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Dengue virus (DENV) infection can cause either self-limited dengue fever or hemorrhagic
complications. Low platelet count is one of the manifestations of dengue fever.
Megakaryocytes are the sole producers of platelets. However, the role of both host and
viral factors in megakaryocyte development, maturation, and platelet production is largely
unknown in DENV infection. PI3K/AKT/mTOR pathway plays a significant role in cell
survival, maturation, and megakaryocyte development. We were interested to check
whether pathogenic insult can impact this pathway. We observed decreased expression
of most of the major key molecules associated with the PI3K/AKT/mTOR pathway in
DENV infected MEG-01 cells. In this study, the involvement of PI3K/AKT/mTOR pathway
in megakaryocyte development and maturation was confirmed with the use of specific
inhibitors in infected MEG-01 cells. Our results showed that direct pharmacologic
inhibition of this pathway greatly impacted megakaryopoiesis associated molecule
CD61 and some essential transcription factors (GATA-1, GATA-2, and NF-E2).
Additionally, we observed apoptosis in megakaryocytes due to DENV infection. Our
results may suggest that DENV impairs PI3K/AKT/mTOR axis and molecules involved in
the development and maturation of megakaryocytes. It is imperative to investigate the role
of these molecules in the context of megakaryopoiesis during DENV infection to better
understand the pathways and mechanisms, which in turn might provide insights into the
development of antiviral strategies.
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HIGHLIGHTS

•Activation of PI3K/AKT/mTOR pathway is essential for megakaryocyte maturation and
development (megakaryopoiesis).

•DENV impairs PI3K/AKT/mTOR axis in megakaryocytes.

•DENV impairs megakaryopoiesis-related key molecules like GATA-1, GATA-2, and NF-E2.

•DENV infection leads to apoptosis in megakaryocytes.
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INTRODUCTION

Platelets are indispensable for maintaining body functions as
they are the regulators of hemostasis, thrombosis, and
inflammatory responses (Li et al., 2017). These are anucleate
cells (2–4 mm in diameter) produced by bone marrow derived
giant precursor cells, called megakaryocytes (50–100 µm in
diameter) (Szalai et al., 2006; Geddis, 2010; Machlus and
Italiano, 2013). Megakaryocytes undergo a series of highly
orchestrated processes to produce platelets. Mature megakaryocytes
with long cytoplasmic processes produce pro-platelets and these pro-
platelets finally convert into platelets, and the whole process is called
megakaryopoiesis. Different factors strongly influence maturation
and successful production of platelets by megakaryocytes, such as
growth-promoting factor thrombopoietin (TPO) and PI3K/AKT/
mTOR, transcription factors GATA-1 and GATA-2, STAT
molecules, and NE-F2 (Szalai et al., 2006; Geddis, 2010; Machlus
and Italiano, 2013). Among these, molecules involved in PI3K/AKT/
mTOR signaling are crucial for megakaryopoiesis (Chen et al., 2018).
Transcription factors like GATA1, GATA-2, and NF-E2 have been
shown as significant contributors to the development of
megakaryocytic lineage (Shivdasani et al., 1995). Obstruction in
platelet formation by megakaryocytes occurs when any of these
factors are affected by pathogen(s) or imbalance in homeostasis.

Megakaryocytes are the target of several viral pathogens.
Hantaan virus (HTNV), a Bunyaviridae family member, can
efficiently replicate in differentiating megakaryocytic cells
(Lütteke et al., 2010). Junin virus, an Arenavirus family member,
can infect megakaryocytes and impairs thrombopoiesis by
decreasing proplatelet formation and platelet release (Pozner
et al., 2010). The human immunodeficiency virus, human
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
herpes virus, and human cytomegalovirus (Gonelli et al., 2002;
Costantini et al., 2006; Chen et al., 2017) are few examples of other
viruses capable of infecting megakaryocytes and hampering
platelet production.

DENV infection is the most common mosquito-transmitted
infection globally, with ~390 million reported cases per year
(Murray et al., 2013). Symptomatic DENV infected individuals
develop fever, headache, vomiting, muscle and joint pains, and a
characteristic skin rash or progress to severity (Kularatne, 2015).
Life-threatening dengue hemorrhagic fever or dengue shock
syndrome is a severe condition with major symptoms like
bleeding, thrombocytopenia and plasma leakage, or low blood
pressure (Simmons et al., 2012).

DENV possesses a positive-sense single-stranded RNA genome
of ~11 kb, translated into a single polyprotein which further
processed into structural proteins (capsid, prM/membrane, and
envelope) and non-structural proteins (NS1-NS5) by host or viral
proteases enzymes (Bollati et al., 2010). DENV has been classified
into four serotypes, DENV1–4, and infection with two or more
serotypes can cause severe life-threatening disease (Halstead and
Deen, 2002; Holmes and Twiddy, 2003).

The effect of DENV infection in the megakaryocyte is poorly
understood. Host factors tightly regulate megakaryopoiesis or
platelet production, and impairment of these factors may lead to
low platelet production by megakaryocytes. DENV infection in
megakaryocytes and different cell types of megakaryocytic
lineage (UT-7, MEG-01, K562) is well reported (Basu et al.,
2008; Clark et al., 2012; Clark et al., 2016; Vogt et al., 2019). In
this study, we focused on host factors that are crucial for
megakaryopoiesis during DENV infection by using MEG-
01 cells.
GRAPHICAL ABSTRACT | Graphical abstract represents the effect of DENV infection and different inhibitors on megakaryopoiesis.
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METHODS

DENV Stock Preparation
Virus stocks were prepared by infecting monolayers of C6/36
cells with dengue virus serotype-2 strain (DENV2) NGC.
Infected cells were maintained in L-15 medium (Gibco Life
Technologies), supplemented with 2% fetal bovine serum (FBS)
and antibiotic antimycotic solution (Himedia Laboratories).
Virus containing cell supernatants were harvested, filtered, and
stored at -70°C till further use. Virus stocks were quantified by
qRT-PCR. To attain a sufficient titer, virus concentration was
performed using amicon centrifugal filter tubes (Millipore). The
concentrated virus was used to infect megakaryocytic cell line
MEG-01 (kindly provided by Dr. Sankar Bhattacharyya, THSTI,
India). Heat-inactivation of virus stocks was performed at 55°C
for 1 h.

Cell Culture, Treatment, and
DENV Infection
MEG-01 cells, a human megakaryoblastic leukemia cell line, were
grown in RPMI medium (Lonza) with 10% FBS and antibiotic
solution (Himedia Laboratories) with 5% CO2. For further
differentiation, MEG-01 cells were treated with growth factor
TPO (100 ng/mL; PeproTech) for 24 h prior to experiments.
For DENV infection, MEG-01 cells were incubated with DENV
for 3 h at 37°C, washed with PBS, and resuspended in RPMI-1640
medium with 10% FBS/1X antibiotics and kept at 37°C with 5%
CO2 in a cell culture incubator for different experiments. To
inhibit different cellular mechanisms, AKT, PI3K, PKCa, and
mTOR inhibitors (AKT inhibitor IV (5.0 µM), Ly294002 (10.0
µM), and HBBDE (10.0 µM) from Sigma Aldrich; Torin1 from
Cell Signaling Technology) were used respectively as per-requisite
of experiments after infection.

Western Blotting and Antibodies
Mock and DENV infected MEG-01 cells were harvested on day
5th post-infection and washed with cold PBS. Cells were lysed
with RIPA lysis buffer by vortexing several times and incubated
on ice for 30 min. Supernatants from whole lysates were
separated by centrifugation at 10,000g for 30 min at +4°C, and
protein quantification was done using BCA method (Pierce BCA
Protein Assay Kit; Thermo Fisher Scientific). An equal amount of
total protein was mixed with sample loading dye and resolved on
8–12% SDS-polyacrylamide gel. The same were transferred on
nitrocellulose membrane (# SCNJ8101XXXX101, MDI, Advanced
Microdevices Ltd., India). The membrane was blocked with 5%
skimmed milk or BSA solution for 1 h at room temperature.
Afterward, the membrane was subjected to incubation with
primary antibody, washed, and incubated with suitable secondary
antibodies (Jackson ImmunoResearch, USA). The membrane was
washed with TBST and developed on x-ray film by using
chemiluminescence solutions. Following antibodies used in this
study were obtained from Cell Signaling Technology [anti GATA-
2 (# 4595), anti Akt (pan) (#2920), anti phospho-Akt (Thr308;
#4056), anti phospho-Akt (Ser473; #4060) anti mTOR (#2983), anti
phospho-mTOR (Ser2448; #2971), anti p70 S6 Kinase (#9202), anti
PKCa (#2056), anti Bcl-2 (# 15071)]; Santa Cruz Biotechnology
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
[anti-GAPDH (#Sc-32233)]; and Sigma Aldrich [anti NF-E2
(#HPA001914) and anti-DENV NS1 (# SAB2702308)].

Quantitative Real-Time PCR for
Viral Replication
Viral load in the supernatants was estimated by extracting viral
RNA from culture supernatants and harvested from DENV
infected MEG-01 cells using QIAamp Viral RNA Mini Kit
(Qiagen). Eluted RNA samples were mixed using TaqMan fast
virus 1-step master mix (Applied Biosystems) with DENV-2
specific primers and probe and subjected to qRT-PCR. Viral load
was estimated applying the standard curve method using DENV-
2 transcripts (Lahon et al., 2016).

Apoptosis Assay
MEG-01 cells (1X105) were infected with 1 MOI of DENV or left
alone. Cells were harvested at a given time point and washed with
cold PBS. Cells were subjected to staining with annexin-V
(#556420, BD Biosciences) and propidium iodide (#556547,
BD Biosciences) and incubated at room temperature in the
dark for 20 min according to manufacturer instructions.
Stained cells were washed and resuspended in PBS, and data
were acquired on BD canto flow cytometry instrument. Data
were analyzed using BD FACS-Diva software (BD Biosciences).

Flow Cytometry Analysis of CD61 and
DENV Envelope Protein
Mock and DENV infected MEG-01 cells, with or without treatment
of different inhibitors of PI3K, AKT, and mTOR pathway, were
washed and stained for CD61 (PE-CD61, # 555754 BD Bioscience)
and washed with PBS and 2% FBS. Cells were fixed with
paraformaldehyde and analyzed on a flow cytometry analyzer
(BD-Bioscience). For staining of DENV envelope protein in
MEG-01 cells, infected and control cells were fixed with IC-
fixation buffer (Thermofisher Scientific) in the dark and washed
twice with permeabilization buffer. Then, cells were incubated with
4G2 antibody (# MAB10216, EMD-Millipore) for 30 min and
washed with permeabilization buffer followed by incubation with
anti-mouse FITC conjugated secondary antibody (Thermofisher
Scientific). Cells were washed and analyzed on a flow cytometry
analyzer (BD-Bioscience).

Statistical Analysis
All the cell culture experiments were done in triplicates, and results
were represented as mean ± standard error. All graphs were prepared
in Graphpad Prism, and statistical analysis was performed by non-
parametric Student’s t-test and p < 0.05 considered as significant.
ImageJ software was used to analyze Western blot images, and
GAPDH was used as endogenous control to calculate fold changes.
RESULTS

DENV Infection Impaired Expression of
PI3K and AKT in MEG-01 Cells
PI3K and AKT pathway activation has been shown very crucial
to regulate platelet production by megakaryocytes (Kaushansky,
August 2021 | Volume 11 | Article 715208
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2005; Di Buduo et al., 2016). Disruption of the said pathway in
megakaryocytes may impede the production of platelets (Nakao
et al., 2008). PI3K/AKT pathway is essential for cell survival,
inhibition of apoptosis, development, and maturation of
megakaryocytes. Flaviviruses have been shown to modulate the
same pathway for their survival (Mannová and Beretta, 2005).
However, how DENV modulates PI3K/AKT signaling in
megakaryocytes is poorly understood. To understand the
underlying mechanism, we evaluated the expression of AKT
and associated proteins involved in PI3K/AKT pathway in MEG-
01 cells during DENV infection.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
TPO treated MEG-01 cells were incubated with the DENV-2
virus (1 MOI). Virus replication was determined from cell
culture supernatants collected at given time points by using
RT-PCR (Figure 1A). Replication was further confirmed by
immunoblotting for DENV non-structural protein 1 (NS1, an
expected band of ~48 kDa was detected) in 5th -day post infected
cell lysate (Figure 1B) and flow cytometric detection of DENV
envelope protein using 4G2 antibody staining of infected cells
(mean ± SE of infected cells = 23.4 ± 4.1; Figure 1C). However,
heat-inactivated virus failed to express NS1 and viral envelope
protein (Figures 1B, C). We checked the expression of pan AKT
A B
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FIGURE 1 | DENV infects MEG-01 cells and modulates the expression of AKT. (A) MEG-01 cells were infected with 1 MOI of DENV, and replication was determined
from cell culture supernatants collected at day 1 post-infection through day 5 post-infection by using RT-PCR. (B) Replication was further confirmed by
immunoblotting for DENV NS1 (~48 kDa) in 5th-day post infected cell lysate and (C) flow cytometric detection of DENV envelope protein using 4G2 antibody staining
of infected cells (mean ± SE of infected cells = 23.4 ± 4.1). (D, E) Immunoblotting of pan-AKT and phosphorylated AKT (Ser473) in mock-infected, DENV inactivated
virus treated, and DENV infected MEG-01 cell lysate at 5th day post-infection. (F–H) Relative expression of pan-AKT and phospho-AKT was calculated by using the
densitometry method and presented as column graphs. The ratio of phospho-AKT and pan-AKT is also presented as column graphs. (I, J) Immunoblot of pan-AKT
and phospho-AKT from the lysate of mock, inactivated virus treated, and DENV infected HEK293 cells and (K–M) presentation of relative expression of pan-AKT and
phospho-AKT as column graphs of mock control, inactivated virus treated, and DENV infected HEK293 cells. (*pValue < 0.05; **pValue < 0.01).
August 2021 | Volume 11 | Article 715208
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and phospho-AKT with or without infection. DENV infected
MEG-01 cells showed deteriorated expression of pan-AKT and
phosphorylated AKT (ser473) levels at 5th day post infection
when compared with mock cells (Figures 1D–H, p < 0.05). The
ratio of phospho-AKT and total AKT was found significantly
reduced in infected cells (Figure 1H, p < 0.05). To confirm the
role of virus replication, we utilized heat-inactivated (HI) DENV
stock. We found higher levels of pan AKT in the cells with
inactivated virus compared with control or virus infected MEG-
01 cells (Figures 1D–H; p < 0.05).We also analyzed the expression
of phospho-AKT in the lysate of mock and DENV infected cells at
3, 4, and 5 days post infection (Supplementary Figure S1).
Additionally, we utilized HEK-293 cells, a different cell lineage
from MEG-01 cells, to understand the effect of DENV replication
in two different cell types. We observed a slight decrease in the
pan-AKT expression in HEK-293 cells with DENV infection than
controls, albeit we could not find any difference in the expression
of phospho-AKT (ser473) (Figures 1I–M; p < 0.05).

Activated PI3K components regulate AKT and its downstream
signaling. PI3K has three important components: a regulatory
subunit p85 and catalytic subunit isoforms p-110a and p110b.
The p85 binds to the N-terminus of the p110 subunit via its iSH2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
domain and regulates its activity (Backer, 2010). So, our next
logical question was whether DENV also influences the upstream
molecule PI3K.

The expression of p85 and one of the catalytic subunit, p110a,
was observed low in DENV infected MEG-01 cells than in
uninfected controls (Figures 2A–D; p < 0.05). No change was
observed in the levels of p110b in DENV infected cells
(Figures 2E, F). However, with inactivated virus, increased
expression of p110b was noted (Figures 2E, F; p < 0.05). Our
results suggest that DENV may have profound effects on PI3K/
AKT pathway in infected megakaryocytes.
Effect of DENV on mTOR and Associated
Molecules in Megakaryocytes
Activation of mTOR, a downstream molecule of PI3K/AKT
pathway, is also required for megakaryocyte development and
platelet production (Liu et al., 2011; Elagib et al., 2018). Next, we
checked the expression of mTOR and associated molecules in the
conditions we opted in previous experimentation. We observed
that DENV replication in MEG-01 cells reduced the expression
of phosphorylated mTOR than control cells (Figures 3A–E;
A B

D

E F

C

FIGURE 2 | Immunoblotting of PI3K regulatory and catalytic unit proteins. Representative immunoblots and relative expression of (A, B) p-85, (C, D) p110-a, and
(E, F) p-110-b in mock-infected, DENV inactivated virus treated, and DENV infected MEG-01 cell lysate. (*pValue < 0.05; **pValue < 0.01).
August 2021 | Volume 11 | Article 715208

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Lahon et al. DENV Disrupts Development and Maturation of Megakaryocytes
p < 0.05), and no change was observed in total mTOR expression,
while inactivated virus enhanced the expression of p-mTOR
(Figures 3A–E; p < 0.05). The ratio of total mTOR and p-mTOR
showed reduced activation of mTOR during infection
(Figure 3E; p < 0.01). mTOR and its associated signaling
molecules formed two different complexes, mTORC1 and
mTORC2. These complexes activate other signaling molecules
in their downstream pathways. mTORC1 and mTORC2
complexes activate P70-S6 Kinase and PKCa, respectively.
These molecules had been screened to confirm which mTOR
complex was affected during DENV infection in MEG-01 cells.
We observed that both P70S6 Kinase (mTORC1) and PKC-alpha
(mTORC2) were downregulated with DENV infection
(Figures 3F–I; p < 0.05). However, the expression of PKC-
alpha (mTORC2) was observed more than P70-S6 Kinase
(mTORC1), suggesting that the mTORC2 complex is less
affected than mTORC1 in megakaryocytes. With inactivated
virus, we observed higher expression of PKC-alpha (mTORC2).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
However, P70-S6 Kinase (mTORC1) was still at lower levels than
control cells (Figures 3F–I; p < 0.05).

Expression of Pro and Anti-Apoptotic
Markers in DENV Infected
Megakaryocytes
So far, we have observed that DENV infection is impairing the
PI3K/AKT/mTOR axis in MEG-01 cells, which may activate
molecules responsible for cell death/apoptosis. Bcl-2 is an anti-
apoptotic protein that keeps other apoptotic proteins in inactive
form and inhibits apoptosis (Senichkin et al., 2020; Kehr and
Vogler, 2021). Immunoblotting of Bcl-2 was carried out on
previously explained conditions. A higher level of Bcl-2 was noted
in the cells treated with inactivated virus, and low expression was
observed in DENV infected cells (Figures 4A, B; p < 0.05). The
immunoblot result may suggest that DENV infection drives MEG-
01 cells towards apoptosis. To further confirm, apart from
immunoblotting, we utilized annexin-V and PI staining to
A B
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C

FIGURE 3 | Immunoblotting of mTOR and associated proteins. (A, B) Representative immunoblots of total mTOR and phospho-mTOR (Ser2448) in mock, DENV
inactivated virus treated, and DENV infected MEG-01 cell lysate. Graphical representation of the expression of mTOR (C) total mTOR, (D) phospho-mTOR, and
(E) ratio of phospho and total mTOR expression. Representative immunoblots and relative expression of (F, G) P70-S6 kinase and (H, I) PKC-a in mock-infected,
DENV inactivated virus treated, and DENV infected MEG-01 cell lysate. (*pValue < 0.05; **pValue < 0.01).
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understand apoptosis in MEG-01 cells. On day 5th post-infection,
cells were washed and subjected to analysis on flow cytometry for
apoptosis. Our flow cytometry results revealed that DENV infection
significantly (p = 0.001) increased early apoptotic and late apoptotic
cells than controls on the 5th post day infection (Figure 4C).

DENV Reduces the Factors Responsible
for Megakaryocyte Development
and Maturation
To confirm our hypothesis that DENV compromised the
megakaryopoiesis and lower the production of platelets, we
checked the transcription factors and surface markers involved
in development and maturation of megakaryocytes. NF-E2,
GATA-1, and GATA-2 are common transcription factors
involved in the megakaryocyte maturation and development and
taking the megakaryocytes towards megakaryopoiesis and platelet
production (Shivdasani et al., 1995; Szalai et al., 2006; Geddis,
2010; Machlus and Italiano, 2013; Chen et al., 2018). We utilized
similar experimental conditions and observed that DENV
significantly reduced the expression of GATA-1, GATA-2, and
NF-E2 (Figures 5A–F; p < 0.05). However, inactivated virus
significantly increased the expression of GATA-2 (Figures 5C,
D; p < 0.05) and had no effect on NF-E2 and GATA-1.

Role of PI3K/AKT/mTOR Pathway
in Megakaryocyte Development
and Maturation
Further, we wanted to confirm the role of PI3K/AKT/mTOR
signaling in the megakaryopoiesis. So, we utilized inhibitors of
PI3K, AKT, mTOR, and PKC-a and observed the levels of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
transcription factors NF-E2 and GATA-2 by Western blot. We
found that inhibitors of AKT, mTOR, and PI3K completely
abolished the expression of NF-E2 and GATA2 with or without
infection, suggesting that these proteins had a significant role as
regulatory molecules of megakaryopoiesis process. However,
PKC-a inhibitor showed a reduction in the expression of NF-
E2 and GATA-2 only with DENV infection, suggesting the role
of PKC-a in the derailing of megakaryopoiesis process during
infection (Figures 5G–I; p < 0.05).

CD61 is a glyco-protein present on the surface of megakaryocytes
and platelets. During megakaryopoiesis, the expression of CD61
increases on megakaryocytes. Given the importance of CD61 in
megakaryopoiesis and platelet production, we also observed
expression of CD61 with or without above-mentioned inhibitors
and found that except PKC-a inhibitor AKT and PI3K reduced
CD61 expression significantly (p < 0.01; Figures 6A, B) observed by
flow cytometry. DENV infection significantly reduced the expression
of CD61 in MEG-01 cells (p < 0.05). However, only with AKT
inhibitor, DENV infection was observed with further reduction in
CD61 expression (p < 0.05). No significant difference was observed
between control and DENV infected cells treated with PI3K or PKC-
a inhibitor. These results confirmed the involvement of PI3K/AKT
pathway in the megakaryopoiesis, which is abolished by DENV
infection in megakaryocytes.
DISCUSSION

The low platelet count is a severe condition in DENV infection
which may lead to dengue shock syndrome or dengue
A B

C

FIGURE 4 | DENV infection leads to apoptosis in MEG-01 cells. (A, B) Immunoblotting of Bcl-2 protein in mock-infected, DENV inactivated virus treated, and DENV
infected MEG-01 cell lysate and represented as column graphs. (C) DENV infected and control MEG-01 cells were stained with FITC conjugated Annexin-V and
Propidium Iodide and analyzed on flow cytometer. Graph representation of early apoptosis (only Annexin-V positive cells), late apoptosis (Annexin-V + PI positive
cells), and live cells (double negative cells). (*pValue < 0.05; **pValue < 0.01).
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haemorrhagic fever that leaves the patient at a significant risk of
spontaneous bleeding. Although there is a wealth of literature on
DENV, the mechanism(s) leading to such condition have been a
long-standing question and not explored enough regarding
which host or viral factor(s) is/are crucially involved.
Therefore, to find the processes in which viral infection leads
to low platelet counts, we aimed to study the effect of DENV
infection in megakaryocytes.

Megakaryocyte development is a multifactorial and complex
process and depends upon TPO stimulation. PI3K/AKT axis is
crucial for megakaryocyte survival and has been reported for
maturation, development, and platelet production (Kaushansky,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
2005; Nakao et al., 2008; Di Buduo et al., 2016). TPO treatment
to primary megakaryocytes and megakaryocytic cell line
regulates expression of p27Kip1, a cyclin dependent kinase
inhibitor through PI3K/AKT pathway, and drives them
towards platelet production (Nakao et al., 2008). We have
observed impaired expression of pan-AKT and phospho-AKT
(Ser473) in MEG-01 cells infected with DENV, whereas the same
has no effect on the phosphorylation status of AKT in HEK-293
cells, a different cell lineage. Thus, DENV does not have a similar
effect on cells from different lineages. Additionally, inactivated
virus showed an increase in the expression of pan-AKT and
phospho-AKT (Ser473), suggesting the reduction of AKT
A B

FIGURE 6 | Flow cytometry of CD61 in mock and DENV infected MEG-01 cells. MEG-01 cells were mock-treated or treated with inhibitors of AKT (AKT-IV), PI3K
(Ly294002), and PKCa (HBBDE). (A) Histograms from different conditions represent the expression of CD61 and (B) column graph presentation of median
fluorescence intensity (MFI) of CD61 in cells with the above-stated condition. (*pValue < 0.05; ***pvalue < 0.001).
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FIGURE 5 | Immunoblotting of development and maturation-specific transcription factors in MEG-01 cells. Immunoblot and graphical representation of the
expression of GATA-1 (A, B), GATA-2 (C, D), and NF-E2 (E, F) in mock, DENV inactivated virus treated, and DENV infected MEG-01 cell lysate. Effect of different
inhibitors of AKT (AKT-IV), PI3K (Ly294002), mTOR (Torin-1), and PKCa (HBBDE) on the expression of most affected transcription factors (G) and their graphical
presentation (H, I) during DENV infection. (*pValue < 0.05; ***pvalue < 0.001).
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expression is due to active replication of DENV. On the contrary,
Japanese Encephalitis Virus and DENV have been shown to
enhance the phosphorylation of AKT in a mouse neuroblastoma
cell line (N18). However, reduction in both pan-AKT and
phospho-AKT has been shown by Tick-borne flavivirus
infection in HEK-293 cells (Kirsch et al., 2020).

PI3K, an upstream signalling molecule of AKT, and AKT
forms a key signaling nexus along with mTOR, which regulates
cell survival, metabolism, and differentiation (Jean and Kiger,
2014). This signaling nexus is also required for megakaryopoiesis
and platelet production (Kaushansky, 2005; Nakao et al., 2008;
Backer, 2010; Liu et al., 2011; Di Buduo et al., 2016). Loss of AKT
expression during DENV infection made us to investigate the
expression of PI3K and mTOR. PI3K has been made up of
different proteins, p-85 (regulatory unit) and p-110a and p110b
(catalytic unit). DENV infection in MEG-01 cells was observed
with reduced expression of regulatory unit p85 and catalytic unit
p110a that suggests that DENV may impair PI3K activity in
megakaryocytes. Modulation of PI3K activity by regulating p85
expression has been reported in case of influenza virus (Shin
et al., 2007). HCV, another flavivirus, has been shown to
modulate PI3K activity in Huh-7 cells and positively regulates
HCV translation through Sterol regulatory element-binding
proteins (Shi et al., 2016). However, inactivated virus showed
upregulation of p110b along with p85 expression in MEG-01,
which is less active than p110a (Utermark et al., 2012).

mTOR has been shown to play a key role in megakaryocyte
terminal differentiation and megakaryopoiesis human primary
megakaryocytes derived from precursor and megakaryocytic cell
line (MO7e) (Raslova et al., 2006; Fuhler et al., 2009). mTOR
pathway has also been reported to regulate the ploidy nature of
cells and size of megakaryocytes by modulating the expression of
different downstream effector molecules such as p21 and cyclin
D3 and control megakaryocyte differentiation (Raslova et al.,
2006). mTOR forms two different complexes, i.e., mTORC1 and
mTORC2, by interacting with associate proteins, raptor (mTORC-1)
and rictor (mTORC2). Impairment of these molecules in
megakaryocytes decreases the normal megakaryopoiesis, leading to
low platelet production (Raslova et al., 2006; Fuhler et al., 2009).
Different viruses such as Influenza A virus, HCV, or classical Swine
Fever Virus have been reported for the modulation of mTORC1 and
mTORC2 (Stöhr et al., 2016; Kuss-Duerkop et al., 2017; Luo et al.,
2018). During DENV infection, inhibition of mTOR activity is
required to induce lipophagy in Hep G2 cells and autophagy in
HUVECs (Jordan and Randall, 2017; Kong et al., 2020). DENV
infection in megakaryocytes showed a decrease in the phospho-
mTOR and P70-S6 Kinase and PKC-a (effector molecules of
downstream of mTORC1 and mTORC2). Thus, DENV infection
impaired both mTORC1 and mTORC2 pathways and may
impair megakaryopoiesis.

We have observed DENV replication enhanced early and late
apoptotic cells, suggesting DENV infection induces apoptosis in
megakaryocytes. DENV has been shown to inhibit megakaryocytic
colony formation and induce apoptosis in TPO-induced
megakaryocytes generated from cord blood CD34+ cells in vitro
(Basu et al., 2008). Apoptosis is strictly regulated in several cells
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
and required activation or inhibition of several proteins involved
in programmed cell death. Bcl-2 acts as an anti-apoptotic protein
by inhibiting other pro-apoptotic proteins (Senichkin et al., 2020;
Kehr and Vogler, 2021). DENV infection in MEG-01 cells showed
a reduction of Bcl-2 that also supports our finding of apoptosis in
megakaryocytes. Human herpes virus-7 infection has been
reported to a drastic increase of apoptosis in megakaryocytic
cells (Gonelli et al., 2002). Human cytomegalovirus can also
induce apoptosis of infected megakaryocytes through the
mitochondria-mediated intrinsic pathway (Chen et al., 2017).

Developmental processes of megakaryocytes involved several
factors, such as different transcription factors and maturation
surface markers. GATA family proteins are involved in this process,
i.e., GATA-1 and GATA-2. These proteins are required to regulate
polyploidization, cell cycle progression, and expression of
megakaryopoiesis specific genes such as GPIIb, PF4, GPIba, b-
TG, GPIX, or GPV through its downstream effector STAT1 (Huang
et al., 2009). NF-E2 expression is required for megakaryocyte
development and maturation and acts as a crucial molecule that
determines the stages of megakaryopoiesis (Levin et al., 1999;
Tijssen and Ghevaert, 2013; Noetzli et al., 2019). DENV infection
abolished the expression of GATA-1, GATA-2, andNF-E2 proteins,
which further confirms the earlier finding of impairment of
megakaryopoiesis. Additionally, use of pharmacological inhibitors
of PI3K/AKT/mTOR pathway provides the connection between
this pathway and megakaryocytes’ maturation (GATA-2 and NF-
E2 expression). PI3K, AKT, and mTOR inhibitors have profound
effect on the expression of GATA-2 and NF-E2. However, PKCa
inhibitor (HBBDE) had lesser effect on the levels of GATA-2 or NF-
E2. We also evaluated the expression of another maturation marker,
CD61, which present on the surface of megakaryocytes and found
reduced in expression during DENV infection (Arya et al., 2021).
CD61 is a type-I integral transmembrane glycoprotein that belongs
to the integrin family and plays critical role in megakaryocyte
development/maturation, platelet activation, and platelet
aggregation (Pérez de la Lastra et al., 1997). Application of
inhibitors of PI3K/AKT/PKCa molecules suggests a possible
correlation between CD61 expression (Levin et al., 1999; Kehr
and Vogler, 2021) and PI3K/AKT/PKCa pathways, which was
impaired during DENV infection. Thus, our results suggest that
DENV infection in megakaryocytes impaired PI3K/AKT/mTOR
axis along with maturation molecules (GATA-1/GATA-2/NF-E2/
CD61) and leads to apoptosis. Although our work highlights
interesting molecular mechanisms associated with DENV
pathogenesis in megakaryocytes, limitations to the current study
could not be ignored due to unavailability of in vivo models or
megakaryocytes isolated from DENV infected patients.
CONCLUSIONS

In general, PI3K/AKT/mTOR axis is necessary for normal cell
growth and survival. Additionally, this pathway is also required
for megakaryopoiesis. Our results suggest that DENV infection
altered the PI3K/AKT/mTOR pathway, which further impaired
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the development, maturation, and terminal differentiation of
megakaryocytes and enhanced apoptosis. Pharmacological
inhibitors also confirmed the requirement of these molecules
in megakaryopoiesis. This study could be one of the small steps
towards finding the complex biological process of megakaryopoiesis
affected by DENV replication.
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