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A B S T R A C T

In this work, a novel indium fluoride glass 2-input-1-output fiber combiner was designed and fabricated to 
combine two Interband Cascade Laser (ICL) sources emitting in the mid-infrared wavelength range. To test the 
combiner performance, a dual-gas quartz-enhanced photoacoustic spectroscopy sensor was demonstrated for the 
detection of carbon dioxide (CO2) and nitric oxide (NO), employing two fiber-coupled ICLs having central 
emission wavelengths of 4,234 nm and 5,263 nm, respectively. The laser beams were coupled via the fiber 
combiner and then focused into a commercial acoustic detection module equipped with an input fiber-port, thus 
resulting in a plug-and-play sensing system. Tens of ppm-level detection limits at 3σ are achieved for both 
pollutants with a lock-in integration time (τ) of 0.1 s. Finally, an Allan-Werle analysis demonstrated the stability 
of the sensor, allowing the achievement of detection limit of 13 ppm and 4 ppm at τ = 10 s for CO2 and NO, 
respectively.

1. Introduction

InfraRed (IR) laser-based sensors for trace gas detection have 
emerged as a powerful tool in various application fields, such as envi-
ronmental monitoring of polluting agents, industrial and manufacturing 
processes control, and diagnostic solutions for human health care [1–4]. 
These sensing systems leverage the unique properties of light-matter 
interactions to detect the presence and quantify the concentrations of 
specific gas molecules with high sensitivity and high selectivity [5]. 
Fiber-based systems play a key role in the development of innovative 
trace gas sensors, enabling the efficient and versatile delivery of the 
beam from the laser source to the sensing volume, overcoming the 
limitations of free-space systems [6–9]. The main advantages of imple-
menting fibers in optical sensing include: (i) manageability – fibers are 
flexible and can be positioned in compact and complex arrangements, 
allowing for the integration of optical sensors in a wide range of envi-
ronments [10]; (ii) efficiency – fibers can minimize optical losses, 
resulting in higher power available for sensing and thus improving the 

signal-to-noise ratio in the detection [11]; and (iii) stability – guided 
propagation of light in fibers provides enhanced stability and immunity 
to environmental interferences, thus improving the reliability of the gas 
sensing apparatus [12]. A novel development in laser-based gas sensors 
is the coupling of Interband Cascade Lasers (ICLs) sources, operating in 
the mid-IR region, with optical fibers [13,14]. This spectral region, 
typically defined as the wavelength range from 2.5 to 25 μm [15], is 
particularly interesting for gas sensing due to the presence of funda-
mental roto-vibrational transitions of many molecules [16]. Since silica 
optical fibers are not suitable to guide light with low-loss in the mid-IR 
wavelength range, different materials have been explored as beam de-
livery systems for ICLs. In recent years, Indium Fluoride Glasses (IFGs) 
fibers proved to be an optimal solution, since they are characterized by 
both low Fresnel losses and wide transmission window, from visible up 
to approximately 5.3 µm [17,18]. Although several laser sources have 
already been employed with IFG fibers [19–22], the development of 
fiber combiners represents a further step towards the realization of 
multi-gas sensors, allowing the simultaneous coupling of different laser 
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sources. Indeed, this could improve the capabilities and versatility of the 
sensing system, enabling the integration of multiple lasers onto a single 
sensing platform with the aim of targeting different gas species 
sequentially or even simultaneously [23] and, at the same time, 
reducing the sensing system footprint [24].

Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS) is a highly 
sensitive technique that has been widely adopted for trace gas sensing 
[25–29]. QEPAS is an evolution of the Photo-Acoustic Spectroscopy 
(PAS), relying on the photoacoustic effect for the detection, i.e., the 
generation of acoustic waves by the target gas molecules absorbing 
modulated laser light and relaxing energy via non-radiative processes 
[30–33]. While PAS exploits microphones to detect pressure waves, in 
QEPAS a Quartz Tuning Fork (QTF) is employed as acoustic transducer. 
The QTF is coupled with resonator tubes and housed within a 
stainless-steel chamber, composing the Acoustic Detection Module 
(ADM). In QEPAS sensors, the laser beam, having an emission wave-
length resonant with one (or more) optical transitions of the target gas 
molecules, passes through the two resonator tubes aligned with one of 
the vibrational antinodes of the QTF, generating acoustic waves 
impacting the internal surfaces of the prongs. These pressure waves put 
the prongs in motion, generating an electric signal due to the direct 

piezo-electric effect of quartz [34–36]. The electric signal is directly 
proportional to the concentration of the target molecules that generate 
the pressure waves.

In this work, we present a compact and rugged dual-gas QEPAS 
sensor employing two fiber-coupled mid-IR ICLs combined with a novel 
developed IFG fiber combiner. The two selected lasers, having a central 
emission wavelength of 4,234 nm and 5,263 nm, allowed the detection 
of carbon dioxide (CO2) and nitric oxide (NO), respectively, representing 
two of the most crucial molecules in the environmental pollution pro-
cesses and for diagnostic solutions in human health care [37,38].

2. Dual-Gas QEPAS Sensor

Fig. 1a shows a schematic of the employed experimental setup, while 
Fig. 1b depicts a photo of the fabricated fiber combiner connected to the 
fiber port of the ADM.

Two different Interband Cascade Lasers (ICLs), emitting at 4,234 nm 
(ICL #1 in Fig. 1a) and 5,263 nm (ICL #2 in Fig. 1a) were exploited to 
target the CO2 absorption feature located at 2,361.46 cm-1 and the NO 
absorption feature located at 1,900.08 cm-1, respectively [39]. The ICL 
#1 (model 3858/25–19 from Nanoplus GmbH) injection current was 

Fig. 1. (a) Schematic of the experimental setup. ICL – Interband Cascade Laser, TEC – Thermo-Electric Cooler, ADM – Acoustic Detection Module, QTF – Quartz 
Tuning Fork, PC – Personal Computer; (b) Photo of the custom-made 2-input-1-output fiber combiner (center-left) coupled with the ADM through its input fiber 
port (right).
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modulated by applying a sinusoidal wave having an amplitude of 15.5 
mVpp and its tuning range was scanned by superimposing a sawtooth 
wave having an amplitude of 50 mVpp and a frequency of 5 mHz. 
Likewise, the ICL #2 (model 3468/04–28 from Nanoplus GmbH) in-
jection current was modulated by an 8 mVpp sinewave voltage added to 
a sawtooth wave with an amplitude of 60 mVpp and a frequency of 5 
mHz. The operating temperatures of ICL #1 and ICL #2 were set to 10 ◦C 
and to 20 ◦C, respectively. The collimated beam of each laser was 
coupled into the FC/APC input connector of an Indium Fluoride Glass 
(IFG) fiber via a focusing lens. To mitigate etalon effects, the lens and the 
connector were slightly tilted and mounted into a lens tube directly UV 
glued (model NOA61) to the laser collimating lens (model 390036IR3, 
with a focal length of 4 mm and a NA of 0.56), as reported by Zifarelli et 
al. in Ref. [13]. The fabricated fiber combiner, described in the next 
section, allowed delivering the beam of the two fiber-coupled lasers to 
the fiber port (PAF2–4E from Thorlabs GmbH [40]) mounted on a 
commercial ADM (ADM01 from Thorlabs GmbH [41]). The fiber port, 
equipped with an aspheric lens having a focal length of 4 mm and an AR 
coating in the 2 – 5 μm range, is used to focus the light inside the ADM 
and between the two prongs of the QTF by passing through the resonator 
tubes without hitting them. Thus, the delivery of the laser beams to the 
input of the ADM in the reported work is fully made with optical fibers, 
and the beam was aligned using the five-axis translation stage of the 
fiber port. A mass flow-meter and pressure controller (MC3S-D from 
Alicat Scientific, Inc.) was employed to set and maintain a constant 
working pressure of the gas mixture inside the ADM, with the aid of a 
vacuum pump. A 3-input-channel gas mixer (GB-103 from MCQ In-
struments) controlled the gas flow and enabled the generation of 
different gas mixtures. The developed QEPAS sensor operates at a 
working pressure of 300 Torr and with a total gas flow rate of 50 SCCM 
which resulted in the optimal working conditions. The ADM encloses the 
spectrophone, which consists of a T-shaped QTF acoustically coupled to 
a pair of metallic acoustic resonator tubes to enhance signal detection 
[42]. The “T” region of the QTF is 2 mm-thick and 2.4 mm-long, with 
prongs 1.4 mm-thick and 9.4 mm-long. Instead, the crystal width is 
0.25 mm. The resonator tubes have an inner diameter of 1.6 mm and 
each are 12.4 mm-long [41,42]. At 300 Torr, a resonance frequency (fr) 
of 12,439.55 Hz and a quality factor over 15,000 were measured. In this 
work, the QEPAS measurements were carried out exploiting a wave-
length modulation technique along with a 2 f detection scheme: a sin-
ewave having a frequency of fr/2, generated by a waveform generator 
(33500B from Keysight Technologies, Inc.), was continuously applied to 
the ICL current driver (ITC4002QCL from Thorlabs GmbH) while the 
electrical signal generated by the QTF was demodulated by the lock-in 
amplifier (MFLI 500 kHz from Zurich Instruments Ltd.) at fr. For all 
measurements, the lock-in integration time (τ) was set to 0.1 s and the 
sampling time was set to 3 • τ.

3. IFG Fiber Combiner

An optical fiber combiner was realized for both coupling mid-IR laser 
sources and QEPAS sensing with the two selected ICLs presented in the 
previous section. Customized IFG optical fibers with core diameter dco 
= 25 μm and cladding diameter dcl = 100 μm were fabricated by Le 
Verre Fluoré (Bruz, France) and their measured attenuation α is reported 
in Fig. 2.

The IFG optical fiber segments were cleaved with a diamond blade 
employing an automatic cleaver based on tension-and-scribe process. 
The combiner fabrication process is sketched in Fig. 3.

Firstly, as shown in Fig. 3a, the IFG optical fiber segments were 
inserted in a custom low-refractive index IFG tube with external diam-
eter (dcap) of 550 μm. The global structure, consisting of both optical 
fibers and the tube, was secured in the fiber holding blocks of the glass 
processing system, i.e., Vytran GPX-2400, with an applied pre-tension. 
By means of heating and pulling technique, effectively addressing the 
well-known thermo-mechanical issues associated with fluoride glasses, a 

fused bi-conical taper was obtained, as depicted in Fig. 3b [43,44]. Fig. 4
depicts a microscope image during the combiner fabrication, showing 
the tube containing the IFG optical fibers being drawn.

As the filament is heated, the pulling speed provided by the move-
ment of the right fiber-holding block is greater than the feeding rate of 
the left fiber-holding block. This results in a reduction in diameter, as 
evident in Fig. 4, when comparing the non-tapered left side with the 
right side undergoing the drawing process. A gradual and controlled 

Fig. 2. Measured attenuation α, expressed in dB/m, of the IFG optical fibers 
employed for the combiner fabrication.

Fig. 3. Sketch of the optical fiber combiner fabrication. (a) Optical fibers 
inserted in a low-refractive index tube; (b) Fused bi-conical taper obtained via 
stretching and heating technique; (c) Cleaving of the fused bi-conical taper in 
the waist region.

Fig. 4. Drawing of the tube containing IFG optical fibers.
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down-taper transition was implemented to adhere to the adiabatic cri-
terion, minimizing transition losses by preventing mode coupling with 
higher-order modes and ensuring efficient light propagation [45]. For 
fluoride glass processing, it is crucial to maintain stable operation during 
the thermal process at a temperature near the glass transition temper-
ature (Tg) of 275 ◦C to prevent crystal formation [43]. This was possible 
by operating the commercial graphite filament of Vytran GPX-2400 with 
a start filament power of 12.1 W. A constant argon flow rate of 
0.35 L/min inside the graphite filament is used to mitigate potential 
issues with air impurities or humidity. This is important, as the presence 
of crystallization, evident as a grainy appearance on the outer surface of 
the device, can lead to high insertion loss [46]. To assist the collapse of 
air holes and achieve a homogeneous cross-section, a pump with nega-
tive pressure was attached to one end of the tube [47]. The obtained 
bi-conical taper was then cleaved in the waist region, i.e. the narrowest 
point, as illustrated in Fig. 3c. This constitutes the single output port of 
the device. The combiner diameter in the waist region (dw) is approxi-
mately equal to 140 μm, ensuring that the two beams at different 
wavelengths are spatially close, thus allowing proper alignment of the 
guided light at different wavelengths between the QTF prongs. The 
fabricated combiner was then coated and equipped with standard 
FC/APC connectors to (i) ensure high durability; (ii) facilitate the 
connection with the sources; and (iii) minimize back-reflection. The 
final fabricated device is reported in Fig. 1b and has a total length of 
23 cm.

The measured Insertion Losses (ILs) of the fabricated 2×1 optical 
fiber combiner at three representative wavelengths in the mid-IR spec-
tral range are reported in Table 1. It was verified that the device is 
symmetric, i.e., the insertion losses do not depend on the employed input 
port.

These values include the coupling losses due to the connection from 
the ICL to the input optical fiber of the combiner and the attenuation of 
the employed optical fibers [18]. Both the coupling losses and the 
attenuation are larger at λ2 = 5,263 nm than at the other tested wave-
lengths. These factors can partially explain the higher measured inser-
tion loss at λ2 = 5,263 nm. The device used in this work was also tested a 
year after its fabrication and displayed negligible signs of aging, con-
firming the ILs reported in Table 1.

The fabricated optical fiber combiner based on indium fluoride glass 
can operate at any wavelength, up to about 5,500 nm. It is worthwhile 
mentioning that the proposed approach is easily scalable to a higher 
number of input optical fibers, enabling multi-gas detection by adopting 
a single combiner with multiple input ports and additional lasers. An 
alternative solution could involve using 2×1 IFG optical fiber couplers, 
potentially in a cascaded configuration. For instance, the cascade of two 
fused couplers could merge light from three lasers emitting different 
wavelengths into a single common port.

For measurements requiring the combining of sources emitting at 
wavelengths longer than 5500 nm, other glasses, e.g. chalcogenide- 
based, could be considered. To date, the only commercially available 
mid-IR compatible combiners are produced by IRflex Corporation, uti-
lizing arsenic sulfide optical fibers and supporting operation up to 
approximately 6,500 nm [48]. In this case, due to the high refractive 
index n ~ 2.4 of arsenic sulfide glass, the best theoretical transmission is 
only 69 % if no anti-reflection coatings are considered.

4. QEPAS Results and Discussion

The QEPAS sensor was calibrated turning sequentially ICL #1 for the 
detection of carbon dioxide (CO2) and ICL #2 for the detection of nitric 
oxide (NO). At the output of the fiber combiner, optical power of 
0.17 mW and of 0.08 mW were measured for the CO2 and NO calibra-
tion, respectively. For both gases, QEPAS spectral scans were acquired at 
each concentration dilution step and representative spectra for both CO2 
and NO are shown in Fig. 5a and Fig. 5b, respectively.

No interference fringes are observed, confirming that the focused 
beam dimensions, achieved through the PAF2–4E fiber port lens, 
allowed the laser light to pass through the QTF and resonator tubes 
without hitting them. The tuning range of the ICL #2 allowed targeting 
the NO absorption features both at 1,900.08 cm-1 and at 1,900.52 cm-1 

(P3 in Fig. 5b) [39]. The P1 and P2 values were retrieved and plotted as a 
function of the target gas concentration and the results as well as the 
linear best fitting curves are shown in Fig. 6.

The linear fit returned an R2 of 0.998 and 0.9994 for the calibration 
of CO2 and NO, respectively, demonstrating the linearity of the sensor. 
The Minimum Detection Limit (MDL) for each gas was calculated as the 
concentration providing a Signal-to-Noise Ratio (SNR) equal to 3. The 
noise level was evaluated as the standard deviation of the QEPAS signal 
when the emission wavelength of the laser was tuned out of any ab-
sorption feature. The sensitivities (i.e., the slope of the linear fits), the 
noise levels, and the calculated MDLs at 3σ are reported in Table 2.

At τ = 0.1 s, both MDLs are in the tens of ppm range and the realized 
sensor allows the monitoring of the carbon dioxide level in atmosphere 
[49]. Furthermore, it was experimentally verified that there are no 
electric interference and matrix effects between the two QEPAS signals, 
since no changes in the CO2 signal, at a fixed concentration, were 
observed when NO traces were added in the nitrogen-based gas matrix, 
while the ICL #2 had been tuned far from the NO absorption features, 
and vice versa [50]. Finally, the Allan-Werle standard deviation analysis 
was employed to verify the stability of the sensor and evaluate the MDLs 
at different integration time [51]. For this measurement, pure nitrogen 
was flowing in the ADM and both lasers were tuned at an emission 
wavelength far from any absorption features, and the modulation was 
provided either to ICL #1 or to ICL #2. The results are shown in Fig. 7a 
and Fig. 7b.

In both cases, a similar trend was observed up to τ = 10 s: the noise 
level slightly increases at short integration time and after a τ of 0.4 s 
follows a 1/√τ-like trend, as expected in a detection limited by the 
thermal noise of the QTF [52,53]. At τ greater than 10 s, the two curves 
differ. While the trend in Fig. 7b confirms a detection limited by white 
noise sources, mechanical instabilities in the coupling system of ICL #1 
and the optical fiber cause an increase of the standard deviation. Since 
this difference is evident at long integration time, the developed sensor 
allows quasi real-time detection of both gases and the calculated MDLs 
at a lock-in integration time of 10 s are reported in Table 2. The CO2 
detection limits change from 31 ppm at τ = 0.1 s down to 13 ppm, and 
from 13 ppm down to 4 ppm for the NO detection, at an integration time 
of 10 s.

5. Conclusions

In this work, we report on the development of a dual-gas QEPAS 
sensor for the detection of CO2 and NO exploiting two fiber-coupled ICL 
sources combined with a novel optical fiber combiner based on IFG, 
whose output port was directly connected to the fiber port of an ADM. 
The sensor was calibrated for both gases and the linearity and the 
interference-free of the responses were verified. Finally, an Allan-Werle 
analysis was carried out to assess the stability of the sensor. Although 
mechanical instabilities in the ICL-fiber coupling system arising at long 
integration time, the developed sensor allowed CO2 MDLs of 31 ppm at 
0.1 s of integration time and of 13 ppm at τ = 10 s. The NO detection is 
limited by the thermal noise of the sensitive element, reaching MDLs of 

Table 1 
Measured ILs of the IFG fiber combiner for 
three representative wavelengths.

λ (nm) IL (dB)

3345 1.2
4234 1.1
5263 2.2
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13 ppm at 0.1 s of integration time and of 4 ppm at τ = 10 s. The 
developed dual-gas QEPAS sensor represents an innovative sensing 
system for the detection of multiple gases with strong absorption 

features in the mid-IR spectral range and proves, in addition, high 
sensitivity and stability, well-suited characteristics for practical, 
portable and field-deployable gas sensing application scenarios. The 
fiber coupling of mid-IR sources will be further optimized to fully exploit 
the optical power of lasers, thus making the proposed sensor comparable 
to sensing system employing free-space light sources in terms of MDL.
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Fig. 5. Representative 2f-QEPAS spectra for (a) CO2 concentrations from 100 ppm to 500 ppm and (b) NO concentrations from 1,000 ppm to 4,000 ppm. In both 
cases, the spectra measured for pure N2 is also shown.

Fig. 6. QEPAS signals peak values as a function of the target gas concentration values (black triangles) and corresponding linear fit (red solid line) for (a) CO2 and for 
(b) NO.

Table 2 
Summary of the sensing performances of the dual-gas QEPAS sensor.

CO2 NO

Sensitivity 16.7 μV/ppm 44.6 μV/ppm
Noise Level 171 μV 186 μV
MDL @ 0.1 s 31 ppm 13 ppm
MDL @ 10 s 13 ppm 4 ppm

Fig. 7. Results of the Allan-Werle standard deviation analysis for the detection of (a) CO2 with ICL #1 and (b) NO with ICL #2.
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