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Abstract
To understand the switching of different phenotypic phases of Bordetella pertussis, we pro-

pose an optimized mathematical framework for signal transduction through BvgAS two-

component system. The response of the network output to the sensory input has been dem-

onstrated in steady state. An analysis in terms of local sensitivity amplification characterizes

the nature of the molecular switch. The sensitivity analysis of the model parameters within

the framework of various correlation coefficients helps to decipher the contribution of the

modular structure in signal propagation. Once classified, the model parameters are tuned to

generate the behavior of some novel strains using simulated annealing, a stochastic optimi-

zation technique.

Introduction
Living systems sustain in a diverse and dynamically changing niche that they have to cope with
to survive. As a result, every organism adopts specialized communication machinery that helps
in responding to alteration of the immediate environment. Any rapid or slow change in the
surroundings is taken care of through intracellular signal transduction pathways and a number
of genetic switches [1]. The signal transduction pathways comprise of some specialized motifs
to carry out the process of intracellular communication. Two-component system is one such
signaling motif prevalently found in bacteria [2–6]. A typical bacterial two-component system
comprises of a trans-membrane sensor protein along with a cognate cytoplasmic response reg-
ulator protein. Any change in the immediate surroundings is sensed by the sensor protein,
which then communicates the information downstream to its cognate partner through the
mechanism of phosphorelay. The response regulator then regulates one or several downstream
genes in response to the change in the environment.

The diversity of extracellular environment is very high for the microorganisms that invade
into the host as pathogens and proliferate. They have to deal with both the environments:
inside and outside the host. The microorganism of the current study, Bordetella pertussis—a
gram-negative human pathogen, shows dormancy in the atmospheric environment (*25°C)
and becomes virulent inside host (*37°C) [7–9]. Like many other prokaryotes, B. pertussis
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adopts the environmental distortion through a prominent two-component signal transduc-
tion cascade, the BvgAS. The key components of the BvgAS two-component system are BvgS
and BvgA, the sensor and the response regulator protein, respectively. The expression of sev-
eral virulent factors, like toxins and adhesins, are mediated by the BvgAS two-component
system. The membrane bound sensor kinase, BvgS, encounters temperature dependent acti-
vation and down-modulation only through the presence of modulators like MgSO4, nicotinic
acid or reduced temperature. The BvgAS sensory transduction system shows three different
phases: Bvg+, Bvg− and Bvgi through gene regulation in response to stimuli [7–9]. The regime
of the intermediate (Bvgi) phase is narrow than the repressed (Bvg−) phase or activated
(Bvg+) phase due to the sharp switch of the BvgA population. Each of the phases has a unique
pattern of gene regulation. At Bvg+ phase, the virulence-activated genes (vags) fhaB, ptxA
and bvgAS itself show maximum expression. In contrast, at Bvg− phase, the virulence-
repressed genes (vrgs) flaA, frlAB are expressed at the maximum level, but no vags show good
expression. The Bvgi phase is characterized by the maximal expression of bvgAS, bipA and
fhaB, and nominal expression of vrgs and ptxA. In the present study, we focus on bipA and
fhaB along with bvgAS to observe the temperature mediated switch from dormant to virulent
phase.

Depending on the transcription factor binding affinity, the variety of the Bvg-regulated
genes are classified into four classes [7–9]. Class 1 genes include cyaA and ptxA, containing
low-affinity binding sites and are activated at high level of phosphorylated BvgA. Class 2
gene fhaB possesses high-affinity BvgA binding site and produces transcripts at a very small
level of BvgA-P. The unique class 3 gene bipA starts transcription at a moderately low level of
BvgA-P bound at the low-affinity binding site, but get repressed at a high level of BvgA-P.
frlAB belongs to class 4 gene and shows repression at high BvgA-P. The class 3 and class 4
gene expression are not observed in B. pertussis through temperature elevation. Only class 3
gene are expressed in B. pertussis for intermediate level of MgSO4. Thus, at a low level of
BvgA, B. pertiussis expresses class 1, 2 and 3 minimally but class 4 genes maximally. Class 2
and 3 genes show a high level of transcription in contrast with the low level of class 1 and 4
expression at the moderate level of BvgA. Finally, at a high level of BvgA, class 1 and 2 genes
show maximum and class 4 genes minimum level of expression with low level of class 3 gene
expression.

The well known BvgAS motif is studied here in accord with the network parameter sensitiv-
ity. The functionality of the BvgAS signal transduction motif and its effect on the downstream
gene regulation is well reported through experimental work [7–9], thus providing a scope to
analyze the network from sensitivity analysis and optimization point of view. In this connec-
tion it is important to mention that several theoretical approaches have been undertaken to
explore the signal transduction mechanism in typical bacterial two-component system [10–
21]. However, few theoretical formalism have been developed to address the underlying signal-
ing mechanism in B. pertussis and its effect on the downstream differential gene regulation. In
one of our earlier communications, we have theoretically identified the temperature mediated
molecular switch that controls the signaling mechanism [22]. In addition, theoretical analysis
have been made to understand the role of positive feedback on target gene regulation [22, 23].
A preliminary level of sensitivity analysis suggests that the rate constants associated with the
kinase and phosphatase activities are most sensitive among all the rate parameters [22]. To
extend these earlier reports further and to understand the role of individual rate parameters on
the model output we undertake a theoretical approach in the present study that incorporates
correlation coefficient based sensitivity analysis and stochastic optimization. The modular
approach we have adopted in the present work is the following. In the first module, we classify
the kinetic rate parameters associated with the model according to their sensitivity. We identify
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the set of sensitive model parameters as a function of the input signal. In the next module, we
invoke stochastic optimization technique to generate the sharp molecular switch. Finally, the
optimized parameter set has been used to reproduce the features of some novel experimental
results [24].

Methods

The bvg operon
Many of the pathogenic secretions of B. pertussis are controlled by phosphorylated BvgA, a
member of the BvgAS two-component system and is encoded by the bvg operon [7, 8]. In bvg
operon, four promoters (P1, P2, P3, and P4) together control the production of BvgS and BvgA
[25–27] (see Fig 1). Out of the four promoters, P2 shows constitutive behavior in absence of
any external stimulus. However, as B. pertussis experiences temperature rise in the surround-
ings, activity of P2 goes down. Under the same condition, the rest of the promoters get acti-
vated. Activity of P3 is very low under induction [27] and has been excluded from our model.
Similarly, contribution of P4 has been excluded from our model as P4 produces anti-sense RNA

Fig 1. BvgAS signal transduction motif. The signal transduction motif is composed of the phosphotransfer
and autoregulation modules. The temperature acts as inducer of the autophosphorylation of the dimer of the
sensor kinase protein BvgS (blue). Similarly, dimerized BvgA represents for response regulator in red. P in
black sphere stands for phosphate group. Note that, sensor kinase acts both as source and sink for the
phosphate group.

doi:10.1371/journal.pone.0147281.g001
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whose target has not been yet identified. In this connection, recent work by Hot et al. [28] is
worth mentioning, where the authors have identified an anti-sense RNA bprJ2, regulated by
BvgAS TCS, with unknown functionality.

The BvgAS two-component system
The phosphorylated dimer of the cytosolic response regulator protein BvgA binds at the pro-
moter site as a transcription factor and catalyzes the promoter activation. Upon activation,
RNA polymerase transcribes the polycistronic mRNAm, which on translation accumulates the
pool of the monomeric cognate pair proteins BvgS and BvgA. BvgS, after dimerization, spans
in the transmembrane region to sense the external stimulus. In the present work, we denote the
dimers of BvgS and BvgA as S2 and A2, respectively. Although the sensor and the response reg-
ulator proteins first get expressed as a monomer and then dimerize, we do not consider the
dimerization kinetics in our model as only the dimer forms of the proteins are of functional
interest here. As the temperature in the surroundings increases, S2 gets autophosphorylated at
the histidine residue to form S2P. S2P then transfers the phosphate group to the aspertate resi-
due of the cognate A2 through kinase activity, thus producing A2P. A2P on the other hand, gets
dephosphorylated to A2 due to the phosphatase activity of S2. As a result, the bifunctional sen-
sor protein BvgS helps in producing the pool of phosphorylated response regulator BvgA
which in turn autoregulates its operon as well as regulates the expression of several down-
stream genes (see Fig 1). For detailed kinetic scheme and parameter set, we refer to Table 1.
These parameter set was used earlier to understand the mechanism of molecular switch in B.
pertussis [22]. Based on the above information the signal transduction module in BvgAS TCS
can thus be divided into two parts: the autoregulation motif and the phosphotransfer motif,
typical characteristics of bacterial TCS [11, 22]. These two motifs together generate a sharp
molecular switch under the induction of temperature increase in the surroundings [22].

Experimentally, it has been observed that the ratio of total BvgS (ST) to total BvgA (AT) is
�6 [27] which can be utilized to employ quasi-steady state approximation in analyzing the
behavior of the key components of the signal transduction motif at steady state [11, 22]. Con-
sidering this, we define

ST � S2 þ S2P and AT � A2 þ A2P: ð1Þ
Furthermore, we define two dimensionless quantities

a ¼ S2P
ST

and b ¼ A2P

AT

; ð2Þ

to analyze our results.

Sensitivity Analysis
To decipher the sensitivity of the rate parameters on the output of the model we use the tools
of correlation coefficient in the present study. The Pearson correlation coefficient (CC) is
defined as the covariance between the input and the output parameters with a normalization
through division by the product of their standard deviations,

rkib ¼
PN

j¼1ðkij � hkiiÞðbj � hbiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1 ðkij � hkiiÞ2

PN
j¼1 ðbj � hbiÞ2

q ; ð3Þ

where rki β is the CC of the input parameter ki and output β. hkii and hβi are the mean (ensem-
ble average) of ki and β, respectively, and N is the number of random sampling. If the output

Sensitivity Analysis and Signal Transduction

PLOS ONE | DOI:10.1371/journal.pone.0147281 January 26, 2016 4 / 18



rises or falls with the increment of a particular input parameter, it is said to be positively or neg-
atively correlated. The magnitude of the correlation coefficient, which implies the strength of
dependency, spans upto ±1 for maximum +ve or -ve association.

The CC can not explain the sensitivity precisely in the case of nonlinear input-output
dependencies. For nonlinear but monotonic increasing relation, one can use the Spearman
rank correlation coefficient (RCC) which is the calculation of the correlation coefficient after a
rank transformation. The partial rank correlation coefficient (PRCC) takes care of the associa-
tion of an individual input parameter ki with the output β provided that the dependency of all
the other kj-s have been eliminated. This makes PRCC the most reliable among all the sampling
based sensitivity indices. PRCC can be calculated from the rank correlation matrix (C), where

Table 1. List of kinetics schemes and the values of rate parameters used in the model.

Description Reaction kinetic rate constant

Association of A2P and Pi Pi + A2P ! Pa kb = 1.024 × 10−4 nM−1s−1

Dissociation of A2P from Pi Pa ! Pi + A2P ku = 1.167 × 10−3 s−1

Basal transcription from Pi Pi ! Pi + m ktp0 = 1.9 × 10−2 s−1

Activated transcription from Pa Pa ! Pa + m ktp1 = 4.083 × 10−2 s−1

Degradation of m m ! ϕ kdm = 1.667 × 10−3 s−1

Translation of S2 from m m ! m + S2 kss = 6.667 × 10−4 s−1

Translation of A2 from m m ! m + A2 ksa = 4.167 × 10−3 s−1

Autophosphorylation of S2 at 37° C S2 ! S2P kps = 8.333 × 10−3 s−1

Autodephosphorylation of S2 S2P ! S2 kdps = 3.333 × 10−3 s−1

Association of S2P and A2 S2P + A2 ! S2P.A2 ktf = 8.532 × 10−3 nM−1s−1

Dissociation of S2P.A2 S2P.A2 ! S2P + A2 ktb = 1.667 × 10−3 s−1

Phophotransfer from S2P to A2 S2P.A2 ! S2 + A2P kta = 8.333 × 10−2 s−1

Association of S2 and A2P S2 + A2P ! S2.A2P kpf = 3.413 × 10−5 nM−1s−1

Dissociation of S2.A2P S2.A2P ! S2 + A2P kpb = 1.333 × 10−3 s−1

Dephosphorylation of A2P by S2 S2.A2P ! S2 + A2 kpa = 5.0 × 10−2 s−1

Degradation of S2 S2 ! ϕ kdp = 1.667 × 10−4 s−1

Degradation of A2 A2 ! ϕ kdp = 1.667 × 10−4 s−1

Degradation of S2P S2P ! ϕ kdp = 1.667 × 10−4 s−1

Degradation of A2P A2P ! ϕ kdp = 1.667 × 10−4 s−1

Association of A2P and Pcl2,i Pcl2,i + A2P ! Pcl2,i1 kb,21 = 5.119 × 10−4 nM−1s−1

Dissociation of A2P from Pcl2,i1 Pcl2,i1 ! Pcl2,i + A2P ku,21 = 1.667 × 10−4 s−1

Association of A2P and Pcl2,i1 Pcl2,i1 + A2P ! Pcl2,i2 kb,22 = 1.36 × 10−3 nM−1s−1

Dissociation of A2P from Pcl2,i2 Pcl2,i2 ! Pcl2,i1 + A2P ku,22 = 1.667 × 10−4 s−1

Association of A2P and Pcl2,i2 Pcl2,i2 + A2P ! Pcl2,a kb,23 = 1.706 × 10−3 nM−1s−1

Dissociation of A2P from Pcl2,a Pcl2,a ! Pcl2,i2 + A2P ku,23 = 1.667 × 10−4 s−1

Transcription rate from Pcl2,a Pcl2,a ! Pcl2,a + mcl2 ktp,cl2 = 5.083 × 10−3 s−1

Association of A2P and Pcl3,i Pcl3,i + A2P ! Pcl3,i1 kb,31 = 8.533 × 10−5 nM−1s−1

Dissociation of A2P from Pcl3,i1 Pcl3,i1 ! Pcl3,i + A2P ku,31 = 1.667 × 10−4 s−1

Association of A2P and Pcl3,i1 Pcl3,i1 + A2P ! Pcl3,a kb,32 = 1.365 × 10−4 nM−1s−1

Dissociation of A2P from Pcl3,a Pcl3,a ! Pcl3,i1 + A2P ku,32 = 1.667 × 10−4 s−1

Association of A2P and Pcl3,a Pcl3,a + A2P ! Pcl3,i2 kb,33 = 1.706 × 10−6 nM−1s−1

Dissociation of A2P from Pcl3,i2 Pcl3,i2 ! Pcl3,a + A2P ku,33 = 2.0 × 10−4 s−1

Transcription rate from Pcl3,a Pcl3,a ! Pcl3,a + mcl3 ktp,cl3 = 6.16 × 10−3 s−1

doi:10.1371/journal.pone.0147281.t001
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Cij is the RCC between the i-th and j-th element. The co-factor Pij of Cij is utilized to calculate

PRCC of an input parameter ki with the output β as

Pkib
¼ � Pkibffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pkiki
Pbb

p : ð4Þ

As correlation coefficient measures how much the output of a network is dependent on the
particular input parameter, the correlation coefficient is used as an index of sensitivity in this
study. The Pearson correlation coefficient (CC), the Spearman rank correlation coefficient
(RCC), and the partial rank correlation coefficient (PRCC) have been calculated for a range of
signal kps and analyzed. For this purpose, we have perturbed each of the input parameters
simultaneously and solved the set of coupled rate equations (see S1 Text) to calculate the out-
put β. The distribution of the random perturbations are of Gaussian type whose mean is the
base value and the variance is ±5% of the base value. In addition, we have used the data set
obtained from 105 independent runs to calculate the correlation coefficients.

Sensitivity analysis of any chemical kinetic network suggests an insight about the priority of
the cascade inputs. The utility of parameter sensitivity analysis is to classify the input parame-
ters according to their relative impact on the output [29–32]. In the present study, the phos-
phorylated fraction of the response regulator (β = A2P/AT) is taken as the output variable. As
the temperature mediated autophosphorylation rate constant kps alters, the dynamics of β
changes. In the present work, we perform sensitivity analysis over all the rate parameters
(except kps) to check the robustness and the relative importance of the parameter set considered
for the reaction kinetics involved in the signal transduction.

Stochastic Optimization
In the present work, we implement simulated annealing (SA) [33, 34] to decipher the correct
parameter set to reproduce results of some in vitro experiments reported by Jones et al. [24]. At
first, we consider the autophosphorylation of the sensor protein (S2) and phosphotransfer to
the response regulator (A2) as done in the in vitro phosphorylation experiment by Jones et al.
[24]. Here, it is important to mention that SA simulation is an algorithmic replica of thermody-
namical annealing process [33, 34]. In metallurgical annealing, the metal alloy is taken at a very
high temperature and then slowly cooled down to get the most thermodynamically stable state.
Similarly, in SA, an algorithmic temperature, called the annealing temperature, is defined. The
annealing temperature controls the extent of the search space (or the solution space) that is
being sampled. During the simulation a randomly chosen variable is allowed to take a move for
each sampling. The maximum step length taken in our simulation is of 5 (minimum) −15
(maximum) % with respect to the value of the particular variable at the previous sampling step.
To be explicit, for any parameter k, the update using SA is done by the rule k0 = k + k × (−1)n ×
δ × rn, where k0 is the updated value of k, n is a random integer, δ is the amplitude of allowed
change (kept between 0.05 and 0.15), and rn is a random number between 0 and 1. Using these
information a cost or objective function is calculated for the new set of variables after each iter-
ation. With the progress of iteration, the cost profile goes down as the output becomes close to
the desired value. The cost function at the i-th step of the iteration is calculated as

costi ¼
XM
j¼1

ðbexðjÞ � bTat
ðjÞÞ2; ð5Þ

where βex(j) is the experimental value of relative phosphorylation and βTat
(j) denotes the rela-

tive phosphorylation at the algorithmic (annealing) temperature Tat for j-th time at the i-th
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step of the simulation. Similarly, to generate the transcript profile we use the following expres-
sion

costi ¼
XM
j¼1

ðmexðjÞ �mTat
ðjÞÞ2; ð6Þ

withmex(j) andmTat
(j) being the experimental value of transcript and the simulated value of

the same at the algorithmic (annealing) temperature Tat, respectively. While going from i-th to
i + 1-th SA step, the cost function may increase or decrease. If the cost function decreases, we
accept the move. On the other hand, if it increases we do not discard the move outright.
Instead, we subject it to the Metropolis test [35]. If the quantity Δ = costi − costi−1 has a positive
value, the probability for accepting the move is determined by the function

F ¼ exp � D
Tat

� �
: ð7Þ

For positive Δ, F is always between 0 and 1. For each evaluation of F, we invoke a random num-
ber ξ (say) between 0 and 1. If F> ξ, we accept the move. Otherwise, the move is rejected.
Thus, at very high Tat, F will be close to 1 and most moves will be accepted, such that a greater
region of the search space will be sampled. As the simulation proceeds, Tat is decreased by the
annealing schedule. Once the correct path towards the global minimum is attained, we need
not search the entire space and concentrate on a small region, which will guide us correctly to
the global minimum. In other words, as Tat is lowered, a decreasing number of moves pass the
Metropolis test. Finally, we recover the correct set of parameter to reproduce the experimental
results. In addition, the optimization is carried out until the cost reaches to zero or a low
enough steady value and the corresponding data set is taken as optimized set.

The underlying reason to employ stochastic optimization is to optimize the model parame-
ters in a more reliable and efficient manner. The primary target of any optimization method is
to minimize a scalar valued objective function or cost function. This makes stochastic optimi-
zation technique the most effective method in developing and fabricating a complex system
with large number of components. For systems with high nonlinearity, such an approach gets
favor over any deterministic method of optimization. This happens due to the implementation
of a Markov Chain Monte Carlo search direction in such a way that one can distinguish the
global optima from many local optima. To utilize the principles of stochastic optimization, we
implement SA technique [33, 34] which has been successfully applied recently to understand
the role of different bonding (stacking and hydrogen) interactions on the breathing dynamics
of DNA [36, 37].

Results and Discussion

Amplification and Switch
In presence of a stimulus, regulatory networks in all living systems need a switching from off to
on state or vice versa. Genetic switch, a typical regulatory system, sometimes gets controlled by
the output protein through a feedback loop. The presence of a positive feedback motif in the
network makes the switching phenomena sharp. As a result, the network response in terms of
the population of the network output shows a sharp growth curve even for a small change in
the input signal. Typically, amplification in the signal can be classified into two categories,
magnitude amplification and sensitivity amplification [38]. Magnitude amplification occurs in
ligand-gated ion channels, where*104 ions flow as a single ligand molecule binds to the chan-
nel protein. Here, the response is much greater than the stimulus. On the other hand,
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sensitivity amplification is defined as the fractional change in response with respect to a frac-
tional change in the stimulus. The sensitivity amplification can be calculated locally as [38–40]

Slocal ¼
Dresponse=response

Dsignal=signal
; ð8Þ

where the change in the input signal (Δsignal) is infinitesimally small. The sensitivity amplifica-
tion can be calculated globally from the signal-response characteristic curve (see Fig 1 of [38]).
Following Koshland et al, the order of sensitivity can be classified as ultrasensitive, hyperbolic
sensitive and subsensitive [38]. A curve is said to be ultrasensitive if a 10%–90% change in the
response can be obtained for a very narrow range (4–5 fold) of the signal [38]. In the case of
hyperbolic Michaelian response, the range of the signal is*81 [38] and for subsensitive ampli-
fication, it is about a few thousand [38].

In the present model, the pool of A2P is developed when both the phosphotransfer motif
and the autoregulation motif are functional. In Fig 2A, we show the amplification of the output
response β, the fraction of phosphorylated BvgA, as a function of the autophosphorylation rate
kps. The local sensitivity for this model is

Slocal ¼
DA2P=A

i
2P

Dkps=kips
: ð9Þ

Here, DA2P ¼ Af
2P � Ai

2P and Dkps ¼ kfps � kips with i and f being the initial and final value,

respectively. At lower range of kps, one can observe a first order ultrasensitive response that
reduces to zero order at a high value of the signal. The quantity Slocal approaches 1 for small
stimulus and sharply falls to 0 for large stimulus (Fig 2B). This happens as the pool of β gets
saturated at the high value of kps. If we focus on the global sensitivity with reference to Fig 2A,
the amplification of β from 10% to 90% occurs in response to a 10 fold increment of the signal.
Thus, the sensitivity amplification does not show an ultrasensitive switch. Absence of

Fig 2. Amplification. A. The % amplification andB. the sensitivity amplification of the output response β with respect to the signal kps. Note the logarithmic
scale in the abscissae.

doi:10.1371/journal.pone.0147281.g002
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ultrasensitivity implies that the molecular switch in B. pertussis lacks co-operativity in the posi-
tive feedback operative at the bvg operon.

Parameter sensitivity analysis
To understand the significance of model parameters on the generation of the molecular switch,
we perform sensitivity analysis for all the rate parameters except kps (which is treated as the sig-
nal) with respect to β as the output parameter. The positive feedback network shows a sharp
switch with respect to kps. Thus, sensitivity analysis is performed for a broad range of kps values
(kps = 10−3 − 10−1) that signify the different regions of the amplification profile shown in
Fig 2A. The results thus obtained help us to comment not only on the sensitivity of the rate
parameters but also show how the order of sensitivity gets modified with the switch.

CC, RCC and PRCC calculations are carried out as a measure of sensitivity index. The
numerical values of the same for three different values of kps (10

−3, 10−2 and 10−1) are presented
in Table 2. At 10−3, β is very low; at 10−2, β starts to increase and at 10−1, it reaches a high value
after a sharp change. The trend of correlation is same in all the three correlation coefficient cal-
culations (CC, RCC, PRCC). In magnitude, CC and RCC are very close representing the linear
nature of the output with respect to the input. Since in the calculation of PRCC for a parameter
excludes the effect of other variables, the PRCC values are quite higher than that of CC and
RCC values.

At kps = 10−3, ktp1, kdm, ksa, kdp and kpf have considerably high correlation coefficient values,
where ktp1, ksa and kpf are negatively correlated and the others show positive correlation. All the
rate parameters show quite similar trends at kps = 10−2, but at kps = 10−1, the order as well as
the nature of correlation for some parameters get modified. The sensitive parameter at lower
kps value remains sensitive, however, the nature of correlation becomes opposite for ktp1, kdm
and kdp. At this kps value, kss, kdps and ktf also show high correlation which are practically insen-
sitive at a low value of kps. The change in the nature of sensitivity before and after the on state

Table 2. CC, RCC, and PRCC values for all the input parameters with output β for low, medium and high values of kps.

Parameters kps = 10−3 kps = 10−2 kps = 10−1

CC RCC PRCC CC RCC PRCC CC RCC PRCC

kb -0.058 -0.055 -0.207 -0.016 -0.017 -0.034 0.003 0.003 0.007

ku 0.054 0.054 0.206 0.007 0.008 0.035 -0.002 -0.003 -0.011

ktp0 -0.075 -0.072 -0.252 -0.006 -0.006 -0.028 0.011 0.010 0.005

ktp1 -0.397 -0.382 -0.814 -0.436 -0.421 -0.844 0.193 0.182 0.569

kdm 0.474 0.456 0.858 0.446 0.433 0.849 -0.196 -0.187 -0.574

kss 0.033 0.031 0.086 0.025 0.023 0.081 0.342 0.326 0.774

ksa -0.494 -0.479 -0.869 -0.468 -0.452 -0.861 -0.139 -0.135 -0.457

kdps -0.005 -0.004 -0.005 -0.004 -0.005 -0.005 -0.218 -0.208 -0.604

ktf -0.008 -0.013 -0.006 0.002 0.003 0.002 0.554 0.535 0.891

ktb -0.008 -0.007 -0.003 0.003 0.003 0.002 -0.015 -0.013 -0.033

kta 0.011 0.010 0.010 -0.006 -0.005 0.007 0.010 0.009 0.031

kpf -0.416 -0.399 -0.822 -0.444 -0.426 -0.845 -0.342 -0.332 -0.780

kpb 0.016 0.011 0.041 0.017 0.017 0.041 -0.003 -0.003 0.031

kpa -0.007 -0.006 -0.036 -0.020 -0.020 -0.051 -0.010 -0.011 -0.031

kdp 0.439 0.425 0.845 0.425 0.415 0.836 -0.551 -0.535 -0.892

doi:10.1371/journal.pone.0147281.t002
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for all the rate parameters are presented in a tabular form in Table 2. With this gross nature of
the sensitivity of the parameters, we analyze the nature as well as the order of sensitivity of the
rate parameters in the following.

The nature of correlation of ksa does not change much with the change of kps value. ksa is the
rate constant for generation of A2 from mRNA. As the output β for the calculation of correla-
tion coefficients is inversely proportional to the A2 concentration, ksa shows negative correla-
tion (see Fig 3D). Although it remains negatively correlated, the magnitude of its correlation
coefficients (CC, RCC and PRCC) get reduced at a high value of kps. At high kps, concentration
of S2P is abundant and phosphotransfer rate increases. Thus, enhanced production of A2

Fig 3. Correlation coefficients. The correlation coefficients CC (solid line), RCC (dashed line) and PRCC (dotted line) as a function of input signal kps. A, B,
C, D, E, F, G and H are for ktp1, kdm, kss, ksa, kdps, ktf, kpf and kdp, respectively. Note the logarithmic scale in the abscissae.

doi:10.1371/journal.pone.0147281.g003
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implies enhanced phosphotransfer to A2, which in fact, increases the amount of A2P. In a way,
if one increases the value of ksa, not only the A2 concentration increases but a gain in the A2P

concentration also takes place. With these two opposing factors, effectively the order of sensi-
tivity of this parameter reduces at the high value of kps.

If we consider mRNA generation, the system output β varies inversely at low value of kps.
With the increase of mRNA concentration, both the protein concentrations (S2 and A2)
increase. Increase in A2 show direct effect on β. The rise in S2 concentration also reduces β, as
A2P is dephosphorylated to A2 by S2 along with low phosphotransfer (generation of A2P) due to
low concentration of S2P. Thus, both the rate constants for mRNA generation (ktp0 and ktp1)
show negative correlation at low kps value, with ktp1 showing high correlation value than ktp0.
In the present work, ktp1 is the rate of mRNA generation from the active state of a promoter
(Pa) and transformation of Pi! Pa involves loss of A2P. Hence, the effect of ktp1 on the output
would be much greater than ktp0. At high kps, the phosphotransfer motif dominates the whole
reaction system thus affecting the mRNA generation. Thus, ktp1 show positive correlation at
high kps (Fig 3A). The parameter kdm deals with degradation of mRNA and shows a trend
opposite to that of ktp1. Hence, it is positively correlated at low kps, while showing negative cor-
relation at high kps (Fig 3B).

The other two rate parameters that show significant sensitivity after the amplification switch
is on are kss and kdps. The first one is related to the generation of S2 from mRNA and the other
one is the rate constant for the autodephosphorylation of S2P. At high kps value, the phospho-
transfer process from S2P to A2 becomes significant and eventually the output β varies with the
concentration of S2P. As with the increase in kss and decrease in kdps amount of S2P increases,
kss and kdps show positive and negative correlation, respectively (Fig 3C and 3E).

At low kps value, the kinase reaction does not show any significant effect on the phospho-
transfer kinetics as the amount of S2P is negligible. However, at the high value of kps, the
amount of S2P increases, thus increasing the phosphorylation of A2. This leads to the genera-
tion of A2P which, in turn, increases the level of β. Hence, it is justified for the rate parameter ktf
to show high positive correlation at the higher value of kps (Fig 3F). On the other hand, kpf is
associated with the phosphatase reaction that takes care of the dephosphorylation of A2P; thus
showing negative correlation irrespective of the value of kps (Fig 3G).

The degradation of all the proteins (S2, A2, S2P and A2P) is controlled by the rate parameter
kdp. Hence, it gets correlated with the output (β) with a decreasing trend. In the low range of
kps, where the protein pool is minuscule, kdp shows high positive correlation. However, at the
saturation of the protein pool at high kps value, the associated correlation of kdp becomes
sharply negative (Fig 3H).

As mentioned earlier, here we have used a Gaussian perturbation of ±5% to calculate the
sensitivity of the individual parameters. To check whether the parameter set can withstand any
larger perturbation (>±5%) we have systematically increased the magnitude of perturbation by
increasing the variance of the Gaussian distribution up to ±20%. The list of resultant data are
given in S1 Table for kps = 10−2 and shows that the CC, RCC and PRCC values remain consis-
tent for ±5%, ±10%, ±15% and ±20% perturbation.

In vitro assay and stochastic optimization: The mutants
The previous subsection describes how efficiently one can decipher the set of reaction rate con-
stants (ki-s) on the basis of their sensitivity towards output β. This elucidates the degree of pri-
ority of the reactions given in S1 Text. Once the sensitivity of the parameter set is determined,
one can target simple motifs present within the complex signaling circuit. One such simple
motif is the phosphorylation of BvgA, which has been studied experimentally using some novel
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mutants [24]. As discussed earlier, activation of the signaling cascade is triggered by the phos-
phorylation of the transcription factor BvgA by the sensor BvgS. Any alteration through site-
directed mutagenesis at the phosphorylation domain of BvgA may influence the phosphoryla-
tion kinetics. Two such mutants, T194M and R152H, were employed by Jones et al. in studying
the in vitro phosphorylation assay [24]. The wild type and the two mutant BvgA were incu-
bated with GST-0BvgS in the presence of [γ−32P]-ATP and the phosphotransfer kinetics was
monitored for 5 min, and the relative amount of phosphorylation was noted at different time
points. The relative amount of [γ−32P]-ATP thus incorporated in BvgA was quantified using
phosphoimager. The total protein concentration of BvgS and BvgA used were 0.8 μM and 2.1
μM, respectively. The experimental results suggest that the mutant R152H behaves almost like
the WT strain whereas the mutant T194M is heavily impaired in its ability to get phosphory-
lated. This happens as both arginine (R) and histidine (H) are positively charged and are good
acceptor of the negatively charged phosphate group. On the other hand, when the polar threo-
nine (T) residue is replaced by methionine (M) it heavily impairs the phosphorylation
capacity.

To examine the performance of the phosphorylated BvgA, one can construct a transcription
assay as BvgA on phosphorylation acts as a transcription factor for its promoter and the pro-
moters of the downstream genes. Among the four classes of downstream genes, we opted for
fhaB (class 2) and bipA (class 3) gene as their promoters have high affinity binding sites and
show quick response even under low levels of induction [24]. Also, results of in vitro transcrip-
tion assay are available for these classes of genes [24]. High affinity binding site in these two
mutants suggests that affinity of phosphorylated transcription factor (BvgA-P) towards the
DNA of these two mutants will be high [41]. This information on the other hand suggests that
phosphorylated R152H will have higher affinity compared to phosphorylated T194M. Surpris-
ingly, electrophoretic mobility shift assay (EMSA) exhibits reverse result [24], i.e., binding
affinity of T194M towards high affinity binding site is higher compared to R152H. One of the
plausible mechanism could be the interaction between the negatively charged backbone of the
double helix and the positively charged R152H reduces drastically due to histidine (H). Keep-
ing this in mind, we only consider the experimental results of these two genes for optimization
purpose.

Since we have deciphered the sensitivity of the model parameters, we now focus on repro-
ducing the behavior of some novel mutants mentioned earlier. In the present work, we use sim-
ulated annealing, a stochastic optimization technique, to estimate the optimal set of the rate
parameters involved in the in vitro phosphorylation assay (Table 3). At this point it is impor-
tant to mention that the process of optimization is computationally expensive as the optimized
set of variables is far away from the parameter space from where the sampling is started. The
parameter set have to travel a long way to reach the optimized value. Thus, we allowed the
parameters to take long step and keep the size up to 15% and carried out 500 independent SA
runs. The uncertainty in the output of the SA runs are given in the form of standard deviation

Table 3. List of optimized parameters used for the simulation of in vitro phosphorylation assay. Here, x±y stand for the value of optimized parameter x
with standard deviation y. The standard deviation is calculated using the data of 500 independent SA runs.

Parameters WT R152H T194M

ktf (8.98 ± 2.65) × 10−3nM−1s−1 (4.49 ± 1.20) × 10−4nM−1s−1 (3.50 ± 1.29) × 10−5nM−1s−1

ktb (1.52 ± 0.44) × 10−3s−1 (6.68 ± 1.69) × 10−4s−1 (1.43 ± 0.35) × 10−5s−1

kta (1.77 ± 0.4) × 10−1s−1 (2.46 ± 0.67) × 10−2s−1 (1.62 ± 0.36) × 10−4s−1

doi:10.1371/journal.pone.0147281.t003
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in Table 3. The nature of standard deviation suggests that the uncertainty lies within*20% of
the optimized parameter value. In addition, we have considered only those SA runs where the
cost function asymptotically moves towards zero. Otherwise, we do not consider the output of
a SA run in our calculation. Keeping this in mind we first generate the profiles of the in vitro
phosphorylation assay experiment reported by Jones et. al [24]. The kinetic rate constants,
optimized using SA, reproduces the experimental profile (the symbols in Fig 4). The associated
cost function and the evolution of rate parameters (only 5 out of 500 trajectories) as a function
of SA steps are shown in S1 Fig. Fig 4 shows that the phosphorylation ability of R152H is higher
than that of T194M. On a relative scale, R152H and T194M could be phosphorylated*80%
and*30%, respectively, compared to the WT strain.

As discussed earlier, on mutation, the successive binding of phosphorylated BvgA (A2P) at
different promoters gets affected. The three strains WT, R152H and T194M have been used to
observe the effect on DNA-protein interaction through in vitro transcription assay. At this
point, it is important to mention that the experimental data does not have any error bar that
gives an estimation of the uncertainty in the experimental results. The snapshots of the profile
of cost function and the parameter optimization with respect to SA steps are shown in S2 and
S3 Figs. The optimized parameter set thus obtained could reproduce the qualitative behavior
(the solid, dashed and dotted lines in Fig 5) of the in vitro experimental results (the open
squares, circles and triangles in Fig 5). As mentioned in the previous paragraph, the mutant
R152H activates the target genes later compared to the mutant T194M due to its weak interac-
tion with the promoter region of the target gene.

Fig 4. In vitro phosphorylation assay. Profiles of in vitro phosphorylation assay generated using stochastic
optimization. The solid, dashed and dotted lines are for WT, R152H and T194M, respectively. The symbols
are experimental results due to Jones el al. [24]. In the figure legend Th and Expt stand for theoretical and
experimental data, respectively.

doi:10.1371/journal.pone.0147281.g004
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Conclusion
The present study undertakes the temperature mediated activation and virulence of BvgAS cas-
cade in the light of sensitivity based optimization. The kinetic model of BvgAS has been simu-
lated for a broad range of sensor protein autophosphorylation that mimics the kinetics of the
same quantity due to temperature elevation. The sharp switch in the phosphorylated response
regulator is a consequence of positive feedback operative on the bvgAS operon. The BvgA-P
sharp switch arising due to the integration of the modular structure (the autoregulation and
the phosphotransfer module) shows maximum response to the extra-cellular stimulus.

The development of sharp switch has been extensively investigated in the light of sensitivity
analysis coupled with stochastic optimization. Our analysis shows the phosphotransfer module
to be the more sensitive compared to the autoregulation module. The parameter sensitivity
opens up the avenue to classify and explain the role of model parameters in accord with their
influence on the steady state dynamics. Once classified, it is possible to tune the most sensitive
parameters to regenerate the experimental profiles computationally. The simulated annealing
based stochastic optimization performed on three different strains of BvgA (WT, R152H and
T194M) could successfully reproduce the characteristics of in vitro experimental results. In
addition, it helps in the understanding of different nature of attenuation or delay during activa-
tion of the mutants. Quantification of such delay is biologically important as a delay in the
switch due to temperature elevation brings in obstruction in the virulence to be triggered
within the host. The obstruction might become operative in the level of protein-protein inter-
action or the protein-DNA interaction. Although, in vivo fabrication of such synthetic network
is difficult, it may be a good starting point in understanding the functionality of stimulus medi-
ated in vivo systems. Future experiments leading to target characterization and quantitative
measurements of such interactions will help one to build more efficient models.

Fig 5. In vitro transcription assay. Profiles of in vitro transcription assay generated using stochastic optimization for A. fhaB andB. bipA. The solid, dashed
and dotted lines are for WT, R152H and T194M, respectively. The symbols are experimental results due to Jones el al. [24]. In the figure legend Th and Expt
stand for theoretical and experimental data, respectively.

doi:10.1371/journal.pone.0147281.g005

Sensitivity Analysis and Signal Transduction

PLOS ONE | DOI:10.1371/journal.pone.0147281 January 26, 2016 14 / 18



Supporting Information
S1 Text. General supplementary information. The text contains the detailed kinetic mecha-
nism of BvgAS two-component system, the kinetics of in vitro phosphorylation assay and the
kinetics of in vitro transcription assay.
(PDF)

S1 Fig. Optimization of kinetic parameters associated with in vitro phosphorylation assay.
The cost function and the optimization profiles of the kinetic parameters associated with the
simulation of in vitro phosphorylation assay results (Fig 4 and Table 3) as a function of SA
steps. The colored (red, green, blue, cyan and magenta) lines are representatives of five differ-
ent SA runs. The black horizontal line represents the base parameter value given in Table 1.
Note the logarithmic scale in the ordinates.
(TIF)

S2 Fig. Optimization of kinetic parameters associated with in vitro transcription assay of
fhaB. The cost function and the optimization profiles of the kinetic parameters (Table 4) asso-
ciated with the simulation of in vitro transcription assay results of fhaB (Fig 5A) as a function
of SA steps. The colored (red, green, blue, cyan and magenta) lines are representatives of five
different SA runs. The black horizontal line represents the base parameter value given in
Table 1. Note the logarithmic scale in the ordinates.
(TIF)

S3 Fig. Optimization of kinetic parameters associated with in vitro transcription assay of
bipA. The cost function and the optimization profiles of the kinetic parameters (Table 5) asso-
ciated with the simulation of in vitro transcription assay results of bipA (Fig 5B) as a function
of SA steps. The colored (red, green, blue, cyan and magenta) lines are representatives of five

Table 4. List of optimized parameters used for the simulation of in vitro transcription assay of fhaB. Here, x ± y stand for the value of optimized param-
eter x with standard deviation y. The standard deviation is calculated using the data of 500 independent SA runs.

Parameters WT R152H T194M

kb,21 (1.24 ± 0.44) × 10−5nM−1s−1 (1.99 ± 0.64) × 10−6nM−1s−1 (1.53 ± 0.43) × 10−7nM−1s−1

ku,21 (1.51 ± 0.37) × 10−4s−1 (3.81 ± 0.71) × 10−6s−1 (1.25 ± 0.33) × 10−6s−1

kb,22 (1.13 ± 0.39) × 10−4nM−1s−1 (7.96 ± 2.02) × 10−8nM−1s−1 (9.48 ± 2.60) × 10−6nM−1s−1

ku,22 (4.81 ± 1.21) × 10−5s−1 (4.24 ± 1.38) × 10−6s−1 (1.02 ± 0.28) × 10−7s−1

kb,23 (5.96 ± 1.79) × 10−5nM−1s−1 (1.26 ± 0.31) × 10−6nM−1s−1 (3.76 ± 1.2) × 10−6nM−1s−1

ku,23 (5.60 ± 1.80) × 10−4s−1 (2.06 ± 0.54) × 10−6s−1 (4.54 ± 1.22) × 10−6s−1

doi:10.1371/journal.pone.0147281.t004

Table 5. List of optimized parameters used for the simulation of in vitro transcription assay of bipA. Here, x ± y stand for the value of optimized param-
eter x with standard deviation y. The standard deviation is calculated using the data of 500 independent SA runs.

Parameters WT R152H T194M

kb,31 (9.64 ± 2.54) × 10−5nM−1s−1 (3.01 ± 0.84) × 10−7nM−1s−1 (1.62 ± 0.45) × 10−7nM−1s−1

ku,31 (1.07 ± 0.24) × 10−5s−1 (1.41 ± 0.27) × 10−5s−1 (4.45 ± 1.02) × 10−7s−1

kb,32 (5.64 ± 1.38) × 10−5nM−1s−1 (3.07 ± 0.85) × 10−7nM−1s−1 (2.93 ± 0.72) × 10−6nM−1s−1

ku,32 (1.29 ± 0.28) × 10−4s−1 (1.95 ± 0.52) × 10−4s−1 (1.95 ± 0.43) × 10−4s−1

kb,33 (7.21 ± 1.6) × 10−7nM−1s−1 (3.73 ± 1.08) × 10−7nM−1s−1 (9.27 ± 1.98) × 10−7nM−1s−1

ku,33 (3.75 ± 0.62) × 10−4s−1 (1.76 ± 0.39) × 10−4s−1 (9.99 ± 2.14) × 10−4s−1

doi:10.1371/journal.pone.0147281.t005
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different SA runs. The black horizontal line represents the base parameter value given in
Table 1. Note the logarithmic scale in the ordinates.
(TIF)

S1 Table. CC, RCC, and PRCC values for all the input parameters with output β for kps =
10−2 at different range of perturbation.
(PDF)
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