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Abstract: Cry analysis is an important tool to evaluate the development of preterm infants. However,
the context of Neonatal Intensive Care Units is challenging, since a wide variety of sounds can occur
(e.g., alarms and adult voices). In this paper, a method to extract cries is proposed. It is based
on an initial segmentation between silence and sound events, followed by feature extraction on
the resulting audio segments and a cry and non-cry classification. A database of 198 cry events
coming from 21 newborns and 439 non-cry events was created. Then, a set of features—including
Mel-Frequency Cepstral Coefficients—issued from principal component analysis, was computed to
describe each audio segment. For the first time in cry analysis, noise was handled using harmonic plus
noise analysis. Several machine learning models have been compared. The K-Nearest Neighbours
approach showed the best results with a precision of 92.9%. To test the approach in a monitoring
application, 412 h of recordings were automatically processed. The cries automatically selected
were replayed and a precision of 92.2% was obtained. The impact of errors on the fundamental
frequency characterisation was also studied. Results show that despite a difficult context, automatic
cry extraction for non-invasive monitoring of vocal development of preterm infants is achievable.

Keywords: audio processing; spontaneous cry extraction; harmonic plus noise analysis; classification;
real context; NICU; continuous monitoring; preterms; neuro-behavioral development

1. Introduction

The main cause of mortality, pathology contraction and developmental disorders
in neonates is being born prematurely [1]. In the seventies, dedicated care units called
Neonatal Intensive Care Units (NICUs) were designed to provide a specialised medical care
and ensure the optimal development of sick term and preterm newborns. Within these units,
continuous monitoring methods based on electrophysiological signals have been integrated.
They issue alarms and allow clinicians to react quickly in cases of vital function failures
(apnea-bradicardia, oxygen desaturation, etc.). In order to go further in care, it is now time
to propose similar methods to characterise the neurobehavioural development of newborns.
Indeed, the current methods for monitoring newborn development are currently carried out
on an occasional basis (e.g., sleep observations and ambulatory electroencephalography)
and are thus not generalised. The Digi-NewB project, funded by the European Union
programme for Research and Innovation Horizon2020, aims to meet this clinical need by
offering new continuous monitoring solutions to help clinicians in their decision making [2].
To this end, this project proposes to carry out a multimodal analysis allowing the health of
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a newborn to be assessed by several criteria (vocal, motor, cardiorespiratory, etc.). In order
to preserve the health and comfort of newborns, non-invasive modalities are considered.

In that context, the aim of the work presented in this paper is to propose audio analysis
techniques to monitor the vocal development of preterm newborns in real NICUs. In
particular, the focus is on automatic cry extraction, which is a step of the utmost importance
to provide vocal development markers (e.g., frequency features).

Indeed, analyses of spontaneous cries have been shown to be an informative tool to
assess the development of premature newborns (see [3] for a review). More precisely, the
relationship between frequency content and increasing gestational age (GA) has been found
important [4–6]. In particular, fundamental frequency (F0) is generally higher in preterm
infants than in full-term newborns at term-equivalent ages [5,6]. However, in these studies,
the authors focused their analyses either after manual extraction of cry events [5] or on
recordings made in controlled environments [4,6].

Extracting newborn cries is challenging due to the fact that in NICUs, sounds from
various sources (e.g., alarms and adult voices) can occur [7]. Besides, conditions of recording
differ regarding the GA and postmenstrual age (PMA) of each newborn (e.g., type of room
and type of bed). To date, only a few studies tackled this problem, by means of a Hidden
Markov Model (HMM) [8], Gaussian Mixture Model (GMM) [9] or Convolutional Neural
Network (CNN) [10] using Mel-Frequency Cepstral Coefficients (MFFCs) as input features.
Although the reported accuracies were high (91.1% [9], 89.2% [8], and 86.6% [10]), strong
limitations regarding the representativeness of the training and evaluation datasets prevent
them from being considered robust enough for deployment in clinics. Indeed, short audio
recordings, limited recording environments and limited PMA and GA ranges of newborns
were considered. An interesting proposition to counteract the lack of accessible real-world
data for training was made in [10], where the generation of simulated data was proposed
for training the CNN model. However, the scope of the proposed method is limited, since
only one room was simulated, and the final model was only tested on a few sequences
of 30 s of real-world data of a unique newborn. Thus, a method taking into account all
the challenges of NICUs remains to be proposed. Such a solution will provide a robust
continuous monitoring tool to improve the health care of newborns through cry analysis.

This paper is an extension of our previous conference paper in which we presented a
new strategy to automatically extract spontaneous crying by newborns from long duration
recordings taken in real NICUs [11]. The proposed method leans on segmentation of
all sound events, feature engineering and cry classification. The materials and methods
used to set up and evaluate the approach are presented first. Then, results are presented:
the identification of the best classification model using an annotated database and the
deployment of the full approach on long audio recordings. These are followed by a
Discussion and a Conclusion sections. The main additions of this publication to previous
work are as follows:

• The study of the contribution of each original feature to the principal components
used for classification;

• A comparison between two training strategies for classification;
• An in-depth analysis of the impact of classification on fundamental frequency estima-

tions for cry characterisation.

2. Materials and Methods

Figure 1 illustrates the process of cry extraction based on machine learning techniques
that is proposed in this paper.
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Figure 1. Overview of the cry extraction process.

In this section, databases that have been built to train and evaluate our approach
are firstly presented. Then, the set of features used for the classification are described.
Finally, the investigated classification approaches and the associated training strategies
are introduced.

Experiments presented in this study were performed using Python 3.7.3. Machine
learning developments were made with the support of scikit-learn 0.23.2.

2.1. Databases

Two databases were extracted from the Digi-NewB database: one to select the best
classification model and the other to evaluate the performance of the selected model once
deployed. Acquisitions took place in six French NICUs from 2016 to 2020 in a wide
variety of bedding environments, i.e., incubators, tables and cradles. This study received
ethical approval from the Ouest IV Ethics Committee (reference number 34/16), and at
least one parent of each newborn gave signed consent for inclusion in the study. Audio
streams were recorded with omnidirectional microphones (FG- 23329-P07 marketed by
Knowles Acoustics) and stored in mono .wav files at 24 kHz (see [12] for more details about
data acquisition).

2.1.1. Annotated Database

A set of 27 30 min recordings, each representing a range of conditions encountered in
NICUs, was selected. They involved fourteen boys and seven girls born between 27 + 5
and 41 + 4 GA and recorded between 28 + 5 and 41 + 5 PMA. Some of them were recorded
two times in different acquisition environments.

From each audio recording, sound segments were firstly extracted using the sound
segmentation step (see Section 2.2). We chose to annotate segments containing only one
type of event, meaning that segments with overlapping sounds (e.g., cry with adult voice)
were not selected. Then, based on previous works [7,13], 637 segments were annotated into
6 classes.
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Sounds emitted by the newborns were divided into three categories: cries; vocali-
sations (e.g., cooing); and other baby noises, such as coughing or hiccups. The auditory
differences between vocalisations and cries are subjective, and thus only obvious cries were
annotated as such. Hence, 198 cries were extracted from all recordings except one of them,
since no cry was found in it. The number of cries per recording ranged from 2 to 12 in
the recordings containing cries. For the other two categories, baby vocalisations and baby
noises, 93 and 65 segments, from all recordings, were, respectively, annotated.

Others sounds were also classified into three categories: adults voices (87 segments),
alarms from devices (85 segments) and background noises (109 segments). The most
diverse segments were selected to be part of each category. Thus, male and female voices;
several types of alarms; and many background noises coming from the activity of adults
(e.g., doors opening/closing, packaging friction or water flowing from a tap) and from
devices (e.g., ventilatory support airflow and bed adjustment noises) were selected.

2.1.2. Deployment Database

To deploy and evaluate the finally selected model, 42 recordings of 23 newborns
(10 girls and 13 boys) of several GA (from 25 + 6 to 40 + 3) and PMA (from 28 + 1 to 41 + 3)
were selected. The median duration of recordings was about 8 h, giving a total of 412 h.

2.2. Sound Segmentation

The first step of our approach is based on the unsupervised segmentation method
proposed in [14]. This method leans on energy thresholding: two thresholds are successively
estimated by the mean of the Otsu method to distinguish silences from noise-producing
activities [15]. Through this step, all sound events are segmented. Thus, when applied to
long audio recordings performed in NICUs, irrelevant sounds segments are also extracted,
such as adult voices or alarms. To limit the number of extracted sounds events, only
segments lasting between 250 milliseconds and 5 s were considered. This interval was
chosen because of the experience we gained during our study, since no consensus on the
minimal length of a cry event was revealed by the literature review [3]. In fact, in studies
dealing with premature newborns, values ranged from 150 to 260 milliseconds [6,14,16].

2.3. Feature Engineering

The most relevant features for cry analysis were identified from a review of the
literature on audio analysis in preterm newborns [3]. The underlying hypothesis is that
an analysis focusing on features relevant to cry analysis will give discriminating values to
classify cry and non-cry sounds. In the literature, time features, fundamental frequency
and Mel-Frequency Cepstral Coefficients were mostly investigated [8–10]. Preprocessing
steps were applied in order to reduce the effects of noise on F0 and MFCCs estimations,
such as beamformer [10] and signal decomposition [9].

In this study, we propose to handle noise by modelling audio segments using the
harmonic plus noise model (HNM) that is usually applied in speech synthesis [17]. HNM
analysis is suitable for quasi-harmonic signals, which is the case for baby cries and vocali-
sations, adult voices and alarms. From there, frequency features are estimated. They are
supplemented by time features directly computed from the original signals. To finish, in
order to limit the number of features for classification, a dimension reduction by means of
principal components analysis (PCA) is performed. All these elements are detailed in the
following sections.

2.3.1. Harmonic Plus Noise Model Features

The principle of HNM analysis is to create a synthetic signal s(t) composed of har-
monic h(t) and noise n(t) parts that fit the original signal:

s(t) = h(t) + n(t) (1)
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Indeed, the spectrum of voiced speech signal can be divided into two bands bounded
by a maximum voiced frequency, a time varying parameter. The lower band is related to
the harmonic part and the upper band to the noise part. The harmonic part h(t) is modelled
as a sum of harmonics:

h(t) =
K(t)

∑
k=1

Ak(t) cos(kθ(t) + Φk(t)) (2)

where Ak(t) and Φk(t) are, respectively, amplitude and phase at time t of the k-th harmonic.
K(t) represents the time-varying number of harmonics included in the harmonic part. On
its part, the noise part n(t) is supposed to have been obtained by filtering a white Gaussian
noise u(t) by a time-varying, normalised all-pole filter f (t, τ) and multiplying the result by
an energy triangular-like envelope function e(t), as follows:

n(t) = e(t)[ f (t, τ) ∗ u(t)] (3)

To perform the analysis, it is first necessary to limit the analysis to a certain frequency
band that we chose to adapt to cry analysis (Fmin = 150, Fmax = 750 Hz).

Secondly, to fit the model, an initial estimation of F0 must be provided. In this study, it
is estimated by the mean of the continuous wavelet transform, as proposed in [18], designed
for the analysis of newborn crying. Once the signal is modelled, the spectral conversion
of h(t) is performed to extract MFCCs. The analysis is performed over an audio segment
on frames of 5 milliseconds without overlap. The audio segment is then summarised by
median values of each feature coming from HNM analyses of each frame.

2.3.2. Time Features

Two time features have been also defined to characterise the segments:

• Duration, in seconds, of the segment since some events may last longer (e.g., adult
speech) or take less time (e.g, beep) than typical cries;

• Zero Crossing Rate (ZCR), already shown to be useful to distinguish alarms from
cries [19,20]:

ZCR =
1

T − 1

T−1

∑
i=1

1R<0(stst−1) (4)

where T is the length of the signal s(t) and 1R<0 is the indicator function.

2.3.3. Synthetic Resume of the Set of Features

In total, 124 features were computed. In our case, some of these features kept null
values for all the audio segments studied (e.g., related to high harmonics and issued from
HNM analysis) and have been discarded from the final feature set. Table 1 synthesises the
remaining 73 features.

Table 1. List of the computed features for classification.

Type of Feature Estimation Method Number of Instances

Fundamental frequency HNM 1
Number of harmonics HNM 1
Harmonic amplitudes HNM 18
Harmonic phases HNM 14
Gain HNM 1
Filter coefficients HNM 20
Mel-Frequency Cepstral Coefficients HNM 16
Zero crossing rate ZCR 1
Duration Duration 1



Sensors 2022, 22, 1823 6 of 18

The physical meaning of each of these features sometimes strongly depends on the
source of the sound (e.g., speech, device). For example, in the case of voiced sounds (i.e.,
produced by newborns and adults), the fundamental frequency corresponds to the speed of
opening and closing of the glottis in the vocal tract, whereas it is a configuration of a device
when it is a question of alarm. For their part, the number of harmonics, the harmonic
amplitudes and the harmonic phases represent the harmonic complexity of the sound and
characterise the capacity of the newborn or the adult to produce a complex sound, but also
the complexity of a configured alarm. The gain and filter coefficients are used to model
the noisy parts of all types of sound regardless of their sources, but are supposed to be
more discriminative for background noises. However, some features have more generic
meanings. Indeed, the Mel-Frequency Cepstral Coefficients allows the characterisation
of sounds as if they were perceived by the human auditory system. The regularity of the
sound is given by the zero crossing rate. Finally, the duration gives an indication of the
long or short term emission capacity of a sound source (adult, newborn, device, etc.).

2.3.4. Dimensionality Reduction

A common problem in classification is overfitting. This occurs when a classifier
corresponds too closely or exactly to a particular set of data, and may therefore fail to fit
additional data [21]. This can be due to an excessively high number of features describing
each sample. To prevent this situation and reduce the dimensions p of our feature set, we
apply principal component analysis (PCA) [22].

Before PCA, a transformation needs to be performed on the feature set in order to work
with features on the same scale. This way, the prevalence of a feature in the dimensionality
reduction process is avoided. In fact, if the differences between values within a feature are
wider than for others, the variance in the whole dataset could be mostly explained by this
feature, although that may be incorrect.

To do so, several techniques exist, such as min-max normalisation and standard scaling.
In our case, we chose to applied standard scaling, since the maximum and the minimum
values that can take each feature may not be present in our dataset. Standard scaling is
based on the mean and the variance of each feature. The standardised set of features Xni f
is computed for each sample i as follows:

Xni f =
Xi f −m f

s f
(5)

where Xi f is the original value of a feature f , with f ∈ (1,. . . , p). The mean m f and the
variance s f of the feature are computed from all samples of the dataset.

Once the PCA was performed on our training database, the principal components
representing 95% of the total variance were kept as inputs of classification algorithms.

2.4. Cry/Non-Cry Classification

We extracted segments of interest first and summarised them using an ensemble of
projected features. From this feature set, six supervised classification approaches were
investigated: K-Nearest Neighbours (KNN), Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Random Forest (RF), Multi-Layer Perceptron (MLP) and Support Vector
Machine (SVM). The main justification to the use of these classical approaches was the
amount of annotated data at our disposal (i.e., 637 segments). Indeed, we chose to only
learn from real-world data, which led us to consider only classification methods that
have proven powers of generalisation, even from size-limited datasets. Secondly, as we
cannot formulate any a priori information on the linearity or non-linearity of the most
efficient classification, a broad set of classification approaches to identify the best modelling
was considered.

Our goal to identify “cry” segments from others, a binary classification was performed.
Within this objective, our annotated dataset was composed of 198 cry and 439 non-cry
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segments. Then, a training/validation set and a testing set were defined, respectively,
composed of 60% and 40% of the dataset.

On the training/validation set, a 3-fold cross validation strategy was performed in
order to tune the hyper-parameters of the classifiers. The performance of each classifier
was evaluated on the testing set through three metrics: precision, recall and accuracy.

Two strategies were considered in order to analyse the impact of the choice of opti-
mising one metric rather than another on classification performance. Hence, models were
tuned to reach the highest accuracy (strategy 1) but also to reach the highest precision
(strategy 2). In the first case, the idea was to obtain the best balancing between cry and
non-cry classification, whereas in the second case, the lowest false positive rate was sought,
i.e., recover as few non-cry segments as possible.

3. Results

The first part of the results section is dedicated identifying the best classification model
to deploy. The second part is focused on the application of this model to the deployment
database to evaluate its robustness. Meanwhile, we take the opportunity to study the
impact of misclassifications on the estimation of the fundamental frequency. Figure 2
summarises these investigations.

Figure 2. Overview of the evaluation of the approach.

3.1. Identification of the Best Classification Model

First, the relevance of the feature set in regard to the classification objective is verified.
Then, we present the hyper-parameters of the classification models retained for the two
evaluation strategies (described in Section 2.4). Finally, the results in terms of classification
performance are presented and the best model is selected.

3.1.1. Relevance of the Feature Set

To give a first insight into the relevance of our approach, features have been projected
onto a 2-dimensional space resulting from the PCA analysis (Figure 3).

The two first components contain, respectively, 8.8% and 6.1% of the variance of the
dataset, giving a total of 14.9%. Baby cries are mostly located on the bottom of the graph
along with some of the baby vocalisations. All other types of sounds tend to be in the upper
part. This observation is reassuring regarding our classification purpose, although we may
already notice that it will be difficult to discriminate between baby cries and vocalisations
on the sole basis of these two dimensions.
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Figure 3. Visualisation of the dataset using the first two principal components.

In a second step, we focused on all the resulting principal components which represent
95% of the total variance or 41 components. The dimensions of the feature set were therefore
reduced from 73 to 41. Figure 4 illustrates the coefficients applied to the features in order to
perform the projection. A colour represents the value of each coefficient. The deeper the
blue, the higher the coefficient applied for a feature.

Figure 4. Heatmap reporting the values of the coefficients applied to project the original feature set
on 41 principal components.
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Globally, each feature contributes to the projection, and none of them stands out from
the crowd. One can also see that the most influential features on the first three dimensions
are related to the harmonics (the three first lines in Figure 4).

At this stage, we found that the projected feature set contained information from the
whole original feature set that can be useful for classification. Indeed, we have seen that
the classes seem to be separable in this new projection space. The true suitability of the
projected feature set for the extraction of cries will be assessed together with the evaluation
of the classifiers in the following sections.

3.1.2. Final Retained Sets of Hyper-Parameters

For each classifier, two sets of parameters resulting in the highest accuracy (strategy
1) and the highest precision (strategy 2) during cross-validation were identified. For that
purpose, several parameters and hyper-parameters were tuned using grid search. This
time, in order to compare between kernels in SVM, we chose to report the best parameters
for the three SVM classifiers: linear, polynomial and Gaussian. A summary of the tests is
reported in Table 2.

Table 2. Parameter testing summary. Final selected parameters for accuracy are underlined, whereas
final selected parameters for precision are marked in bold.

Method Parameters

KNN Number of neighbors ∈ [1, 3, 5, 11, 15]
Distance: Manhattan or Euclidean

LDA Solver ∈ [singular value decomposition,
least squares solution, eigenvalue decomposition]

LR Cut-off ∈ [0.1, 0.2, 0.5, 0.7]

RF Number of trees ∈ [5, 10, 20, 50, 100, 300]
Quality split criterion: gini or entropy

MLP Number of hidden layers ∈ [ 1, 2, 5]
Number of perceptrons per layers ∈ [1, 2, 5, 10, 20, 30]
Activation function ∈ [identity, logistic sigmoid,
hyperbolic tan, rectified linear unit]

SVM linear No additional parameter

SVM polynomial degree ∈ [1, 2, 3, 4]

SVM gaussian margin ∈ [0.01, 0.1, 1, 10, 100, 103, 104]
gamma ∈ [0.0001, 0.001, 0.01, 0.1, 1, 5, 10, 100]

The parameters are different for different classification strategies. This recalls the fact
that this step is inescapable during the learning phase of machine learning and must be
investigated to identify the best classifier to use.

3.1.3. Classification Results on the Test Set

In Figure 5, results on the test set regarding strategy 1 (i.e., accuracy) are given. The
best results were obtained with MLP, which achieved 95.3% accuracy, 92.9% recall and 92.8%
precision. Generally, non-linear algorithms showed weaker results than linear approaches,
especially in recall (48.8% for SVM Gaussian, 52.4% for SVM polynomial and 60.7% for RF).
This reveals a bad generalisation of those models. The best recall value was obtained by LR
with 94.0%, which is slightly higher than the recall of MLP. KNN and SVM linear classifiers
performed well, but recall results are lower with values of 85.7% and 81.0%.
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Figure 5. Performances (in %) of cry selection on the test set for each machine learning approach by
maximising the accuracy in the learning phase.

Results for strategy 2 (i.e., precision) are reported in Figure 6. Better generalisation by
all models was observed, since values are more stable between metrics. The best precision
score was obtained by KNN and reached 92.9%. The highest recall score was once again
obtained by LR, 94.1%. Accuracies were high (above 90.2%) for all classifiers. Results with
MLP were also really good, since a precision of 92.7%, a recall of 90.48% and an accuracy of
94.5% were reached.

Figure 6. Performances (in %) of cry selection on the test set for each machine learning approach by
maximising the precision in the learning phase.

With regard to our objective, a classifier that learned to be precise on cry selection
(strategy 2) seems to be the most reasonable choice. Indeed, the goal is to extract cries in
order to assess newborn evolution during hospitalisation, in other words, over the long
term. In that case, it is much more important to have a high probability that the retained
segments are actual cries (even if some are missed) than to have false positives (alarms,
adults, etc.). The results of the KNN of the second strategy are in line with this. In fact, it
carries high precision while keeping a high recall value. This means that there is also a low
chance of missing cries with this model. MLP is also a serious contender, but objectively,
with 0.1% more precision, we favour the KNN.

For the remainder of our study, the KNN approach was therefore chosen. A final
model was computed by training it to reach the highest possible precision on the whole
annotated database.
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3.2. Evaluation of the Model Performance When Deployed for Monitoring

In this section, the efficiency of the final model in cry extraction on the deployment
database is assessed. Secondly, as cries are mainly investigated regarding the fundamental
frequency F0, the results regarding F0 estimations and particularly the impact of misclassifi-
cations on these estimations are studied.

3.2.1. Evaluation of the Model Classification Performance during Deployment

The whole method was applied on all recordings of the deployment database. After
the segmentation step, 495,534 sound events were retained. It was reduced to 5409 segments
classified as cry by the KNN model. For practical reasons and to reduce the time needed
for annotation, we only analysed the segments that the model extracted as crying. These
segments were verified, and percentages of good classifications and misclassifications were
computed in regard to two metrics: number of segments and duration of these segments.
Results are reported in Figure 7.

Figure 7. Cry extraction results on the deployment database. Proportions by category of segments
automatically labelled as cry by our model.

Firstly, among the segments, 4221 were revealed to be true positives, giving a precision
of 78%. The second most represented segments were ones on which other sound events
happened at the same time as crying (14.2% of overlapped cry). If percentages are computed
by integrating overlapped cries with cries, precision reaches 92.2% and the error rate drops
to 7.8%.

Secondly, alarms represent 3.3% of the misclassified segments, followed by baby
vocalisations (2.1%), background noise (2.1%) and adults (0.1%).

To complete these observations, we can also report that processing duration depends
on the content of each recording, notably because of the time necessary to perform HNM
analysis for classification. It is directly linked to the number of segments issued from the
segmentation step and their duration. Here, computational duration ranged from 45 min
to 6 h with a mean of 3 h for all 8-hour recordings.

3.2.2. In-Depth Analysis of the Impact of the Crying Extraction Method on the Analysis of
Fundamental Frequency

In this part, fundamental frequency estimation is firstly illustrated for cry segments.
Then, each type of error is examined to anticipate their impacts on the estimation of the
fundamental frequency on a larger scale of analysis (i.e., monitoring).

Estimations of Fundamental Frequency on True Cry Segments
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To go further, the fundamental frequency estimations obtained on our segments
classified as crying were studied. In fact, characterisation of cry through fundamental
frequency was shown in the Introduction to be a good indicator of vocal development that
can be use to monitor preterm newborn health.

In our method, the fundamental frequency was estimated to be between 150 and
750 Hz in order to be integrated in the feature set and as an input for the HNM analyses.
Although we saw that this estimation was relevant for classification, further observations
revealed that the band applied for the estimation of F0 is not accurate for precise characteri-
sation of a cry. Indeed, the band of analysis had to be adapted for each cry. To illustrate this
point, three examples of cries are given in Figure 8.

Figure 8. Three examples of cry characterisation using F0 estimations. Each time, the estimation
either with the fixed band 150–750 Hz (in orange) or with a manually selected band (in green) with
smoothing (in yellow) is superimposed on the spectrogram of the cries.
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For Cry 1, several jumps between the fundamental frequency and the first formant
can be observed for when the band 150–750 Hz was used. A manual selection of the band
250–450 Hz allowed for a more accurate estimation of F0 over the cry. For Cry 2, F0 was
overestimated and was found on the first formant all along the cry. The use of a cry-specific
band (270–600 Hz) provided better estimates.

In Cry 3, noisy parts are at the beginning and at the end of the segment, leading to
wrong estimations of F0. In [16], the authors proposed to smooth the estimates. This is
exemplified with Cry 3 where the smoothed estimation started after and ended before
noisy parts of the segment. We can also notice that the smoothing could have been useful
to retrieve an accurate estimation of F0 with the fixed band in Cry 1.

Impact of the Sound Superposition on the Estimation of the Fundamental Frequency
(Overlapped Cries)

To go one step deeper, the impact of overlapping sounds on the estimation of the
fundamental frequency of cries has been studied. Fundamental frequencies were esti-
mated with a manual selection of the estimation band and smoothing for six examples of
overlapped cries (see previous section). Results are reported in Figure 9.

Figure 9. Six examples of cries overlapping with other sounds: two alarms (in blue), two adult
voices (in red) and two background noises (in orange). Estimates of the fundamental frequency are
superimposed on the spectrogram of the cries (in yellow).

First, we can see that an alarm of high (e.g., Cry+Alarm1) or low (e.g., Cry+Alarm2)
frequency has no impact on the estimation of the fundamental frequency. Secondly, adults
have usually lower fundamental frequencies than babies, from 85 to 180 Hz for men, and
from 165 to 255 Hz for women [23]. In most cases, the estimation of F0 was well performed
(e.g., Cry+Adult2). Nevertheless, the first formant of adult voices can be in the same order
as F0, and thus may induce errors in the estimation (e.g., Cry+Adult1). Finally, although
background noises impact a large frequency band, the estimation of F0 remains quite
accurate in the affected periods of cries (e.g., Cry+Background1 and Cry+Background2).

If estimations of F0 over a cry are globally not impacted by the overlapping sounds,
another limitation coming from the segmentation step can be noticed in cases of multiple
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events. Indeed, if another sound begins earlier and/or stops after the end of the cry, the
algorithm will retrieve all the sound activity as a sole segment, as depicted in Figure 10.

Figure 10. An example of a segment with several sounds and the F0 estimates (yellow).

In this example, three types of sounds are present: cry, alarm and vocalisation. First,
the segmentation started before and continued after the first cry event because of an alarm.
Then, the second cry event began, immediately followed by a new cry and by an alarm.
Finally, a fourth cry occurred and was also followed by a vocalisation. In that case, the
estimation of the fundamental frequency was performed all along the segment and noisy
parts of the spectrum were not avoided or corrected by the smoothing.

These errors may be identified, since the resulting segments last usually longer (here,
more than 3 s). For segments of long duration, it may be relevant to perform the extraction
process another time. Results for the segment presented in Figure 10 are reported in
Figure 11.

Figure 11. New computation of the cry extraction method (segmentation and classification) for a
segment of long duration. The red line indicates the segment that was automatically discarded by the
KNN model.

The segmentation step resulted in five segments: one overlapped cry, two cries, one
beep and a cry ending with a vocalisation. After classification, the four segments containing
cries were retrieved.

Impacts of Confounding Vocalisations with Cries on the Estimation of the
Fundamental Frequency

The second type of error made by the classifier was confounding some vocalisations
with cry events. An example of misclassified vocalisation is reported in Figure 12.
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Figure 12. An example of vocalisation and the F0 estimates (yellow).

Misclassified vocalisations have spectra similar to those of cries regarding low fre-
quencies. Among these errors, no oscillatory pattern such as that observed in Figure 10 was
observed. In fact, these events are usually short and have values of F0 in the same range as
cries. Hence, the inclusion of these segments may have no impact on the estimation of F0
over long periods of monitoring

Impact of Other Errors on the Estimation of the Fundamental Frequency

The last errors, representing 5.5%, were between background noises, alarms or adults
and cries. An example of a misclassified event from each class is reported in Figure 13.

Figure 13. Three examples of misclassified events.

This time, no estimation of F0 was performed since no band of estimation would be
relevant. Estimation of the fundamental frequency will be impacted by these kinds of errors
if they are too many of them in regard to the number of actual cries.

4. Discussion

In this paper, a method based on sound segmentation, feature extraction and machine
learning was proposed to automatically extract spontaneous cries of preterm newborns.
Methods were set up in order to perform analysis of cry on recording of long duration
acquired in real context of NICU. This particular context implies deploying models able to
differentiate cry events from non-cry events (alarms, voice of adults).

As a first step, relevant databases for training and evaluating our process had to be
collected. Thus, 637 sound segments issued from the sound segmentation of 27 recordings
were selected. They were chosen in order to represent the diversity of NICU environments
(i.e., type of alarms, different hospitals and types of bed) and the diversity in the preterm
newborn population (i.e., sex, GA and PMA). In short, this database was built to retain
a performing classification model. A set of features was then defined from each of these
segments to be used as inputs of the classification approach. To construct this feature set,
we applied a harmonic plus noise model, allowing us to extract features related to the
harmonics of the signal while reducing the impacts of noise on them (e.g., MFCCs). We
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associated with it other classical features, such as zero crossing rate and duration of the
segments. Then, we reduced the set of features by means of a PCA. To keep the principal
components covering 95% of the variance, 41 components were selected. We saw that each
original feature was used to build the projection. Finally, we compared different learning
strategies and classification models. On this occasion, we have shown that it is important
to tune hyper-parameters of the models by using a metric that is most in line with the
objectives of classification. Models trained with a focus on precision had better results.
From this analysis, we deduced that the KNN, when trained to reach the highest possible
precision, was the best model, with an accuracy of 94%, a precision of 92.9% and a recall of
90.0% on the test set.

In a second step, a larger database (412 h of recording of 23 newborns) was retrieved
to ensure the reliability of our final model when deployed. It was found that 92.2% of
the segments considered as crying by our model were real crying either alone or with
another overlapping sound. Among the false positives, alarms came first (3.3%), followed
by vocalisations (2.1%) , background noises (2.1%) and adult voices (0.1%). To go further,
we studied the potential impact of such errors on the characterisation of crying through the
analysis of the fundamental frequency. We have seen that for segments of overlapped cries,
the impact on frequency estimation of the interfering sound will be small if a cry-specific
selection of the frequency band to perform the analysis is performed. We also found that
long duration segments (in which different sound events follow one another) could be
resegmented and classified to improve performance. Furthermore, we hypothesised that
errors caused by fundamental frequency estimation on neonatal vocalisations could be
negligible. Finally, we noted that if the analysis of the F0 was done on alarms, background
noise or adult voices, the analysis of the vocal development would be biased only if errors
are more frequent than cries within the same record.

These results are encouraging and allow us to see new perspectives and avenues
for improvement.

Although we have seen that our training database allows us to obtain a well-performing
model, increasing the number of examples on which the KNN will rely to make new predic-
tions is a relevant perspective. For that purpose, more segments will have to be annotated.
In that sense, the cry extraction process presented here can be used to provide an automatic
pre-annotation of segments to facilitate the construction of a large real-world database. In
addition, our team has developed an annotation tool that will facilitate this task for future
studies (Met-Montot B., Cabon S., Porée F., Carrault G.. SoundAnnot : Sound Annotation
Tool. IDDN.FR.001.020001.000.S.P.2021.000.31230 (15 July 2020)).

The second area for improvement concerns segmentation. In this study, we applied a
method proposed by Orlandi et al. [14] that is not cry-selective, since all types of sound are
extracted. During the Digi-NewB project, audio and video data recorded were simultane-
ously acquired. Hence, we are currently developing a new approach where we combine
the motion information with the audio segmentation as the baby moves while crying [24].
This would allow us to reduce classification errors but also to be more robust if several
babies are in the same room. Furthermore, we have seen that for segments of long duration,
it can be interesting to perform a segmentation a second time. The conditions allowing
the automation of this step will have to be studied carefully. Indeed, as the duration of
a newborn’s cry is directly linked to its pulmonary and vocal capacities, so it would be
unhelpful to lose this piece of information by resegmenting segments containing cries alone.

To finish, the feature extraction step can also be improved. Indeed, as we saw that a
cry-specific band associated with smoothing leads to better F0 estimates, it will be relevant
to feed the HNM with more accurate estimations. We recently proposed a method based on
edge detection on spectrogram images to tackle this issue [25]. The other possible improve-
ment is to increase the number of features issued from the HNM analysis, for example,
by calculating the derivatives of MFCC (delta and delta–delta) [8] and by performing the
analysis in a band of higher frequency (i.e., which would allow one to characterise the
high frequency alarms). In addition, other dimensionality reduction techniques could be
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studied to optimise performances: supervised techniques such as Linear Discriminant
Analysis (LDA), step-wise feature elimination and the genetic algorithm; or unsupervised
techniques such as t-Stochastic Neighbour Embedding (t-SNE) [26]. Moreover, a large
real-word dababase will allow us to dive into newer but data-intensive methods. For
example, deep neural networks for cry classification using spectrogram as input should be
investigated [27–29].

5. Conclusions

To conclude this work, a new method for the automatic extraction of cries evaluated
under real conditions of NICUs was proposed. This is the first time that the HNM method
has been considered for spontaneous cry extraction, but also the first time that performance
has been analysed with a strong focus on clinical integration. Our approach performs with
92.2% precision when deployed, and relevant characterisation of crying for monitoring
purposes seems achievable with it.
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