide 
insights into mechanisms of resistance to ICI therapy.

MATERIALS AND METHODS
Plasma collection from patients with NSCLC
Cohort 1 plasma samples were purchased from a biobank 
(Indivumed, Germany). Sample collection started in May 

2016 and ended in May 2019. Cohort 2 plasma samples 
were collected from Sheba Medical Center, Israel. Sample 
collection started in March 2017 and ended in September 
2019. Inclusion criteria: provision of informed consent; 
age above 18; stage IIIB–IV patients with NSCLC. Exclu-
sion criteria are any concurrent and/or other active 
malignancy that has required systemic treatment within 
2 years of first dose of treatment. Patients signed an 
informed consent. Cohort size was set by availability of 
samples at the collected time point. Plasma samples were 
collected at baseline (before treatment) and 2–6 weeks 
after commencement of treatment. The patients received 
either monotherapy (nivolumab; pembrolizumab; atezoli-
zumab) or combination therapy with pembrolizumab 
with chemotherapy). Patients’ clinical data are provided 
in online supplemental table S1. Altogether, 156 plasma 
samples were collected retrospectively.

Proteomic profiling
Plasma protein levels were measured using Quantibody 
multiplex ELISA antibody arrays (RayBiotech, Peachtree 
Corners, Georgia, USA). Samples were acquired in three 
running batches. Cohort 1 included a total of 93 patients, 
40 in running batch 1 (Cohort 1A) and 53 in running 
batch 2 (Cohort 1B). Overall, 840 and 760 proteins 
were measured in Cohort 1A and Cohort 1B, respec-
tively. Cohort 2 contained 63 samples and 1000 plasma 
proteins were measured. The difference in the protein 
numbers derives from the available plasma volume. In 
the case of limited plasma volume, we measured 760 or 
840 selected proteins rather than the entire repertoire of 
1000 proteins. Proteins were selected based on technical 
parameters such as measurability and relevance, as was 
defined in an independent cohort of patients with NSCLC 
(not included in this cohort). Normalized proteomic data 
are provided in online supplemental table S2.

Proteomic data quality check
Patient samples were defined as outliers and were excluded 
based on the assumption that the range of protein levels 
spanned by all measured proteins should be similar across 
all samples. An outlier sample was defined as a sample for 
which the median expression level across all measured 
proteins was either smaller than Q1 or greater than Q3 
of the level distribution of all proteins in all samples. In 
total, 13 outlier patients were discovered and excluded 
from the analysis (five outliers in Cohort 1, eight outliers 
in Cohort 2; online supplemental figures S1 and S2).

Limit of detection (LOD) was defined according to 
RayBiotech definitions. Protein measurement below LOD 
is defined as non-measurable; proteins having an overall 
measurability above 50% of the samples were used for the 
classifier generation and the rest were excluded. Measure-
ment below LOD were rounded to the LOD level. For the 
machine learning-based analysis of the entire data set, 508 
protein targets were used following the filtration. For the 
bioinformatic analysis of Cohort 2 subset, 810 proteins 
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were kept for analysis following filtration of measurable 
proteins in at least 50% of Cohort 2 patients.

Identification of a predictive signature for therapy response
Patients from both cohorts were randomly assigned to 
three sets: training (n=72), development (n=36) and test 
(n=35). The latter was examined blinded by keeping the 
response label separately. The percentage of patients 
responding to treatment was held constant in all three 
sets. For each protein target, three features were gener-
ated: T0 measurement, T1 measurement and fold-change 
between T1 and T0 (FC). The training set was used to 
generate a classifier for each feature in conjunction with 
age and sex using the XGBoost algorithm. In order to 
prevent an area under the curve (AUC) estimate that is 
over fitted on the training set, 300 models were gener-
ated for each feature based on randomly selected subsets 
of 60% of the patients in the training set and evaluated 
on the remaining 40%. False discovery rate (FDR) was 
calculated using the Benjamini-Hochberg procedure. 
Overall, 53 features with FDR <0.15 were used to generate 
a predictor on the development set. A multiprotein signa-
ture was generated based on the development set by 
using forward selection on the top six features (AUC >0.7 
on the development set). The resulting model (based 
on CXCL10 at T1, CXCL8 at T1, IGFBP3 at T0, sex and 
age) was validated on the test set. IGFBP3 at T0 did not 
contribute to the test result and thus was excluded from 
the final signature. The performance of the signature was 
assessed using AUC of the receiver operating character-
istics (ROC) plot. To determine the effect of excluding 
12 chemo-immunotherapy-treated patients from the data 
set, 1000 iterations were performed where in each itera-
tion, 12 random patients were excluded, while the AUC 
was determined.

Statistical and bioinformatic analysis
The entire analysis was performed following log2 trans-
formation, using R packages, Perseus,23 Python or 
GraphPad software (San Diego, California, USA, http://
www.graphpad.com).

Association between response and clinical parameters: 
To identify association of categorical clinical data (line 
of treatment; treatment type; Tumor Proportion Score 
(TPS); histological type; sex; body mass index (BMI) 
status; mutations; smoking history; metastatic sites) with 
response, a χ2 test was performed. To examine the correla-
tion between age and response, an unpaired student’s 
t-test was performed.

Protein or gene expression in healthy tissue, tumor 
tissue and blood cells: Data were acquired from the 
Human Protein Atlas from http://www.proteinatlas.org.24

Clustering analysis: ConsensusClusterPlus package25 
was used following Z-score normalization with the 
following parameters: maximal number of k was set to 6; 
number of iterations was set to 1000; fraction of subset-
ting was set to 0.8; clustering algorithm was set to hierar-
chical; distance matrix was Pearson correlation. Patients 

from each consensus cluster were subjected to enrich-
ment analysis of clinical features using Fisher’s exact test 
(Benjamini-Hochberg FDR <0.1). Analysis of variance 
(ANOVA) test was conducted to identify differentially 
expressed proteins between the different patient clusters 
(Permutation-based FDR <0.01). Each group of proteins 
that was higher in each patient cluster was subjected to 
biological pathway enrichment analysis (Fisher’s exact 
test, Benjamini-Hochberg FDR <0.1) against the back-
ground of 810 proteins examined in the bioinformatic 
analysis. Functional groups were derived from Gene 
Ontology resource,26 27 Kyoto Encyclopedia of Genes and 
Genomes resource,28 and Cancer Hallmarks Analytics 
Tool resource.29 Voronoi plots for the proteins in each 
consensus cluster were plotted using Proteomaps.30

Differentially expressed protein (DEP) analysis: 
Comparison between T0 and T1 was performed using 
paired t-test (Benjamini-Hochberg FDR <0.05). To identify 
DEPs between responders and non-responders, Student’s 
t-test was performed either using permutation-based FDR 
<0.1 or p value<0.05 thresholds. Enrichment analysis was 
performed on the lists of DEPs using Fisher’s exact test 
(Benjamini-Hochberg FDR <0.1) against the background 
of 810 proteins examined in the bioinformatic analysis. 
Network analysis was based on STRING database.31

RESULTS
Cohort description
To gain insights into proteins associated with response 
and resistance to ICI-based therapy in patients with 
NSCLC, we analyzed proteomic and clinical data from a 
retrospective cohort comprised of 156 ICI-treated patients 
with NSCLC. Proteomic data were acquired using ELISA-
based multiplex arrays. Specifically, the levels of 760–1000 
proteins (depending on the cohort; additional details are 
provided in Materials and Methods) were quantified in 
patient plasma samples collected at baseline (T0) and 2–6 
weeks after commencement of treatment (T1). Following 
a quality assessment of the proteomic data, 13 patients 
were identified as outliers and were excluded from the 
analysis (for further details see methods; online supple-
mental figure S1 and S2). Out of the 143 remaining 
patients with NSCLC in the analysis, 70 displayed no 
clinical benefit (48.95%) and 73 benefited from therapy 
(51.05%). In this study, therapy response evaluation was 
based on response evaluation criteria in solid tumors 
(RECIST) criteria at 3 months, where patients who 
benefited from therapy were identified as patients with 
stable disease, partial response and complete response 
(termed ‘responders’), while those who did not, were 
defined as patients with progressive disease (termed ‘non-
responders’). Notably, in this study, we did not investigate 
response at 6 months or best overall response rate.

Patient characteristics are presented in figure  1A–C. 
The responder and non-responder groups displayed 
a significant difference in overall survival (OS). Most 
patients had adenocarcinoma (73.4%), while 18.9% had 
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squamous cell carcinoma. The majority of the patients 
were men (65.7%) and 50 patients (34.9%) received ICI as 
a first line therapy. Most of the patients (88.1%) received 
anti-PD1-based treatment (either pembrolizumab or 
nivolumab), and 8.4% received anti-PD1-based treatment 
combined with chemotherapy. The rest received anti-PD-
L1-based treatment (atezolizumab).

Examination of the correlation between clinical data 
and response identified five clinical features that display 
a significant difference between responders and non-
responders (two of which were available only in Cohort 2). 
First, older age was associated with response (figure 1D), 
in agreement with a meta-analysis study indicating that 
patients older than 65 benefit more from ICI therapy.32 

Figure 1  Overview of cohort and methodology. (A) Heatmap representing patient demographics and clinical characteristics. 
(B–H) Patient characteristics, categorized by responders (light blue) and non-responders (dark blue), are presented as follows: 
Number of responders and non-responders in the cohort (B); survival curve (C); age distribution (D); PD-L1 status (E); treatment 
type (F); KRAS mutation (available only in Cohort 2) (G); and P53 mutation (available only in Cohort 2) (H). (I) Methodology 
outline. Plasma samples were obtained from patients at T0 (pre-treatment) and T1 (early on-treatment). Proteomic profiling 
was performed with multiplex ELISA-based arrays. Proteomic and clinical data served as input for machine learning based 
analysis to extract a predictive signature for response to treatment. Proteomes were characterized by bioinformatic analyses to 
gain insights into treatment response and resistance mechanisms. ADC, adenocarcinoma; BMI, body mass index; ICI, immune 
checkpoint inhibitors; NR, non-responder; PD-1, programmed cell death protein-1; PD-L1, programmed death ligand-1; R, 
responder; SCC, squamous cell carcinoma; SD, stable disease.
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Second, PD-L1 TPS was associated with response 
(figure  1E). Indeed, TPS is used clinically as a predic-
tive biomarker for response.33 Third, patients receiving 
combined treatment (immunotherapy and chemo-
therapy) benefited more than anti-PD-1-based or anti-PD-
L1-based monotherapy, as was previously shown, in some 
cases probably due to the chemotherapy34 (figure  1F). 
Two mutations, KRAS and TP53 (measured in Cohort 2 
only), correlated with response (figure  1G,H), though 
sample size was quite small. No correlations were found 
between response and other examined clinical features, 
namely histology, sex, line of treatment, smoking (in 
Cohort 2), BMI and different metastatic sites (online 
supplemental figure S3). Lastly, the proteomic and clin-
ical data were used as an input for machine learning and 
bioinformatic analyses to gain further clinical insights 
(figure 1I), as outlined below.

A plasma-based predictive signature for response to ICI 
therapy
To identify a predictive signature for response to ICI 
therapy, we randomly divided the cohort into three sets, 
while maintaining a similar distribution for key clinical 
features in each set (online supplemental figure S4). 
The first and second sets served as the training (n=72) 

and development (n=36) sets, respectively. The third set 
served as the test set (n=35) on which the performance of 
the selected model was examined (figure 2A). Additional 
details are provided in the Materials and Methods section.

In order to identify features that predict response to 
ICI-based therapy, we applied the XGBoost machine-
learning algorithm on the proteomic and clinical data. 
Using this algorithm, we identified a predictive signature 
at the T1 time point comprizing two proteins, CXCL10 
(IP-10) and CXCL8 (IL-8), and two clinical features, sex 
and age. This signature yielded an AUC of the ROC plot 
of 0.79 on the test set (figure 2B; sensitivity=0.78, spec-
ificity=0.65, positive-predictive value=0.70 and negative-
predictive value=0.73). Overall, 4 (of 18) non-responders 
were wrongly predicted as responders, defined by resis-
tance probability threshold  ≥0.5 (figure  2C). Indeed, 
according to this model, the group of patients with a high 
resistance probability displayed a trend for shorter OS 
compared with patients with low resistance probability 
(figure  2D). A deeper examination of the two predic-
tive proteins showed that both were present at signifi-
cantly higher levels in non-responders compared with 
responders at both T0 and T1 time points. (figure 2E–G). 
Notably, the difference was greater at the T1 time point, 

Figure 2  A predictive signature for response to immune-checkpoint inhibitor therapy in patients with non-small cell lung 
cancer. (A) The cohort was divided into training (n=72), development (n=36) and test (n=35) sets. (B) A predictive signature for 
response to treatment was identified using a machine-learning approach. The signature is comprised of two proteins (CXCL8 
and CXCL10 at T1) and two clinical parameters (age and sex). The receiver operating characteristics plot of the test set. The 
area under the curve (AUC) is 0.79 (p value of 0.00204), indicating high predictive power. The blue dot indicates resistance 
probability cut-off of 0.5. (C) Waterfall plot displaying predictions against actual response. Predicted responders and non-
responders are indicated by response probability below and equal or above 0.5, respectively. Light blue designates actual 
responders. Dark blue designates actual non-responders. (D) Survival analysis based on the predictive signature. Predicted 
responders (resistance probability <0.5) and non-responders (resistance probability ≥0.5) are depicted in light and dark blue, 
respectively. (E–F) The distribution of the T1 plasma levels of CXCL8 (E) and CXCL10 (F) in responders (R) and non-responders 
(NR). (G) The median difference between non-responders and non-responders for each protein at T0 and T1.
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suggesting that pre-existing resistance mechanisms in 
non-responders are amplified during treatment.

Next, we sought to examine the potential effect of 
different factors on the prediction capabilities of the 
model. (1) Our cohort is heterogeneous and comprised 
of patients receiving either monotherapy or a combi-
nation of chemotherapy and immunotherapy (ie, 
chemo-immunotherapy). To determine whether the 
predictive capability of the model is affected by the treat-
ment modality, we examined predictive performance for 
monotherapy patients alone (n=131), excluding the 12 
patients treated with the chemo-immunotherapy combi-
nation. In this case, the AUC was reduced from 0.79 for the 
entire cohort to 0.7 for the monotherapy cohort. Of note, 
the exclusion of 12 random patients did not affect the 
AUC generated on all patients (1000 random iterations, 
average AUC=0.79; online supplemental figure S5B), 
indicating that the 12 chemo-immunotherapy patients 
do indeed affect the predictive model. This suggests that 
follow-up studies comprizing a sufficiently large sample 
size should be performed in which separate models are 
generated for each treatment modality. (2) To explore 
the effect of sex and age on the predictive performance of 
the model when controlling for smoking history, we ran 
a two-way ANOVA test with smoking as a dependent vari-
able, and sex and age as explaining variables. The results 
showed that age and sex do not correlate with smoking 
in our data set (notably, smoking history was available for 
only a subset of the samples; n=58; online supplemental 
figure S5C,D). In addition, when running the model 
while excluding these two variables, the AUC was lower 
(0.76 in all patients; 0.65 in monotherapy patients; online 
supplemental figure S5A), suggesting that age and sex do 
indeed contribute to the prediction model, though to a 
small extent. (3) TMB was previously shown to predict 
response to immunotherapy.35 We could not examine 
the effect of this parameter, as it was unavailable in our 
data set. Smoking history and KRAS mutation are two 
parameters that were previously shown to correlate with 
response to treatment, in part due to their association 
with high mutational burden36; however, since these two 
parameters were available for only 40% of the patients 
(n=58), we could not use them to estimate the TMB in the 
entire cohort. In addition, these two variables displayed 
different correlations with response (KRAS mutation 
correlated with response, while smoking did not).

Plasma proteomic profiles of ICI-treated patients with NSCLC 
display three biologically and clinically distinct clusters
We next aimed to better characterize the proteomic 
profiles of ICI-treated patients with NSCLC. Our anal-
ysis was focused on Cohort 2 (see methods) for the 
following reasons: (a) This cohort contained compre-
hensive clinical data and updated treatment proto-
cols (ie, combination chemo-immunotherapy in some 
patients); (b) The samples were less likely to suffer from 
batch effects as they were acquired at the same medical 
center and profiled in a single running batch. Using T1 

proteomic data as input, a consensus clustering algorithm 
yielded three patient clusters (figure 3A; online supple-
mental figure S6A,B). Each cluster was characterized 
by different clinical features. Consensus cluster (CC)−1 
was significantly enriched with non-responders, patients 
with advanced N (node) staging and patients with bone 
metastasis; this cluster was also significantly de-enriched 
with patients with KRAS mutations (Fisher’s exact test 
FDR <0.1; figure  3B; online supplemental figure S3A). 
CC-2, on the other hand, was significantly enriched with 
responders, with patients who stopped smoking over 10 
years ago and with male patients. CC-3 was significantly 
enriched with female patients (figure 3B). Similar to T1, 
T0 proteome expression profiles yielded three patient 
clusters (figure 3C; online supplemental figure S6C–F). 
Many patients from T1 CC-1 were also present in T0 
CC-1 (68% of the patients), while CC-2 and CC-3 main-
tained mostly the same patients at the T1 and T0 time 
points (figure 3D). Patients from T0 CC-1 displayed non-
responder-like features, namely increased creatinine 
levels and metastasis, while T0 CC-2 was enriched with 
patients with non-metastatic disease and a good perfor-
mance status (figure 3E; online supplemental table S3B). 
Together, these results suggest that the plasma proteome 
display three subtypes correlating with multiple clinical 
parameters both before and during treatment.

To gain further insights into the differences between 
the plasma proteomes of the various patient clusters, 
we ran an ANOVA test between the T1 patient clusters 
and identified 306 DEPs (DEP, permutation-based FDR 
<0.01; figure  3F; online supplemental table S4). Inter-
estingly, while both CC-1 and CC-3 displayed highly 
expressed proteins unique to each cluster, CC-2 showed 
some overlap with CC-1. A bioinformatic analysis revealed 
that the different T1 consensus clusters display different 
biological functions (figure  3G). In CC-1, we observed 
higher levels of multiple metabolism-related proteins. 
Specifically, pyrimidine metabolism was significantly 
enriched (Fisher’s exact test, Benjamini-Hochberg FDR 
<0.1; online supplemental table S5), and multiple purine 
and glycan metabolism related proteins were found at 
elevated levels. Some of the proteins involved in these 
pathways are associated with immune suppression (eg, 
NT5E which hydrolyzes extracellular AMP into adenosine 
and inorganic phosphate, or ENTPD3 (CD39L3), an 
NTPDase in the adenosine metabolism pathway37). In 
addition to metabolism-related proteins, many proteins 
found at higher levels in CC-1 are involved in signaling 
pathways, some of which represent targets for interven-
tion. Indeed, various drugs that inhibit these proteins are 
being tested in combination with ICI in different clinical 
trials, suggesting a role for these proteins in resistance to 
immune checkpoint blockade.

Proteins found at higher levels in CC-2 did not display 
enrichment of cancer-associated processes. One inter-
esting protein in this responder-enriched cluster is 
ICOSLG (B7-H2), a stimulatory immune checkpoint 
mainly expressed in B cells and monocytes. In addition, 
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Figure 3  Three biologically and clinically distinct patient clusters. (A) Unsupervised analysis using consensus clustering 
algorithm identified three consensus clusters based on T1 proteomic data. CC, consensus cluster. (B) Significantly enriched 
clinical features in each cluster. Enrichment analysis was performed using Fisher’s exact test (FDR <0.1) based on T1 data. 
The clinical features displayed are either significantly enriched (enrichment factor >1) or de-enriched (enrichment factor <1). 
(C) Unsupervised analysis using consensus clustering algorithm identified three consensus clusters based on T0 data. CC, 
consensus cluster. (D) A Sankey plot showing the agreement level between the different consensus clustering in T0 and T1. 
(E) Significantly enriched clinical features in each cluster based on T0 data. Enrichment analysis was performed using Fisher’s 
exact test (FDR <0.1). (F) Hierarchical clustering of the differentially expressed proteins between the three consensus clusters 
based on T1 data. (G) Voronoi plots displaying the functional groups of proteins present at higher levels in each consensus 
cluster based on T1 data. Each polygon represents a protein. Polygon size correlates with the difference between responders 
and non-responders. Proteins with similar functions are grouped together. ECOG, Eastern cooperative oncology group 
performance; FDR, false discovery rate; ORR, objective response rate, TNM, tumors, nodes, and metastasis.
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three out of four members of the desmoglein family were 
present at higher levels in CC-2, namely DSG1, DSG2 and 
DSG3, as well as two integrins (ITHA1 and ITGA2), all of 
which are associated with cell–cell contact. Furthermore, 
we found that two proteins involved in T cell co-stimu-
lation (B7RP1 and EFNB3) were high in this group of 
patients.

The group of proteins found at higher levels in CC-3 
were significantly enriched with mitogen-activated protein 
kinase (MAPK) signaling-related proteins, including the 
proto-oncogene MYC, as well as growth factors. Some of 
these proteins are also involved in gap junction activity, 
a process which is significantly enriched in this cluster. 
In addition, several CC-3 related proteins were associated 
with JAK-STAT signaling and Ras signaling. Furthermore, 
CC-3 exhibited high levels of the immune checkpoint 
OX40 (CD134) and the immune modulator SLAMF6.

Characterization of on-treatment proteomic changes
Aiming to explore the changes that occur in the plasma 
proteome on treatment, we first ran a paired t-test to 
compare between T0 and T1 protein levels in either 

responder or non-responder groups (paired Student’s 
t-test, Benjamini-Hochberg FDR <0.05; online supple-
mental table S6). The levels of CXCL9 and PD-1 were 
found to be elevated on treatment in both responder 
and non-responder groups (figure  4A,B). However, the 
increase in CXCL9 levels was greater in non-responders, 
whereas PD-1 levels increased more in responders 
(figure 4C). In addition, mild but significant increases in 
the levels of PLAUR and CCL17 were detected in non-
responder and responder groups, respectively, on treat-
ment (figure 4A–C).

Next, we compared the proteomic profiles of responders 
and non-responders at each time point. Unpaired t-tests 
identified CXCL8 as a significant DEP at both T0 and 
T1 time points (Student’s t-test, permutation-based FDR 
<0.1; online supplemental table S7). Nine additional 
DEPs, namely, IL-6, PILRA, TNFRSF21, PLAUR, CDH3, 
GOLM1, GRO (CXCL1/CXCL2/CXCL3), SDC1 and 
CXCL10, were identified as DEPs at the T1 timepoint, 
all of which were higher in non-responders (figure 4D; 
online supplemental figure S7A). Indeed, a high 

Figure 4  Characterization of on-treatment proteomic changes. (A–B) The levels of three proteins were significantly increased 
on treatment in responders (A) and non-responders (B). (C) The difference between T1 and T0 plasma levels of each protein 
in responders and non-responders. (D–E) Differentially expressed proteins with significantly higher levels in non-responders at 
T1 in all patients, n=143 (D) and in patients receiving monotherapy, n=131 (E). Protein interaction map of the 10 differentially 
expressed proteins at T1 (n=143). The map was generated using STRING database. DC, dendritic cell; IL, interleukin; NR, non-
responders; PD-1, programmed cell death protein-1; R, responders.
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expression level of any one of these proteins was found to 
be associated with poor survival, except for SDC1 (online 
supplemental figure S7B). Six of the 10 proteins were 
DEPs in monotherapy patients as well (Student’s t-test, 
permutation-based FDR <0.1; figure 4E).

To better characterize the DEPs and their potential 
cellular origin, we searched the Human Protein Atlas 
database24 for expression profiles in healthy tissue (online 
supplemental figure S7C), cancer samples (online supple-
mental figure S7D) and blood cells (online supplemental 
figure S7E). Four proteins (SDC1, CDH3, TNFRSF21 and 
GOLM1) are expressed in many normal tissues, as well as 
many tumor types, including lung cancer. CDH3, specif-
ically, is considered as a tumor associated antigen, while 
both GOLM1 and CDH3 display low immune cell speci-
ficity, indicating that these proteins may originate either 
from the tumor or host non-immune cells. In addition, 
GOLM1 was identified as a biomarker for adenocarci-
noma lung cancer in a recent study of the CPTAC consor-
tium.38 PLAUR is expressed in lung cancer cells (at low 
levels) and in the bone marrow. It could be secreted by 
myeloid cells, specifically by neutrophils, suggesting it is 
more likely of host-cell origin. PILRA, IL-6 and CXCL8 
are likely to be host-related proteins, as suggested by 
their high expression level in healthy tissues including 
lung, bone marrow and spleen but not in lung tumors. 
Six proteins (CXCL8, GRO, PLAUR, PILRA, GOLM1 
and CDH3) are expressed by neutrophils, while PILRA, 
PLAUR and GOLM1 and CXCL10 are also expressed in 
monocytes. Furthermore, 7 of these 10 DEPs are func-
tionally associated (figure 4F); five proteins are involved 
in inflammation, while PLAUR and TNFRSF21 are asso-
ciated with resistance to cell death. Overall, our findings 
demonstrate an association between poor response and 
on-treatment levels of several proteins that likely origi-
nate from tumor and host cells.

Neutrophil-related proteins are enriched in non-responders
To further explore the trends in responder and non-
responder proteomic patterns at each time point, we 
performed a more permissive Student’s t-test when 
comparing the two groups (Student’s t-test, p value<0.05; 
online supplemental table S7) followed by an enrich-
ment test with multiple hypothesis correction (Fish-
er’s exact test, Benjamini-Hochberg FDR <0.1; online 
supplemental table S8). Overall, 49 and 95 proteins were 
differentially expressed between responders and non-
responders at T0 and T1, respectively. The enrichment 
test identified numerous significantly enriched pathways 
in non-responders at each time point. A high neutrophil 
signal was observed in non-responders at both T0 and T1 
time points (figure 5A,B), as well as in the monotherapy 
patient data set (figure  5C). Specifically, the levels of 
12 neutrophil-related proteins were higher in non-
responders at both T0 and T1 time points (online supple-
mental figure S8A,B). Four of these proteins, CXCL8, 
PLAUR, GRO (CXCL1/CXCL2/CXCL3) and PILRA, 
were also identified as significant DEPs when comparing 

between responders and non-responders (figure  4D), 
further strengthening the link between immune cell func-
tion and response to ICI therapy. Only a single protein, 
leptin, was present at a higher level in responders, while 
the rest were higher in non-responders (online supple-
mental figure S8A). Interestingly, when comparing 
between T0 and T1 time points in non-responders, a 
greater number of neutrophil-related proteins were 
present at higher levels at the T1 time point (online 
supplemental figure S8B), suggesting an amplification 
of the neutrophil signal following treatment. However, 
the absolute neutrophil count remained unchanged 
on treatment, both in the entire cohort (online supple-
mental figure S8C) and in each response group (online 
supplemental figure S8D,E). In addition, there was no 
significant difference in the number of neutrophils when 
comparing between responders and non-responders 
at T0 (online supplemental figure S8F) or T1 (online 
supplemental figure S8G) time points. Taken together, 
our findings suggest that poor response to ICI therapy 
is associated with on-treatment changes in neutrophil 
function or enrichment in neutrophil subsets, while such 
effects do not affect the total number of neutrophils.

DISCUSSION
Current biomarkers for predicting response to ICI 
therapy are mostly related to the tumor and immune cells 
within the tumor microenvironment. Such biomarkers 
include PD-L1 status of both tumor cells and tumor-
associated immune cells, TMB, microsatellite instability 
and tumor immune cell infiltration.35 As such, these 
biomarkers require tumor biopsies, posing significant 
challenges. First, biopsies are not always available espe-
cially in different lesions of a metastatic disease. Second, 
due to intratumoral heterogeneity and the dynamic 
nature of the tumor microenvironment, biopsies provide 
an incomplete representation of the tumor. Third, they 
cannot reflect changes that might occur during treat-
ment.8 To overcome these limitations, efforts are focused 
on the development of liquid biopsies for analyzing cell-
free DNA, protein levels and immune cell composition in 
peripheral blood as potential biomarkers.7 39 In this study, 
we aimed to identify blood-based proteomic biomarkers 
for response to ICI therapy in patients with NSCLC, 
investigating both pre-treatment and on-treatment time 
points. Using advanced technology, we managed to screen 
760–1000 proteins in each sample. To the best of our 
knowledge, this is the largest and most comprehensive 
plasma proteomic data set for ICI-treated patients with 
NSCLC available to date, at baseline and on treatment, 
as all other plasma biomarker studies in this field focused 
on a limited number of proteins. This large screening has 
enabled us to employ an unbiased approach, whereby a 
machine-learning algorithm was trained with proteomic 
data from high-throughput proteomic screens together 
with clinical data. Using this method, we identified a 
signature comprizing two pro-inflammatory chemokines, 
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CXCL8 and CXCL10 (measured at the on-treatment 
time point), along with sex and age, that predicts clinical 
outcome with an AUC of 0.79.

CXCL8 is secreted predominantly by neutrophils, and 
it attracts neutrophils, basophils and T cells.40 CXCL8 
has been proposed as a resistance biomarker in multiple 
studies either pre-treatment or on-treatment.41 42 Notably, 
Schalper et al found that elevated CXCL8 in the blood is 
associated with an indication-agnostic mechanism of resis-
tance to ICI therapy.42 CXCL10 is involved in multiple 
processes such as chemotaxis, differentiation and activa-
tion of peripheral immune cells, regulation of cell growth, 
apoptosis and angiogenesis, and is expressed by T helper 
cells, cytotoxic T cells (CTLs), dendritic cells, natural 
killer cells, macrophages and some epithelial and cancer 
cells.43 CXCL10 was identified as a biomarker for response 

as well.44 In addition, previous studies have demonstrated 
an association between these two chemokines and resis-
tance to therapy in patients with NSCLC. Oyanagi et al 
reported significantly lower baseline levels of CXCL8, 
CXCL10 and tumor necrosis factor-α and higher levels of 
follistatin in patients with durable response.41 In another 
study, the ratio between CXCL10 and CXCL8 was predic-
tive for response in patients with NSCLC receiving ICI 
combined with chemotherapy.45 Our study demonstrates 
that CXCL8 and CXCL10 are present at higher levels in 
non-responders both at baseline and on treatment, and 
that on-treatment levels of these proteins, together with 
clinical parameters—sex and age—have predictive value.

Our proteomic screening provides insights into the 
clinical features and biological processes associated with 
resistance and response to ICI therapy. Based on plasma 

Figure 5  Non-responder proteomes exhibit an increased neutrophil signal. (A–B) Significantly enriched biological pathways in 
non-responders at T0 (all patients) (A), T1 (all patients) (B) and T1 (monotherapy patients) (C). NR, non-responder; NF-kappaB, 
nuclear factor kappa-light-chain-enhancer of activated B cells.
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proteomes, patients were grouped into three distinct 
clusters, or subtypes, characterized by different clinical 
features. These clusters showed correlations between 
multiple parameters including sex, tumor staging and 
response. Importantly, the three clusters were identi-
fied at both time points (baseline and on-treatment), 
where the non-responder cluster (CC- 1) displayed 68% 
identity in patients between the two time points. This 
finding suggests that the majority of patients in the non-
responder cluster exhibit innate resistance to ICI therapy. 
An analysis of the different proteins within each cluster 
revealed that non-responders exhibit high levels of 
proteins associated with pyrimidine metabolism as well as 
MAPK, NF-kB, WNT and JAK-STAT signaling pathways. 
Notably, some proteins in these pathways are known to 
promote resistance to immune checkpoint blockade, and 
their therapeutic blockade in combination with ICIs is 
being evaluated in several clinical trials (NCT04148937, 
NCT02860546, NCT02848443, NCT03475953, 
NCT04591431, NCT02646748, NCT03334617, 
NCT02983578, NCT03819465). In this regard, studies 
combining ICI therapy with targeted drugs such as tyro-
sine kinase inhibitors (TKIs) in patients with NSCLC did 
not demonstrate clinical benefit.10 It will be of interest to 
evaluate drug combinations designed to block biological 
pathways associated with resistance to ICI, such as those 
identified in this study.

A growing body of evidence demonstrates that cancer 
therapies induce changes in tumor and host cell activity, 
ultimately affecting tumor fate.20 21 In our study, a compar-
ison of the proteomes of responders and non-responders 
at pre-treatment and on-treatment time points sheds 
light on therapy-induced changes and their association 
with treatment response or resistance. We show that on 
treatment, PD-1 levels increase to a greater extent in 
responders, in agreement with a previous report indi-
cating a correlation between post-therapy increase of 
soluble PD-1 and improved OS or progression-free survival 
(PFS) in patients with NSCLC treated with anti-PD-1-
based therapy.46 We also show that CXCL9 levels increase 
more in non-responders during treatment, suggesting a 
role in resistance to ICI therapy. However, it should be 
noted that CXCL9 has been shown to have a dual role in 
cancer; some evidence indicates that it suppresses tumor 
growth, metastasis and tumor-derived angiogenesis, while 
other studies demonstrate its role in tumor progression.47 
Interestingly, 10 proteins, likely originating from tumor 
and/or host cells, were found to be present at signifi-
cantly higher levels in non-responders during treatment 
in comparison to only 1 protein at the pre-treatment 
time point, further supporting the notion that therapy-
induced changes contribute to resistance. Changes in 
the levels of plasma proteins following ICI therapy have 
been reported previously. For example, we and others 
demonstrated that the plasma level of host-derived IL-6 is 
elevated following anti-PD1/PD-L1 therapy in both mice 
and patients. Furthermore, IL-6 blockade in combina-
tion with ICI agents improves outcomes in mouse tumor 

models.22 48 Collectively, our approaches have identified 
plasma proteins associated with resistance to ICI therapy, 
representing potential biomarkers for outcome. In addi-
tion, proteins found at high levels in non-responders 
represent candidate targets for intervention that can be 
therapeutically inhibited in combination with ICI therapy 
to potentially improve outcomes.

Lastly, we demonstrate that non-responders display 
an enrichment in neutrophil-related proteins both at 
baseline and on-treatment, with a greater number of 
neutrophil-related proteins at the on-treatment time 
point. Previous studies have demonstrated an association 
between neutrophils and poor prognosis following ICI 
therapy. Specifically, increased neutrophil to lymphocyte 
ratio in ICI-treated patients with lung cancer was associ-
ated with poor OS and PFS, as reported in a meta-analysis 
study.49 In addition, neutrophil expansion in patients 
with NSCLC has been implicated in pro-tumorigenic and 
immunosuppressive activity, thereby explaining resistance 
to ICI therapy.50 Interestingly, although we demonstrate 
an elevation in the levels of neutrophil-related proteins 
in non-responders, the absolute neutrophil count was 
similar in responders and non-responders. Thus, it is 
plausible that specific neutrophil subsets contribute to ICI 
therapy resistance. Identification and characterization of 
such subsets could reveal novel predictive biomarkers for 
ICI therapy outcome. In addition, using proteomics we 
identified a neutrophil signal that could not be retrieved 
from blood count, further demonstrating the strength of 
proteomic-based analyses.

Our study has several limitations. (i) The cohort is 
small for biomarker discovery and requires validation in 
another independent cohort, especially when using arti-
ficial intelligence (AI) technology. (ii) Clinical benefit 
was defined as response rather than OS or PFS. Since 
some patients benefit without confirmed response, they 
could have been mislabeled. (iii) The cohort includes 
patients treated with immunotherapy alone and chemo-
immunotherapy combinations. In some of our analyses 
we differentiated between the two different groups, in 
which the chemo-immunotherapy combination subco-
hort consisted only 12 patients. Based on preclinical 
studies, we assume that the different treatment modali-
ties differentially affect proteomic signals.21 While our 
analysis revealed a stronger correlation between the 
protein signature and response when the 12 chemo-
immunotherapy patients were included in the analysis, a 
larger patient cohort is necessary to further analyze each 
treatment modality separately. (iv) The cohort includes 
patients with different histological types. (v) While 
Cohort 1 was obtained from a biobank, Cohort 2 was 
assembled from a single medical center. Thus, our study 
does not account for possible technical heterogeneity 
during sample handling. Taken together, while our study 
has some limitations, we were able to identify specific 
proteins and clinical features in the mixed patient cohort.

In summary, our study describes an unbiased approach 
for biomarker discovery in immuno-oncology. In contrast 
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to most studies focusing on tumor molecular markers and 
immune cell infiltration, here we identify blood-based 
proteomic biomarkers that are predictive of ICI therapy 
response. In addition to stratifying between responders 
and non-responders, the biomarkers provide insights into 
the underlying mechanisms of resistance and provide a 
rationale for combination therapies with potentially 
greater clinical benefit.
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