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Abstract: Element doping and nanoparticle decoration of graphene is an effective strategy to fabricate
biosensor electrodes for specific biomedical signal detections. In this study, a novel nonenzymatic
glucose sensor electrode was developed with copper oxide (CuO) and boron-doped graphene oxide
(B-GO), which was firstly used to reveal rhubarb extraction’s inhibitive activity toward α-amylase.
The 1-pyreneboronic acid (PBA)-GO-CuO nanocomposite was prepared by a hydrothermal method,
and its successful boron doping was confirmed by transmission electron microscopy (TEM) and
X-ray photoelectron spectroscopy (XPS), in which the boron doping rate is unprecedentedly up to
9.6%. The CuO load reaches ~12.5 wt.%. Further electrochemical results showed that in the enlarged
cyclic voltammograms diagram, the electron-deficient boron doping sites made it easier for the
electron transfer in graphene, promoting the valence transition from CuO to the electrode surface.
Moreover, the sensor platform was ultrasensitive to glucose with a detection limit of 0.7 µM and
high sensitivity of 906 µA mM−1 cm−2, ensuring the sensitive monitoring of enzyme activity. The
inhibition rate of acarbose, a model inhibitor, is proportional to the logarithm of concentration in the
range of 10−9–10−3 M with the correlation coefficient of R2 = 0.996, and an ultralow limit of detection
of ~1 × 10−9 M by the developed method using the PBA-GO-CuO electrode. The inhibiting ability of
Rhein-8-b-D-glucopyranoside, which is isolated from natural medicines, was also evaluated. The
constructed sensor platform was proven to be sensitive and selective as well as cost-effective, facile,
and reliable, making it promising as a candidate for α-amylase inhibitor screening.

Keywords: graphene; nonenzymatic glucose sensor; boron-doped; copper oxide

1. Introduction

The inhibitors of α-amylase can prevent some late complications by suppressing the
postprandial rise of blood glucose. The analysis methods applied for α-amylase inhibitor
measurement are studied by many researchers [1,2].

Electrochemical sensor strategies are prevailing and deserve more attention due to
intrinsic advantages such as high sensitivity and selectivity [3–6] and direct monitoring
of the target enzymes without complicated pretreatment [7–10]. In the construction of an
electrochemical sensor, chemically modified electrodes improve electron transport rate at a
low potential, resulting in a decrease in the interference of impurities and an increase in the
sensitivity of the current response [11,12]. The performance of the sensors improved due to
development of nanotechnology such as the detection limit and a wide range of detection
of target molecules. These advantages allow electroanalytical methods to be widely used
in the determination of biological and environmental analysis.
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Recently, considerable attention has been focused on developing nonenzymatic glu-
cose sensors since it overcomes such drawbacks of traditional enzyme glucose sensors as
instability, high cost of enzymes, complicated immobilization procedure, critical operat-
ing situations, etc., [13–16]. This also provided a new idea for identifying and detecting
α-amylase inhibitors. Metals alloys, metal nanoparticles, and noble metals have been
extended to develop nonenzymatic glucose sensors [17–20]. However, these electrodes
have such disadvantages as high cost, low selectivity, or poisoning of chloride ions, which
greatly limit their applications [21–25]. Thus, developing a highly selective, fast, reliable,
and cheap nonenzymatic glucose sensor is still imperatively demanded.

Graphene is a well-known conductive material composed of two-dimensional honey-
comb lattice-structured carbon atoms connected by an sp2 monolayer [26–29]. Studies have
shown that doping heterogeneous elements, such as nitrogen, boron, oxygen, sulfur, and
halogens can effectively improve electrochemical performance [30–32]. First, boron doping
can enhance the contact area between graphene, CuO nanoparticle, and electrolyte [33].
Furthermore, the electron deficiency of the boron element doped on the graphene acts as
a superior electron receiver [34]. The materials mentioned above acting as a substrate to
support CuO nanoparticles can vastly improve conductivity and sensing ability [35]. On
the other hand, as a p-type semiconductor with a narrow bandgap of 1.2 eV, CuO has been
widely studied because of its numerous applications in semiconductors, catalysis, biosen-
sors, field transistors, and gas sensors. The CuO nanowires are an important nanoparticle
in modifying electrodes with high sensitivity. However, the synthesis of CuO nanowires is
tedious and time-consuming [34].

In this study, a novel PBA-GO-CuO nanoparticle was prepared through the hydrother-
mal method, and the synergistic effect of PBA and GO dramatically improved the electro-
catalytic properties of glucose oxidation and detection. The developed detection platform
using PBA-GO-CuO nanoparticles provided an acceptable detection limit of 0.95 nM to
acarbose at a signal-to-noise ratio of 3, indicating ultra-sensitivity to α-amylase inhibitors.
Rhein-8-b-D-glucopyranoside isolated from natural products was screened by the proposed
sensing platform, demonstrating the excellent applicability [36]. The correctness was also
verified using the iodine assay colorimetric method [37]. The constructed sensor platform
was proven to be facile and cost-effective as well as highly sensitive, selective, and reliable,
making it promising as a candidate for trace inhibitor screening of natural products.

2. Results and Discussion
2.1. Characterization of PBA-GO-CuO Nanocomposite

SEM images of various aggregates are shown in Figure 1, displaying distinct mor-
phologies during the synthesis of PBA-GO-CuO nanomaterials. Figure 1a presents typical
ellipsoidal CuO particles with a size of ~23 nm. In Figure 1b, graphene oxide aggregates ap-
peared as ruffled wrinkles abound on surface areas. As shown in Figure 1c, the macroscopic
stacked structure becomes predominant after boron doping. Moreover, Figure 1d displays
the SEM images of CuO-GO hybrid material. The pronounced aggregates are observed
due to the CuO load on graphene oxide [38–40]. Figure 1e portrays the PBA-GO-CuO
nanomaterials’ rich pore structure and high specific surface area. From the enlarged picture
in Figure 1f, we can see with more detailed information that the size of CuO is smaller than
that in Figure 1a.

The TEM and energy dispersive X-ray spectra (EDS) are exhibited in Figure 2. In
Figure 2a,b, massive amounts of CuO particles are decorated on the graphene oxide surface,
affirming the SEM observation. From the EDS mapping surface scan (Figure 2c), we can
see that the elements of carbon (green), boron (red), and oxygen (yellow) are uniformly
overlapped, proving once again that CuO particles are homogeneously braced on graphene
oxide. The FTIR images in Figure 2d confirm the boron doping with the characteristic
absorption bands of B–O at 1350 cm−1 and B–C at 1180 cm−1 [35].
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Figure 2. (a) TEM image of PBA-GO-CuO, (b,c) EDS mappings of PBA-GO-CuO for C (green), B
(red), O (yellow), and Cu (blue), (d) FTIR image.

We performed XPS tests to understand the diverse valence states of boron doping
and the variation in the element composition of PBA-GO-CuO nanomaterials, as shown
in Figure 3. The curve fitting and analysis of C1s and B1s signals are presented in Table 1.
The C1s peak at 290.2 eV, O1s peak at 530.9 eV, and the peak at 195.2 eV is related to the
B1s peak in Figure 3a. The high-resolution C1s spectrum of PBA-GO-CuO consists of five
characteristic peaks in Figure 3b, corresponding to C–B (288.3 eV), C–C (289 eV), C–O
(291.2 eV), C=O (292.5 eV), and O–C=O (287.5 eV) structures. The high-resolution B1s peak
was synthesized into four peaks (Figure 3c), representing the structures of B4C (187.8 eV,
attributed to the graphene lattice defects), BC3 (189.9 eV, may indicate that boron atoms
replace carbon atoms in the graphene skeleton), BC2O (191.2 eV, may suggest that boron
atoms replace carbon atoms in the edge or defect position of the graphene skeleton), and
BCO2 (192.3 eV, same as BC2O) [39–42]. Figure 3d is a high-resolution spectrum of Cu,
where the peaks observed at 933.2 and 953.8 eV are due to Cu2p3/2 and Cu2p1/2, which are
attributed to oxidized Cu (II) [41].
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Table 1. XPS elemental analysis of PBA-GO-CuO.

Element Species Binding Energy(eV) Relative Intensity (%)

C 1s

C-C/C=C 284.01 71.26
C-N 284.62 18.30
C-C=O 288.50 5.29
C=O 287.07 3.08
C-B 284.81 2.07

B 1s

BC3 189.92 67.21
BC2O 191.04 18.26
BCO2 192.13 8.25
B4C 187.81 6.34

2.2. Electrochemical Characteristics of Modified Electrodes

Electrochemical impedance spectroscopy is a valuable method to reflect the interfacial
changes in the sensor in which the semicircle portion at a higher frequency expresses
the electron-transfer-limited process, and the line at a lower frequency characterizes the
diffusion process. The semicircle diameter order in Figure 4 is equal to that of the electron-
transfer resistance: bare Glassy Carbon electrode (GCE) > CuO-GCE > PBA-GO-CuO-GCE.
PBA-GO-CuO-GCE’s diffusion uniformity (more parallel to the X-axis) is more excellent
than other modified materials. In summary, the PBA-GO-CuO-GCE has the best response
to glucose.
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2.3. Electrochemical Response of Modified Electrode to Glucose

Cu (II)/Cu (III) redox peaks are essential in nonenzymatic electrochemical glucose
signal enlargement. As shown in the blue curve in Figure 5, CuO was oxidized to Cu (III)
species, including CuO(OH) or another compound at an oxidation peak of about +0.4 V, and
the generated Cu (III) species catalyzed the oxidation of glucose to glycoside at a scanning
rate of 0.4 V/s. The PBA-GO-CuO-GCE displays poor redox peaks in 0.1 M NaOH without
glucose (Figure 5). At the same time, Cu (III) was reduced to Cu (II) at the reduction peak
of about +0.6 V. It is evident in Figure 5 that the bare GCE displays an inconspicuous redox
peak at 0–0.8 V, which also confirms the signal amplification effect of the copper pair. After
added glucose, electrons were quickly transferred from the glucose to the electrode. Cu (III)
ions received electrons and functioned as electron-transfer carriers [43]. The black and red
curves represent the redox peaks of PBA-GO-CuO-GCE and GO-CuO-GCE, respectively.
Additionally, the approximate ratio of the closed-loop area of the four cyclic voltammetry
curves in Figure 5 is 2.2: 1.57: 1.04: 0.07. The synergic signal enhancement is due to two
reasons. Firstly, the electronic defects of the B element can cause the positively charged
PBA-GO to be more likely to function as an electron receiver, absorbing electrons on the
electrode; secondly, the CuO deposited on the PBA-GO is uniformly distributed, providing
highly catalytically active sites and a high-efficiency glucose oxidation platform.

Prior to nonenzymatic glucose detection, the alkaline medium may be favorable to
improve the electrocatalytic activity of the transition metal-based catalysts. Hence, the
impact of NaOH concentrations was investigated in amperometry measurements of 0.1 M
glucose. As shown in Figure 6, the amperometry currents increase correspondingly when
the electrolyte concentration increases from 0.01 to 0.10 M because glucose is more easily
oxidized, and the electrocatalytic activity of NN-CuO is greatly enhanced at high OH-.
However, the peak current is decreased by further increasing the electrolyte concentration
from 0.10 to 0.20 M. A possible reason may be that too much OH- can block the further
electro-adsorption of glucose anion and result in a decrease in the current signal.
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2.4. Chronoamperometry Studies

The chronoamperometry and a calibration curve of the PBA-GO-CuO-GCE glucose
sensor are shown in Figure 7. A stable and fast stair-shape current-time signal responsive
diagram can be observed in Figure 7a. In the first portion of the stair diagram, a 0.10 mM
glucose solution was repeatedly added into a 0.10 M NaOH electrolyte after every 50 s,
resulting in a current increase by 7.1 × 10−6 after each operation; in the second part of
the stair diagram, a 1 mM glucose solution was repetitively added over 10 times, and the
enlarged stair-shape signal occurred. The second part of the current is three times faster
than the first. However, the current-time signal noise fluctuates after repeated glucose
addition because the intermediate products are overlapped on the electrode due to signal
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interference [44]. With the continuous increase in glucose concentration of 1.5 mM and
2 mM, the current tends are stable, so the current-time relationship between 0.1 and 10 mM
was selected for further study.
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of an amount of glucose, (b) linear relationship between I vs. c of glucose.

As shown in Figure 7b, the calibrated diagram consisted of two linear current–
concentration curves as follows: Y1 (10−4 A) = 0.6432 X1 (mM) + 0.0136 (R2 = 0.99794) (low
concentration range of 0.1–1 mM); Y2 (10−4 A) = 0.2305 X2 (mM) + 0.5951 (R2 = 0.99657)
(high concentration range of 1–10 mM). The detection limit is 0.7 µM (S/N = 3), and the
calculated sensitivity is ~906 µA mM−1 cm−2 and 325 µA mM−1 cm−2 (the geometrical
area and diameter of GCE are 7.068 and 3 mm, respectively). The sensitivity at a high con-
centration range is less than at a low concentration range, possibly due to the intermediate
product generated by the electrocatalytic oxidation of glucose that was absorbed [45]. In
contrast, the adsorption kinetics of glucose is slower at high concentrations. The detec-
tion performance of the fabricated modified electrode is compared with GO-CuO-GCE,
CuO-GCE, and some other GCE-based nonenzymatic sensors. As can be seen in Table 2,
the PBA-GO-CuO-GCE-modified electrode has a lower detection limit and a wider linear
range [45–56].

Table 2. Comparison of detecting performance of the B-GO-CuO with other nonenzymatic glu-
cose sensors.

Electrode
Material Electrode

Doping
Element (and

Its Source)

Sensitivity (µA
mM−1 cm−2) Linear Range Detection

Limit (µM) Reference

PBA-GO-
CuO GCE B (1-Pyrene

boric acid) 906 0.1 mM–2.0 mM 0.7 µM This work

GO-CuO GCE - 723 0.1 mM–2.0 mM 1.5 µM This work

CuO GCE - 206 0.1 mM–2.0 mM 9.5 µM This work

Faceted CuO
nanoribbons GCE - 412 0.05 mM–3.5 mM 58 µM Sahoo et al. [46]

LSC/rGO GCE - 330 2 µM–3.35 mM 63 µM He et al. [47]

GO/CuO GCE - 37.63 0.005 mM–14 mM 5.04 µM Foroughi et al. [48]

MWCNT/Au GCE/CSPE - 2.77 ± 0.14 0.1 mM–20 mM 4.1 µM Branagan et al. [49]

Au/Cu2O/GCE GCE - 715 0.05 mM–2.0 mM 18 µM Su et al. [50]
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Table 2. Cont.

Electrode
Material Electrode

Doping
Element (and

Its Source)

Sensitivity (µA
mM−1 cm−2) Linear Range Detection

Limit (µM) Reference

Co-MOF
Nanosheets GCE - 219.67 0.5 µM–8.065 mM 0.25 µM Li et al. [51]

Co/MoS2/CNTs GCE - 131.69 0–5.2 mM 80 nM Branagan et al. [49]

Ni(II)-
CP/C60

GCE - 614.29 0.01 mM–3.00 mM 4.3 µM Shahhoseini et al. [52]

3D flower-like
Ni7S6

GCE - 271.8 5 µM–3.7 mM 0.15 µM Wu et al. [53]

N-GR-
CNTs/AuNPs GCE N(HNO3) 0.9824 2 µM–19.6 mM 0.5 µM Jeong et al. [55]

Microwave
N-GO/CuO GCE N(urea) 122.336 0.01 mM–10 mM 14.52 µM Rahsepar et al. [31]

S-rGO/CuS GCE/RDE S(Na2S) 429.4 3.88 mM–20.17
mM 0.032 µM Karikalan et al. [56]

2.5. Ultrasensitive Screening of Inhibitors from Natural Products

The established glucose sensor was applied to study the inhibitor of α-amylase, and
the inhibiting ability can be sensitivity reported by the current responsive intensity. As
described in Figure 8, the process of α-amylase inhibition limits glucose production and
ultimately affects the strength of the current response. As one of the commonly used clinical
α-amylase inhibitors, acarbose was tested as a positive drug. As shown in Figure 9a, the
levels of current responsive intensity relative to the doses of the inhibitors after the in-
hibitors were added into the α-amylase reaction mixture. Serials of acarbose concentrations
(1.0 × 10−9 M, 5.0 × 10−8 M, 1.0 × 10−8 M, 5.0 × 10−7 M, 1.0 × 10−7 M, 1.0 × 10−6 M,
1.0 × 10−5 M) were tested with a linear equation of I (%) = 919.426 Cglu + 11.602 and a good
correlation coefficient of 0.997. The developed platform provided a detection of 0.95 nM
at a signal-to-noise ratio of 3, indicating ultra-sensitivity. By calculating the regression
equation, the IC50 values are 48.6 µM. In order to further prove the applicability of the
developed method, five compounds belonging to flavonoids (which was accomplished
through our protein hybrid nanoflower technology) were screened [36]. The results of the
Rhein-8-b-D-glucopyranoside are shown in Figure 10a. It can be seen that our method
can efficiently detect the inhibition ability driven by Rhein-8-b-D-glucopyranoside. The
good linear correlations of I (%) = 1014.056 CRhe + 216.239(R2 = 0.997) were obtained for
Rhein-8-b-D-glucopyranoside, and its limit of detection (LOD) was 1.39 nM. By calculating
the regression equation, the IC50 value of Rhein-8-b-D-glucopyranoside is 39.1 µM. The
IC50 values of acarbose (48.6 µM), Rhein-8-b-D-glucopyranoside (39.1 µM), indicated that
Rhein-8-b-D-glucopyranoside possessed the most powerful inhibiting activity followed by
acarbose. Moreover, the inhibiting ability of acarbose and Rhein-8-b-D-glucopyranoside
were also investigated by the Iodine assay colorimetric method, and results are shown in
Figures 9b and 10b [37]. The above results of the iodine assay colorimetric method power-
fully demonstrate that the new sensing platform is capable of screening α-amylase. Because
α-amylase is an important target in diabetes, these results further verified that the natural
medicines containing Rhein-8-b-D-glucopyranoside often possess anti-diabetes activity.
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2.6. Sensor Repeatability, Selectivity, and Stability

Superior repeatability and stability are critical factors in measuring electrode prepa-
ration success. We examine the stability of the electrode from the following two aspects.
First, five freshly prepared PBA-GO-CuO electrodes were used to measure a 0.2 M NaOH
solution (adding 10.0 mM glucose). The relative standard deviation of the electrode is 2.8%
(n = 5), indicating that the designed and prepared PBA-GO-CuO electrode has excellent
repeatability. Then, one of the electrodes was tested five consecutive times and washed with
distilled water after each test. The relative standard deviation of the measured oxidation
peak was 2.6%. In conclusion, the PBA-GO-CuO electrode prepared using this design
method has good repeatability.

Moreover, the prepared PBA-GO-CuO electrode was stored in the dark for 2 months.
After 2 months, it was used to measure a 0.2 M NaOH solution (10.0 mM glucose added).
The oxidation current peak remained at 96%, signifying that the PBA-GO-CuO electrode
prepared using this design method has excellent stability.

Additionally, some interfering ions, starch, inhibitor, and components in herbal
medicine which may be present in the electrolyte solution were used to influence the
determination results. It was observed that the tested substances had no practical influence
on our detection platform. The high selectivity of the developed method is due to the
specific response of the detection platform.

3. Materials and Methods
3.1. Materials and Apparatus

Graphene oxide aqueous solution (GOs-325, 2 mg/mL, ≥99.9%), 1-pyreneboronic
acid (PBA), copper (II) acetate monohydrate, acarbose (98%), α-amylase (from porcine
pancreas, type VI-B, ≥10 units/mg), soluble starch, potassium hexacyanoferrate (II) tri-
hydrate, potassium hexacyanoferrate (III), D-(+)-glucose, and Nafion dispersion solution
were purchased from Sigma-Aldrich (Sigma-Aldrich, Shanghai Titan Technology Co., Ltd.,
Shanghai, China). Rhubarb was purchased from Jiangxi Zhihetang Chinese Medicine
Decoction Pieces Co., Ltd. (Jiangxi, China, batch numbers 160501 and 160801).

Electrochemical measurements were tested by a CHI800D electrochemical workstation
(Shanghai Chenhua Instrument Co., Ltd., Shanghai, China). All electrochemical experi-
ments were carried out on a three-electrode system, including a bare or modified GCE as
the working electrode (WE)) (prior to surface coating, the GCE was polished carefully with
1.0, 0.3, and 0.05 µm alumina powder, respectively. Then, the polished GCE was cleaned
sequentially with 1:1 HNO3, ethanol, and water by continuous sonication, respectively. The
electrode was allowed to dry at ambient temperature for further use). A Pt piece electrode
was used as the counter electrode (CE), and an Ag/AgCl (3 M KCl) as the reference elec-
trode (RE). All electrodes were purchased from Sigma-Aldrich (Sigma-Aldrich Company,
Shanghai, China). Transmission electron microscopy (TEM) images were obtained by
a Hitachi HT7700 (Shanghai, China), scanning electron microscopy (TEM) images were
recorded by a JEOL JSM-6700 (Shanghai, China), X-ray photoelectron spectroscopy (XPS)
images were recorded by a PHI5000V VersaProbe (Shanghai, China), and Fourier transform
infrared (FTIR) images were recorded by a Nicolet Avatar 370 spectrometer (Jiangsu Skyray
instruments Co., Ltd., Shanghai, China).

3.2. Preparation of PBA-GO-CuO Nanocomposite

CuO, GO-CuO, and PBA-GO-CuO were synthesized according to the reported studies
with minor revisions to boron doping [40]. Then, 175 mg of a 5 mg/mL PBA was added into
35 mL of a 1.5 mg/mL GO suspension by intense agitation for 60 min. Then, the amount
of Cu (CH3COO)2 H2O was added dropwise to allow the copper source to adsorb on the
graphene oxide; subsequently, the as-obtained turbid suspension was transferred into a
high-temperature high-pressure autoclave and subjected to the hydrothermal reduction at
180 ◦C for 12 h. For comparison experiments, both CuO (without adding PBA and GO, the
other steps remained the same) and GO-CuO (replaced PBA and GO with GO, the other
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steps remained the same) were synthesized according to a similar procedure. Afterward,
the resulting dark precipitates were collected by centrifugation and washed with deionized
water. Finally, the purified precipitate was freeze-dried overnight, and the CuO, GO-CuO,
and PBA-GO-CuO were obtained for further characterization and preparation of the sensor.

3.3. Preparation and Measurement of the Glucose Sensor

The modified glassy carbon electrode (GCE) was formed through a conventional
technique. In simple terms, the above-collected PBA-GO-CuO was hand-ground and
dispersed with alcohol to obtain a uniform 5 mg/mL solution. A total of 10 µL of dispersion
was dropped on the surface of a clean GCE and dried at room temperature. Subsequently,
5 µL of 0.1% Nafion solution was dropped on the surface of a GCE and dried at room
temperature to obtain a PBA-GO-CuO-modified electrode, which we labeled PBA-GO-CuO-
GCE. CuO, GO, and GO-CuO were prepared using a similar procedure for comparison.

3.4. Trace α-Amylase Inhibitor Screening from Natural Product

As a typical α-amylase inhibitor, acarbose was employed to verify the feasibility of the
α-amylase inhibitor screening platform. Five natural compounds (i.e., aloe-emodin-8-O-b-
D-glucopyranoside, 6-O-cinnamamoyglucose, L-epicatechin, 2-O-cinnamoyl-1-O-galloy-b-
D-glucose, and Rhein-8-b-D-glucopyranoside) were also screened. Different concentrations
of the tested compounds were prepared by ethanol-water solution (70:30, v/v). The assay
for α-amylase inhibitors was as follows: (1) 0.5 mL of α-amylase (0.1 U/mL) was incubated
in Phosphate Buffer (PBS, pH = 6.8) with different doses of inhibitors, then, 5 mL 30 g/L
soluble starch was added dropwise at 37 ◦C for 20 min, and dried with a flow of N2. The
blank group, negative control group, and positive control group were prepared using a
similar procedure; the glucose content of each reaction system was detected by a glucose
sensor. (2) According to the following calculation formula (Equation (1)) for inhibition
rate, the inhibition rate of each inhibitor and the positive drug acarbose on α-amylase can
be calculated.

I/% =
CB − CD
CB − CA

(1)

where I is the enzyme inhibition rate (%), CA is the glucose concentration (M) measured
in the blank group, CB is the glucose concentration (M) measured in the negative control
group, and CD is the glucose concentration (M) measured in the sample group. The IC50
was calculated from the inhibition rate-concentration curve.

4. Conclusions

In summary, we successfully synthesized a glucose sensor consisting of a PBA-GO-
CuO nanocomposite where the boron doping rate remarkably reaches up to 9.6%, and
the CuO load is ~12.5 wt.%, leading to rich pore structure and high specific surface area.
This sensor acquires an enhanced signal amplification effect, a more comprehensive linear
range (0.1–10 mM), lower detection limit (0.7 µM), higher sensitivity (906 µA mM−1 cm−2),
and lower detection potential (+0.4 V). The prepared sensor application in acarbose and
Rhein’s inhibitory activity measurer has the advantages of easy preparation, charting, and
convenience, providing a reference value and feasible basis for electrochemistry in the
additional calculation and activity verification of traditional Chinese medicine.
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