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Abstract
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is a genetically heterogeneous

sensorineural disorder, generally manifested with prelingual hearing loss and absence of

other clinical manifestations. The aim of this study is to identify the pathogenic gene in a

four-generation consanguineous Chinese family with ARNSHL. A novel homozygous vari-

ant, c.9316dupC (p.H3106Pfs*2), in the myoxin XVa gene (MYO15A) was identified by

exome sequencing and Sanger sequencing. The homozygousMYO15A c.9316dupC vari-

ant co-segregated with the phenotypes in the ARNSHL family and was absent in two hun-

dred normal controls. The variant was predicted to interfere with the formation of the Myosin

XVa-whirlin-Eps8 complex at the tip of stereocilia, which is indispensable for stereocilia

elongation. Our data suggest that the homozygousMYO15A c.9316dupC variant might be

the pathogenic mutation, and exome sequencing is a powerful molecular diagnostic strat-

egy for ARNSHL, an extremely heterogeneous disorder. Our findings extend the mutation

spectrum of theMYO15A gene and have important implications for genetic counseling for

the family.

Introduction
Congenital or prelingual hearing loss is a common sensorineural disorder, with a prevalence of
about one in 500–1,000 at birth, and at least half of the cases are caused by genetic factors [1,2].
At least 70% of the cases manifest with isolated hearing loss without other associated clinical
features, which is classified as nonsyndromic deafness [3]. Hereditary hearing loss mainly dis-
plays autosomal recessive or autosomal dominant transmission [2], and X-linked [4] or mito-
chondrial inheritance [5] is occasionally reported. Most of hereditary deafness manifests as
autosomal recessive nonsyndromic hearing loss (ARNSHL) [3].
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ARNSHL is an extremely heterogeneous disease, generally manifested with congenital or
prelingual hearing loss without associated clinical symptoms, though postlingual hearing loss
has also been reported [2,6]. The individuals with early-onset deafness often encounter obsta-
cles for linguistic development [7]. Since identification of the gap junction protein beta-2 gene
(GJB2) as the disease gene for ARNSHL [8], more than 42 genes have been identified and at
least 1,949 pathogenic variants have been reported [9]. Mutations in these genes affect cochlear
homeostasis, cellular organization, neuronal transmission, cell growth, differentiation and sur-
vival, and tectorial membrane associated proteins [2]. Cochlear implantation has been reported
to offer satisfactory auditory performance to patients with severe to profound deafness caused
by mutations in the GJB2 gene, the solute carrier family 26 member 4 gene (SLC26A4), the oto-
ferlin gene (OTOF) [10], or the myosin XVa gene (MYO15A) [11]. Genetic diagnosis plays an
important role in prognosis evaluation, clinical management, and prenatal diagnosis for
ARNSHL families [12].

It is difficult to identify causative mutations using regular Sanger sequencing because of
high heterogeneity of ARNSHL. Recently, exome sequencing has been introduced and con-
firmed as an effective alternative strategy [13]. In this study, a novel homozygous mutation in
theMYO15A gene was identified in a Chinese ARNSHL family by exome sequencing.

Materials and Methods

Subjects
A four-generation consanguineous Chinese Han family with ARNSHL was recruited, and four
members of the family participated in this study. Bilateral prelingual deafness was observed in
the two siblings (IV:1 and IV:2, Fig 1A), who received neither hearing aids nor cochlear
implantation in their childhood. However, their parents (III:1 and III:2, Fig 1A) had normal
hearing. Two hundred ethnically-matched unrelated subjects (age 29.5±6.5 years) with normal
hearing were enrolled as controls. Clinical and audiometric assessments were performed, and
peripheral blood samples were collected from all the subjects after obtaining written informed
consent from the participants or guardians. The study was approved by the Institutional
Review Board of the Third Xiangya Hospital, Central South University, China.

Clinical evaluations
Clinical and audiometric assessments were performed on the subjects of the family in the
Third Xiangya Hospital, Changsha. Pure tone audiometry (PTA), tympanometry, acoustic
reflex (AR) thresholds, auditory brainstem responses (ABR), transient evoked otoacoustic
emission (TEOAE) and distortion product otoacoustic emission (DPOAE) were conducted.
Magnetic resonance imaging (MRI) was carried out to exclude congenital inner ear malforma-
tions. The hearing level was assessed at 250, 500, 1000, 2000, 4000 and 8000 Hz by PTA, and
sorted into normal (<20 dBHL), mild (20–40 dBHL), moderate (41–70 dBHL), severe (71–95
dBHL), and profound (>95 dBHL) deafness [14].

Whole exome sequencing and variant analysis
Genomic DNA was extracted from peripheral blood samples of all the subjects using standard
phenol-chloroform extraction method [15]. Exome sequencing was conducted by Novogene
Bioinformatics Institute, Beijing, China. At least 1.5 micrograms (μg) of genomic DNA from
the proband (IV:2, Fig 1A) was sheared by Covaris sonicators, and was enriched, hybridized,
and captured on the Agilent SureSelect Human All Exon V5, following the manufacturers’ pro-
cedures. The captured library was sequenced with the Illumina HiSeq 2000 sequencing
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instruments. The average sequencing depth of 57.36× provided enough depth to exactly call
variants at 97.4% of targeted exome [16].

The clean reads without adapter or debased reads were mapped to the human reference
genome (UCSC hg19, http://genome.ucsc.edu/) using Burrows-Wheeler Alignment tool
(BWA) [17,18]. Single nucleotide polymorphisms (SNPs) and insertions/deletions were identi-
fied by the Sequence Alignment/Map tools (SAMtools) [19], and then Picard was applied to
mark duplicate reads. All variants were screened with the SNP database version 142
(dbSNP142), 1000 Genomes Project (version 2014 October), and NHLBI Exome Sequencing
Project (ESP) 6500. Functional prediction was carried out by Sorting Intolerant from Tolerant
(SIFT) and Polymorphism Phenotyping version 2 (PolyPhen-2). Candidate variants were
annotated by the ANNOVAR (Annotate Variation) software [20].

Direct Sanger sequencing and functional prediction
Direct Sanger sequencing was performed to confirm potential causative variants in the family
with ABI3500 sequencer (Applied Biosystems, Foster City, CA, USA) [21]. Primer sequences
for pathogenic variant in theMYO15A gene (NM_016239.3) were designed as follows: 50-

Fig 1. Pedigree and sequence analysis of an ARNSHL family. (A) Pedigree of the ARNSHL family. N, normal; M, theMYO15A c.9316dupC variant. (B)
The homozygousMYO15A c.9316dupC variant of the affected individual (IV:2). (C) The heterozygousMYO15A c.9316dupC variant of the unaffected
individual (III:1). (D) TheMYO15A gene sequence of a normal control. ARNSHL, autosomal recessive nonsyndromic hearing loss;MYO15A, the myosin XVa
gene.

doi:10.1371/journal.pone.0136306.g001
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TGCCCACCCTGTTCTTATGT -30 and 50-ACTCACTGCTTGGAGCTGGT-30. MutationTa-
ster was applied to the functional prediction of theMYO15A pathogenic variant [22].

Results

Clinical findings
Both patients (IV:1 and IV:2, Fig 1A) presented with deafness and dumbness. Bilateral pro-
found sensorineural hearing loss with thresholds over 95 dBHL was revealed by PTA. Type A
tympanometric curve was shown by acoustic immitance measurement, and no inner ear anom-
aly was discovered by MRI in the two patients. The ABR at 97 dB, AR, TEOAE and DPOAE
were absent in both ears of the proband (IV:2, Fig 1A) and the right ear of the elder sibling
(IV:1, Fig 1A), while the waves I, III and V of ABR were elicited at 80 dB, remarkably elevated
acoustic reflex threshold (80–105 dB) was recorded, and low amplitude DPOAE was elicited at
500, 1000 and 4000 Hz in the left ear of the IV:1 patient, which suggested that some residual
hearing might exist in the left ear of the IV:1 patient. The clinical information of the ARNSHL
family was summarized in Table 1.

Exome sequencing
A total of 19,816,364 pairs of sequenced reads with the average read length of 125 bp were gen-
erated by exome sequencing, and 98.76% (19,569,878) of sequenced reads passed the quality
assessment and were mapped to 99.81% of the human reference genome [16]. Known variants
identified in dbSNP142 with minor allele frequency (MAF)>1%, 1000 Genomes Project with
a frequency of>0.5%, and NHLBI ESP6500 were filtered out. PolyPhen-2 and SIFT were
applied to predict functional effects of non-synonymous SNPs. Subsequently, a homozygous
MYO15A c.9316dupC variant was observed in the proband (IV:2, Fig 1A and 1B) and other
possible pathogenic mutations for ARNSHL were excluded.

Identification of pathogenic mutation
The homozygousMYO15A c.9316dupC variant was confirmed by Sanger sequencing. The
same homozygousMYO15A variant was also detected in his affected sibling (IV:1, Fig 1A), and
the heterozygousMYO15A c.9316dupC variant was identified in both of his unaffected parents
(III:1 and III:2, Fig 1A and 1C). However, the variant was absent in two hundred ethnically-
matched unrelated controls (Fig 1D). The homozygousMYO15A c.9316dupC variant, which
co-segregated with the phenotype of deafness and dumbness in the family, and was predicted
to lead to a shift in the reading frame at amino acid position 3106 and a premature stop codon
(p.H3106Pfs�2) by MutationTaster [22], might be the disease-causing mutation in the
ARNSHL family.

Table 1. Phenotypes and genotypes of the ARNSHL family.

Subjects Age Hearing loss DPOAE ABR AR MRI MYO15A c.9316dupC mutation

III:1 58 y Normal Bil (+) Bil (+) Bil (+) Normal Heterozygous

III:2 57 y Normal Bil (+) Bil (+) Bil (+) Normal Heterozygous

IV:1 32 y Bil profound L (A), R (-) L (A), R (-) L (A), R (-) Normal Homozygous

IV:2 28 y Bil profound Bil (-) Bil (-) Bil (-) Normal Homozygous

A, abnormality; ABR, auditory brainstem responses; AR, acoustic reflex; Bil, bilateral; DPOAE, distortion product otoacoustic emissions; L, left; MRI,

magnetic resonance imaging; MYO15A, the myosin XVa gene; R, right; y, years; +, presence;-, absence

doi:10.1371/journal.pone.0136306.t001
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Discussion
In 1995, a disease gene locus (deafness, autosomal recessive 3; DFNB3) for ARNSHL was first
mapped to chromosome 17p-17q12 by linkage analysis of two large multi-generation families
from Bengkala, Bali [23], and then was further refined to chromosome 17p11.2 [24]. In 1998,
the homozygous p.N2111Y, p.I2113F and p.K2601� (previously known as p.N890Y, p.I892F
and p.K1300�) mutations in theMYO15A gene were identified in three unrelated DFNB3 fami-
lies [25,26]. A hemizygous p.T2205I mutation of theMYO15A gene was also reported to be
associated with moderately severe hearing loss in a Smith-Magenis syndrome (del(17)p11.2)
patient [27].

HomozygousMYO15Amutations cause 6.2% of ARNSHL in Turkey [3], and mutations in
theMYO15A gene account for no less than 5% of autosomal recessive profound hearing loss in
Pakistan [27]. To date, at least 86 pathogenic variants of theMYO15A gene have been reported
in deafness populations [3,11,26–47], which are summarized in Fig 2. The p.D2720H mutation
in theMYO15A gene is considered as a founder mutation in Pakistan [46], and the p.
R1937Tfs�10 and p.S3335Afs�121 mutations in theMYO15A gene were also identified as
founder mutations in Turkish population [3]. Most mutations in theMYO15A gene are con-
nected with congenital severe to profound sensorineural deafness [27,46], while some patients
also display progressive hearing loss [11,36]. Intriguingly, a homozygous p.Y289� mutation in
theMYO15A gene was associated with maintenance of considerable residual hearing in two
Turkish patients [3]. High frequency hearing loss or retention of some hearing at low frequency
was also reported in patients withMYO15Amutations [11,46].

Fig 2. The schematic structure and the mutations of the humanmyosin XVa. The myosin XVa consists of 3530 amino acids, including an N-terminal
extension domain and Motor domain, two light chain binding IQ motifs, two myosin-tail homology 4 (MyTH4) domains and band 4.1/ezrin/radixin/moesin
(FERM) domains, a Src-homology-3 (SH3) domain and a C-terminal class I PDZ-ligand domain. The novelMYO15Amutation in this study is showed with red
box at the bottom of the figure, and previously reported mutations are displayed at the top of the figure.MYO15A, the myosin XVa gene.

doi:10.1371/journal.pone.0136306.g002
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TheMYO15A gene contains 66 exons and encodes several alternatively spliced transcripts
in the inner ear [25]. The complete transcript consists of 3530 amino acids, including a long N-
terminal extension encoded by exon 2, an N-terminal motor domain, two light chain binding
IQ motifs, and a tail region containing two myosin-tail homology 4 (MyTH4) domains, two
band 4.1/ezrin/radixin/moesin (FERM) domains, a Src-homology-3 (SH3) domain and a C-
terminal class I PDZ-ligand domain [25,48]. Myosin XVa protein is mainly expressed in the
cuticular plate and stereocilia of the cochlear inner and outer hair cells [25], and is commonly
localized at the tips of inner ear sensory cell stereocilia [49]. Myosin XVa is involved in stair-
case formation of the hair bundle, which is indispensable to sound detecting and head move-
ment [48,49].

Homozygous p.C1779Y mutation in theMyo15 gene, a murine homologue of the human
MYO15A gene, cause profound sensorineural deafness, vestibular defects, and extremely short
stereocilia on the inner and outer hair cells in shaker-2mice [50].

In this study, the homozygous c.9316dupC variant in theMYO15A gene was identified in
the two affected siblings, but was absent in the unaffected parents and two hundred normal
controls. The homozygous c.9316dupC variant in theMYO15A gene co-segregated with the
phenotype of deafness in the ARNSHL family and might be the disease-causing mutation.

Both affected siblings display bilateral prelingual, profound sensorineural hearing loss, in
accordance with mostMYO15A-associated ARNSHL phenotypes [3]. Their language acquisi-
tions were hindered by profound prelingual deafness [7], thus they also present with dumbness
phenotypes. The audiometric tests of the IV:1 patient implied that the patient might have some
residual hearing, consistent with the previous report [46].

The novel c.9316dupC variant in theMYO15A gene, located in the second MyTH4 domain
[43], was predicted to result in a shift in the reading frame and a premature stop codon (p.
H3106Pfs�2) by MutationTaster [22], which leads to a truncated protein missing part of the
second MyTH4 domain, the second FERM domain and PDZ-ligand in the tail region of myo-
sin XVa (Fig 2). More than ten mutations have been reported in the second MyTH4 and
FERM domain of myosin XVa (summarized in Fig 2). The MyTH4-FERM region is involved
in formation of the Myosin XVa-whirlin-Eps8 complex [51] and microtubule binding [52].
Thus, the c.9316dupC variant in theMYO15A gene might interfere with formation of the Myo-
sin XVa-whirlin-Eps8 complex, which is indispensable for stereocilia elongation and sound
detecting [48,51].

Conclusion
The homozygous c.9316dupC variant in theMYO15A gene was the pathogenic mutation in
our ARNSHL family. Our study demonstrated that exome sequencing is a powerful molecular
diagnostic strategy for ARNSHL, an extremely heterogeneous genetic disorder. Our findings
extend the mutation spectrum of theMYO15A gene, and have implication in genetic counsel-
ing for the ARNSHL family.
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