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Creative exploration as a scale-invariant search on
a meaning landscape

Yuval Hart"23, Hagar Goldberg?#, Ella Striem-Amit® >©, Avraham E. Mayo® 23, Lior Noy?3 & Uri Alon??3

Can knowledge accumulated in systems biology on mechanisms governing cell behavior help
us to elucidate cognitive processes, such as human creative search? To address this, we
focus on the property of scale invariance, which allows sensory systems to adapt to envir-
onmental signals spanning orders of magnitude. For example, bacteria search for nutrients, by
responding to relative changes in nutrient concentration rather than absolute levels, via a
sensory mechanism termed fold-change detection (FCD). Scale invariance is prevalent in
cognition, yet the specific mechanisms are mostly unknown. Here, we screen many possible
dynamic equation topologies, to find that an FCD model best describes creative search
dynamics. The model further predicts robustness to variations in meaning perception, in
agreement with behavioral data. We thus suggest FCD as a specific mechanism for scale
invariant search, connecting sensory processes of cells and cognitive processes in human.
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ymmetries and invariances are powerful concepts in phy-

sics! 4, Seeking invariances has also been fruitful in biolo-

gical systems, especially in the study of how cells make
sense of their environment. For example, in order to search for
food, E. coli climbs gradients of nutrients using a sensory
mechanism that has scale invariance, responding to the fold-
change in inputs rather than to their absolute level>~”. This scale
invariance is known as fold-change detection (FCD): the dynamic
response (including amplitude and response time) is invariant to
multiplying the input by a scalar. Thus, the dynamics to a step of
signal from 1 to 2 is identical to a step from 2 to 4, because both
have twofold-change. FCD allows bacteria to optimally find
maximal nutrient levels despite varying level of attractant sources
(the source strength multiplies the input field by a constant, and
FCD normalizes this constant out)®. FCD mechanisms appear in
diverse cell signaling pathways’, as well as in human sensory
systems such as vision and hearing, explaining the well-known
Weber-Fechner and Stevens laws'®!! in which response is scaled
to the background signal.

FCD combines two general features of sensory systems: exact
adaptation in which the output returns to a baseline level that is
independent on background input signal, and Weber’s law, in
which the response amplitude depends on the relative change in
input and not the absolute change. FCD is more restrictive than
Weber’s law, since it requires the entire dynamic response—
including amplitude and response time—to depend only on
relative changes in input. Thus, FCD makes search dynamics
robust to a global change of scale®. FCD is a constraint that limits
the possible mechanisms at play to a small class of circuits with
mathematical homogeneity properties”!>13. In fact, only two
main classes of circuits - an incoherent feedforward loop and a
nonlinear integral feedback loop - provide FCD in known cases.

Based on its success in cells, one can ask if FCD mechanisms can
also help us understand human cognitive behavior. Scaling
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invariance has been suggested to occur widely in cognition—where
people’s behavior is nearly identical across several orders of mag-
nitude. Consequently, scale invariance was suggested as a shared
principle for human behaviors'4!°> such as perception!®!7, mem-
ory!8-20, decision making?!, reaction times?223, motor control23-2>,
and language generation®. For example, Brown and Chater dis-
cussed the prevalence of scale invariance in perceptual mechan-
isms!'® which yields Weber-Fechner and Stevens laws. They later
developed theories for memory dependence on timing and decision
based on sampling that produce similar scale invariance behaviors
in experiments!®2!, Other studies have shown that scale invariance
emerges also in neural activity on the network level?”?8 and in
specific areas such as the dopamine neurons of the reward sys-
tem29-31

One explanation of scale invariance in neural and behavioral data
portrays the cognitive process as a dynamical system at the edge of
criticality, where correlations across orders of magnitude yield
power-law-like behavior seen in scale invariant systems. It would be
important to complement this view with mechanisms similar to
biological physics, which employ feedforward and feedback loops
circuits>32, with no need to invoke criticality arguments.

Here, we test for FCD mechanisms in a human cognitive task,
creative search. We analyze experimental data on high-resolution
measurements of behavior and individual differences in the
creative foraging game (CFG) task®3. CFG is an online game in
which players search a space of geometric shapes made of ten
connected squares. Players create shapes made of 10 connected
squares, moving one square at a time, to find new shapes
(Fig. 1a). In their search, players are asked to collect ‘interesting
and beautiful’ shapes to a gallery (Fig. 1a). We recorded players’
entire trajectories including every square move, its timing, and
the gallery choices they made3334,

The creative foraging game showed the following salient features.
(i) Players’ trajectories consisted of two phases—exploration and
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Fig. 1 The creative foraging game as a paradigm to study creative search. a A schematic of the creative foraging game screen that players use to search for
shapes. Each step is a move of one square, keeping the ten squares connected. Players can choose shapes to a gallery (previously chosen gallery shape is
presented in the gray square area at the top right). b In exploitation phases, players typically collect shapes from distinct visual categories (e.g., ‘English
Letters’, ‘Animals’, ‘Hebrew Letters’, ‘Airplanes’, etc...). Each row of shapes is one exploitation phase of a player in the game. ¢ Variation between players
shows a high correlarion between each player's median durations of exploration and exploitation phases. Blue points indicate players’ median search

durations in the exploration-exploitation duration plane (in log steps). Topographic map indicates lines of equal density of exploration-exploitation durations
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exploitation. (ii) In each exploitation phase, players collect shapes
from a distinct visual meaning category (e.g., ‘English letters’, ‘Digits’,
‘Animals’, etc...). Different players find similar categories in their
search (Fig. 1b). (iii) Players leave an exploitation phase long before
the category is depleted, to start a meandering exploration phase.
Exploration ends when a new category is discovered, initiating a new
exploitation phase, and so on. (iv) Players’ exploration and exploi-
tation durations were highly correlated: players with long exploration
also had long exploitation phases. People thus varied along a one-
dimensional continuum between a mercurial strategy of quick-to-
discover a new category but quick-to-drop the category, and a more
thorough slow-to-discover/slow-to-drop behavior (Fig. 1c).

Known search processes such as simulated annealing and naive
Bayesian search cannot account for such patterns. Here, we asked
what mechanism can underlie such behavioral results, and suggest a
way to understand human search in this game using FCD concepts.

Results
The game induces multi-layered meaning landscapes. To
understand creative search dynamics, we start by constructing a
meaning landscape on the network of shapes. The network of shapes
describes all 36,446 shapes made of ten squares. Each node is a
shape, and edges connect shapes that can be reached by moving one
of the squares. Shapes have a median of 57 neighbors. Players moved
on this network of shapes, one edge at a time, during the game.
In order to form models of the search process, we began by
assigning meaning to each shape. We assigned to each shape a
meaning vector § with M dimensions. Each dimension corresponds
to one of the six categories most commonly found by players (Fig. 2).
For example, s; is the ‘English letters’ meaning dimension, s, is the
‘Digits’ dimension and so on. The categories were defined in ref. 33 by
clustering shapes found in exploitation phases by different players.
To define the meaning landscape, we assigned high-meaning
value s; to shapes in a meaning category i that were discovered by
many players (meaning value is proportional to the number of
players that found the shape). We call these shapes core shapes. For

Multidimensional
meaning
landscape

Attention focuses
interest on a specific
meaning dimension

example, core shapes in the digit category resemble prototypical
digits 5, 7, 9 and so on. The meaning assigned to other shapes
decays exponentially with their distance along the network from the
core shapes (Fig. 2a, b and see Methods and Supplementary
Information). Shapes close to two shapes with meaning categories i
and j are thus assigned meaning in both meaning vector
components s; and s;. Shapes far from any core shape have low
meaning in all dimensions (Fig. 2 and Supplementary Fig. 1).

Brain activity responds to relative meaning score induction.
We next assessed the correlation of human brain activity with the
present meaning landscape structure. In a functional imaging
experiment®® (fMRI, see Methods), we showed shapes with
varying meaning scores to 15 subjects while scanning their brain
activity (fMRI, see Methods and Goldberg et al.3%).

A parametric correlation analysis between brain activity and
the meaning score of shapes showed that specific areas in the
visual regions, most predominantly the lateral occipital cortex
(LOC), activate parametrically with the meaning score (Fig. 3a).
In a parallel study, Goldberg et al.3® asked subjects to rate these
shapes according to their iconicity value. This independent score,
ranked by participants of the brain study, showed high
correlation with the meaning score built from players of the
creative foraging game (Spearman correlation, r = 0.83, p < 1072).
Moreover, the parametric correlation of brain activity with the
iconicity score showed high overlap with the meaning score
parametric activity map (Supplementary Fig 2a, see ref. 3°). Thus,
our meaning landscape correlates with LOC activity of people
when presented with discovered shapes.

The brain activity measures allowed us to further ask what the
best function for induction of meaning between neighboring
shapes is, an exponential decay or a linear decay. In the
construction of the meaning landscape we used an induction
function of meaning that decays in a constant rate with each
distance unit (i.e., meaning decays exponentially with distance
d as A4 and meaning is measured on a relative scale), but
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Fig. 2 Players' dynamics induces multi-layered meaning landscapes. a A searcher walks on the network of shapes. The network of shapes consists of core
shapes (marked in red), gallery shapes (marked in green) and all other shapes (marked in blue). Shapes are connected by one move of a square. b The
meaning landscape built on top of the network of shapes. Close by core shapes typically belong to different meaning categories. ¢ The meaning landscape
is composed of a multi-layered space of meaning dimensions. Each shape has M dimensions of meaning, corresponding to M meaning landscapes which
show high meaning for shapes in the core of the corresponding category (‘airplanes’, ‘digits’, ‘letters’ etc...). The attention vector focuses the searcher to do

hill-climbing along a specific meaning dimension
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Fig. 3 Brain activity correlates with a fold decay of the meaning across shapes’ network. a Parametric mapping. Cortical activity maps of multi-subject,
random effect, parametric GLM analysis of meaning presented on an unfolded cortex (N=15), map is corrected for multiple comparisons, p< 0.05. Color
scale indicates t-values. Yellow-orange scale represents regions, which showed positive parametric relation with meaning scores (A non-parametric, t-max
correction analysis to control for FWER showed a t-value of 1.7 for a = 0.05, see Methods). Blue-green scale represents regions which showed negative
parametric relation with meaning scores. b Analysis of brain activity correlation strength (Inset, p-value) as a function of the decay factor from a core shape
(x-axis-decay factor 1, where meaning decays by 2@ where d is the distance on the network of shapes). Maximal correlation and p-value are attained at a
fold decay of about 1 =10 (see Supplementary Information for linear and power-law decay functions analysis). ¢ Correlations of LOC activity and meaning.
Scatter plots present the relation between the averaged meaning of blocks (x-axis) and the averaged brain activity (N =15, normalized beta weight, y-axis)
in bilateral LOC. Each dot represents one block. Spearman correlation; left LOC, r = 0.65, p < 0.0002. right LOC, r=0.48, p<0.02

other decay functions are possible as well. To that aim, we
repeated the procedure of meaning landscape construction with
a linear decay function (i.e., meaning decays with distance by
-Ad, hence meaning is measured on an absolute level). We find
that brain activity is best explained by the exponential decay
model with a decay rate of about A = 10 (see Fig. 3b, Methods).
With A =10, beta activity in the LOC area correlates sizably
and significantly with the meaning score of shapes’ blocks
(Spearman correlation, left LOC, r = 0.65, p < 0.0002. right LOC,
r=0.48, p < 0.02, Fig. 3c). These findings suggest that LOC brain
activity responds to relative changes rather than absolute levels
of meaning induction. What mechanism might then explain
people’s creative search on this meaning landscape?

Creative search model with attention and saturation variables.
We next built dynamic models of the search process on the
network. Our goal is to capture the basic experimental obser-
vations (features (i)-(iv) above): existence of exploration-
exploitation phases, collection of shapes from the same
meaning category in each exploitation phase, dropping of a
category far before it is depleted to search for new categories,
and variation between players along a mercurial-thorough
continuum.

In the model, an agent walks on the network of shapes, seeking
to climb gradients of the meaning landscapes. To avoid being
stuck on a local maximum, the walk is self-avoiding.

We begin with a naive hill-climbing model in which the
searcher moves to the neighbor with highest meaning in any

dimension. The next shape s(¢ + 1) is thus

g(t + 1) = argmaX,c) Neighborsg(t) (1)

This model disagreed with the experiment: Instead of finding a
sequence of shapes from the same category (e.g. digit, digit, digit)
before moving to a new category, the hill-climbing model resulted
in sequential shapes from different categories (e.g. letter, airplane,
digit), etc. (Fig. 4a). It thus had no exploitation phases focused on
a single category. The failure is due to the fact that highest
meaning shapes are interleaved on the network of shapes: close to
a shape with high meaning in one category are high-meaning
shapes from other categories.

The agent thus requires a mechanism to stay in one category. To
supply this, we added an attention variable, a;(t), to the agent, to
focus moves to a single meaning dimension once a meaning
threshold is crossed. If attention is below threshold T}, a random
neighbor is chosen. If attention in a certain dimension crosses the
threshold, the shape with most meaning in that dimension § - a is
chosen

max a(t) < T,
arg MaXc(4) Neighbors §>(t) : ?(t) max Z)(t)>T1

(2)

. Random neighbor
s(t+1) =

This allows the agent to search for new shapes but only
on the meaning dimension in which attention is currently
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Fig. 4 Attention and saturation variables capture behavioral exploration-exploitation. a Search with no attention jumps between categories. b Search with
no saturation is stuck at a single category. ¢ Search with both attention and saturation variables can produce human-like search. a-c Line colors represent
different meaning dimensions. d The general circuit for creative search—shapes with meanings induce attention in a specific meaning dimension to grow,
attention (@) can increase its own levels, inhibit attention in other meaning dimensions, and above a certain threshold attention levels increase saturation
(b) which in turn, inhibits attention. Solid lines are obligatory connection of the circuit. Dashed lines mark possible connections between variables. e An
FCD circuit (see Egs. (5) and (6)) with different parameters (red dots) captures similar dynamics of the exploration-exploitation plane as the behavioral
data (marked by lines of equal density of players’ exploration-exploitation durations). The correlation of the simulated data is similar to the behavioral data
(FCD: Spearman correlation, r=0.71, p <10~5, Behavioral data: Spearman correlation, r =0.73, p<10~5)

high—the attention is like blinders that keep other meaning
categories from affecting the dynamics. We reasoned that the
dynamics of this attention vector are such that attention
increases according to the meaning of the current shape, and
self-amplifies to lock the search and ignore nearby meaning
peaks except for a single dimension of meaning. Thus, for the
attention component at each dimension we have: a;(t 4+ 1) =
a;(t) + a;s; - y,a; (here y, is the reduction rate of attention).

This type of model yielded discovery of a single meaning
category at a time (Fig. 4b)—for example, digit, digit, digit.
However, unlike human players, the agents rarely escaped from
this category and instead depleted all possible digit shapes.
Thus, we have exploitation, but there is no exit from the
exploitation phase.

To allow exit from the exploitation phase, we must include a
second variable, that inhibits the attention vector once enough
meaning has been collected. Previous work in the field of
semantic search30~3% suggest that people switch between
exploration and exploitation when the expected exploitation
gain of the current category is equal to the expected gain of
searching for new categories, i.e. people switch to exploration
when the exploited category is depleted of words. In our
paradigm, we find that players leave shape categories well
before they are depleted® (see Supplementary Fig. 3). Thus,
creative search seems to transition from exploitation to
exploration upon depletion in the novelty of shapes rather

than the number of shapes remaining in a given category. We
therefore term the parameter driving the end of exploitation as
(novelty) Saturation (marked by the vector b;(¢)).

When enough shapes from a category have been found,
attention is shifted to new categories by the increase in the
saturation variable. Saturation begins to rise when attention
crosses a threshold T,. Saturation therefore has dynamics like
b; (t+ 1) =b; () + O (a; - T»)a;s; - ypb;. Saturation then inhibits
attention, for example: a; (f+1)=a; (f) + a;sy/b; - y,a;. This
process allows the searcher to return to exploration and discover
new meaning dimensions (Fig. 4c).

We conclude that for a model to capture the behavioral
observations it needs the following basic features: 1. Two
internal variables, attention and saturation 2. Both attention
and saturation accumulate with meaning. 3. Saturation inhibits
attention (Fig. 4d).

While the specific model discussed so far resembles a
feedforward loop architecture, the general framework of
meaning-attention-saturation can be implemented by other
possible models. In order to scan a wide space of possible
models, we borrowed a technique from scanning of circuits in
biological physics!340-44 We constructed a framework with all
possible signs of interactions between meaning, attention and
saturation. We use the update rule (2). Attention rises with
meaning and is inhibited by saturation. This class of models has
two dimensionless parameters: the meaning accumulation rate
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g and the ratio of thresholds « = T'/T, (see Fig. 4d):

(e ) =af0 +g(ansny (520 ) - angn (st ) )

b1+ 1) = Bi(0) + O(a, - a5 (57 )

Wiz Wi W q e
13 We 15 1
a; ’s; b, 5

3

(4)

1 1

where w; =0, + 1, indicates activation, inhibition or no interac-
tion between the different components of the search. The term
Zaia in Eq. (3) represents the relative attention spent in the

specific meaning dimension i, as in neuronal models*>~48, Each
choice of a set of w; is a specific realization of the general model,
each such realization we term a circuit. In total, there are about 43
million different potential circuits. The number of circuits
reduces to 6561 when we demand that meaning increases both
saturation and attention, that saturation inhibits attention, and
that saturation does not decay, so that searchers do not return to
meaning dimensions already exploited (see Methods).

FCD circuits capture creative search behavioral dynamics. We
now invoke the scale invariance assumption for the search
behavior. We scanned which of the 6561 circuits has FCD. A
circuit is FCD if multiplying the meaning landscape scores by a
scalar keeps the dynamics of the search unchanged. Our scan
indicated that out of the 6561 circuits only 64 circuits show scale
invariance. These circuits are all realizations of the FCD circuits
known from cell-based circuits. In these FCD circuits, search is
inherently robust to the absolute levels of the meaning scores, and
senses only fold-changes of meaning. Below, we compare the 64
FCD circuits with 64 non-FCD circuits that demonstrate similar
dynamics and have similar structure (see Supplementary Tables 1
and 2).

All circuits (both FCD and non-FCD) consist of two internal
variables (attention and saturation), a fixed meaning landscape,
and 2 model parameters (¢ and «). Therefore, the difference
between circuits lies in the circuits’ topology (i.e., the connections
between the different variables) while the number of variables and
parameters is kept identical between different circuits.

To gather statistics on the dynamic behavior of the circuits, we
simulated each circuit 25,000 times. For this purpose, we sampled
500 values of the parameters g and « log-uniformly from a wide
range of values: ae[1,1000], ge[0.01,100]. For each pair of (g, &)
we performed 500 runs with different random seeds (Methods).

First, we analyzed how robust is the exploration-exploitation
behavior of each circuit by calculating the fraction of runs across
(g, a)-parameter-space that show distinct periods of exploration
and exploitation and cover at least 3 out of the 6 meaning
dimensions of the simulated meaning landscape. FCD circuits
showed higher probability for exploration-exploitation behavior,
with all ten leading circuits being FCD (FCD median percentage
of successful runs=61%, 95% CI=[57%, 66%], non-FCD
median percentage of successful runs=50%, 95% CI=[44%,
58%], Mann-Whitney test U= 2377, p=0.002, effect size =
0.33). This finding suggests that FCD circuits capture better the
observed human exploration-exploitation behavior.

To further discern which circuit topology best describes the
observed human behavior, we evaluated each circuit for the
probability that its search dynamics produce exploration-
exploitation durations that fall inside the convex hull of the
experimental variation between different players’ exploration-

exploitation durations (Fig. 4e). This probability measure
indicates the ability of each circuit to capture the individual
variations between human players by means of different model
parameters.

We find that 6 of the 9 leading circuits are FCD (see
Supplementary Table 3). The leading circuit is an FCD circuit
with the following dynamics (Egs. (3) and (4) with parameters—
W1, Wes Wy We, W1 1,W12 = 0,Wa, Wy, Ws,Wo,Wig = 1wz = —1):

e+ =a() +g(3 - a)

(5)

b;(t +1) =bi(t) + O(a; — a)as; (6)

Its best counterpart out of the non-FCD circuits is given by
(Egs. (3) and (4) with parameters—w,,ws,Wws,Wg,Wg,Wo,W;1,W15 =
0,W2,W4,W7,W10 = 1)

a(t+1)=a(t) + g(siﬁ - bi>

1

(7)

b,(t +1) =bi(t) + O(a; — a)s; (8)

We next preformed a model selection test for the different
complexity incurred by the different topologies of the circuits. We
used the Bayesian Information Criterion (BIC) to balance
between model fidelity and complexity (similar results are found
using the Akaike Information Criterion). We consider each
interaction between variables in the circuit as a degree of freedom
and compute the likelihood of each circuit by calculating the
probability of the human behavioral data given the distribution
created by simulations of the circuit. We find that among the ten
leading circuits, seven circuits are FCD circuits and only three are
non-FCD. The leading circuit is the same circuit presented in
Egs. (5) and (6) (see Supplementary Table 4).

The main difference between the two circuits above is that in
the FCD circuit, different meaning-landscape scales show similar
dynamics since a scalar can be gauged out from the circuit’s
equations. This invariance to scale occurs because the saturation
variable b; normalizes out meaning s; in Eq (5). In the non-FCD
case, the system dynamics is affected strongly by multiplying the
meaning landscape by a scalar in each meaning dimension. An
analytical treatment of the leading FCD circuit dynamics is
derived in Supplementary Note 4. Below we discuss simulation
results of the model running on the meaning landscape.

FCD circuits capture the exploration-exploitation correlation.
We analyzed the 25,000 simulations of the leading FCD circuit to
see if it displays the correlation observed in players’ data between
exploration and exploitation durations, which fall along a line-
like continuum. We find that the variation between human
players is captured by a single model parameter, g, the rate of
meaning accumulation (see Fig. 5). The accumulation of meaning
shortens the duration of the exploration phase and speeds the exit
from a specific meaning dimension. Thus, different values of g
allow modeling different ‘search personalities’ ranging from
mercurial to thorough (Fig. 5). Similarly, the perpendicular axis of
variation is primarily affected by the other parameter «, the
normalized threshold for saturation to start accumulating (Fig. 5).
We note that since FCD circuits are scale invariant, g is the only
time-scale in the circuit, regardless of the average meaning score
of different meaning dimensions, and hence naturally accounts
for the correlation between exploration and exploitation phases.
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Fig. 5 FCD model captures the variation between individuals in the durations of exploration-exploitation. In the FCD circuit (Egs. (5) and (6)), a single
parameter, g, the rate of meaning accumulation, sets the correlation between durations of exploration and exploitation. Shown are different simulation runs,
grouped by different a values, while g values vary according to the color bar. Small g values show a thorough slow-to-discover/slow-to-drop behavior, while
large g values show a mercurial quick-to-discover/quick-to-drop behavior, both as seen in the behavioral data. The second parameter, «, the attention

threshold to saturation increase, controls the perpendicular principal component of behavioral data variation (see Supplementary Fig. 4, for similar

simulation of the non-FCD circuit, Egs. (7) and (8))

FCD dynamics are robust to variations in meaning perception.
We next asked what might be the benefits of search dynamics
governed by an FCD mechanism compared to a non-
FCD mechanism? One possible answer is that FCD circuits
provide search dynamics that is invariant to multiplying each
different meaning dimension by a different scalar. We tested
these predictions against the natural variations between meaning
dimensions in the behavioral data and against larger variations
induced in simulations.

A measure for the robustness of circuit dynamics to different
meaning dimensions is the variance in exploration and exploita-
tion durations (Methods). For both FCD and non-FCD circuits
we find a strong correlation between phase duration and its
variance (FCD, Spearman correlation r=0.95, p<10~>, non-
FCD, Spearman correlation r = 0.84, p < 107°). As predicted, the
FCD circuit shows smaller variation compared with the non-FCD
circuit (FCD, slope=0.74, 95% CI=[0.71, 0.77], non-FCD,
slope = 1.04, 95% CI = [1, 1.08], p < 0.001, Fig. 5a). Furthermore,
the variation observed for the FCD circuit is close to the variation
observed in the behavioral data (slope =0.65, 95% CI=[0.61,
0.69], Fig. Ga).

We next compared the sensitivity of search dynamics to a
global change in the meaning landscape for FCD and non-FCD
circuits. The global change was introduced by multiplying each
meaning dimension by a random scalar, sampled uniformly in log
space between 1072 and 102, thus creating large differences in the
average meaning scores in different meaning dimensions (but
maintaining their relative meaning within a category). For both
FCD and non-FCD circuits we run for each parameter set of
(g ), 50 simulations of 200 moves each (Methods). We find that
FCD search dynamics were robust to these global changes
(Fig. 6b) whereas search dynamics of the non-FCD circuit
changed drastically (Fig. 6¢c). To quantitate these changes, we
calculated the change in median durations of exploration and
exploitation. This change is the distance in the exploration-
exploitation plane between the original point (simulation runs
before the global change) and the shifted point after meaning
rescaling. We find that the median distance in non-FCD is more
than 2.5 times larger compared with FCD search (FCD, median
arrow norm =2, 95% CI=[1.4, 2.2], non-FCD, median arrow
norm = 5.2, 95% CI = [4.1, 6.3], Mann-Whitney Test, U= 1207,
p <107, effect size = 0.64, Fig. 6d and Supplementary Fig. 5).

Notably, due to the large impact of the global meaning scaling
on search dynamics in the non-FCD case, parameter sets initially
providing search dynamics that lie in the convex hull of the

human behavioral data are three times more likely to yield an
exploration-exploitation relation that does not reside in the
behavioral convex hull after the random scaling (FCD, %exit =
13%, 95% CI=[7%, 21%], non-FCD, %exit =45%, 95% CI=
[33%, 56%], see Fig. 6b, c).

The phenomenon of scale invariance has been previously
linked with the concept of criticality. Evidence of critical-like
neuronal activity was shown in in-vitro tissues recordings*’,
in vivo>?, and fMRI data during rest and task performance?8>1->2,
These activities show the criticality hallmark of a 1/f# power
spectrum, indicating activity at many temporal and spatial
scales?8°354, Similar to FCD mechanisms, systems at criticality
were shown to increase the system’s dynamic range®”4%>, Yet,
there are important differences between the two scale invariant
mechanism classes. First, a system at criticality inherently has
many temporal scales. Therefore, it achieves a large dynamic
range by virtue of all the temporal scales that already exist in the
system. In contrast, an FCD circuit has one time scale and the
circuit exactly adapts to the current scale of the input. Thus, a
system at criticality would exhibit many time scales in its
exploration-exploitation search dynamics, which is at odds with
the well-defined exploration-exploitation time scale shown in
FCD circuits and in our behavioral data (Supplementary Fig. 6).

A second difference between criticality and FCD is that a
system at criticality with its long memory and correlations is
more susceptible in its search dynamics to global scale changes
and noise in parameters or inputs (see Supplementary Fig. 7). In
contrast, an FCD circuit shows robust exploration-exploitation
dynamics over a wide range of parameter sets and global scale
changes.

Discussion
Scale invariance plays an important role in cognition, where
many processes exhibit similar behavior over several orders of
magnitude!4-16:19  Scale-invariant systems exhibit a large
dynamic range, which allows them to respond accurately even if
their inputs change drastically. However, there are few circuit-
mechanisms that can explain scale invariance in behavior. Here,
we show that creative search demonstrates scale invariance
and suggest a specific mechanism, fold-change detection (FCD),
as a governing design principle of creative search, narrowing
down the set of possible circuits to a very few.

Our study shows that creative search can be modeled as a scale
invariant search on a meaning landscape. This search mechanism
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Fig. 6 FCD dynamics are robust to variations in meaning perception. a The variance of the FCD circuit (blue) is significantly lower than that of the non-FCD
circuit (orange), and aligns with the behavioral data (red) (FCD (blue): slope = 0.74, 95% CI =[0.71, 0.77], non-FCD (Orange): slope =1.04, 95% Cl =
[1, 1.08], Behavioral data (red): slope = 0.65, 95% Cl=[0.61, 0.691). b, ¢ FCD circuit dynamics are robust to large variations in meaning dimension’s
average meaning score, while the non-FCD circuit dynamics change drastically. Arrows indicate the change in dynamics upon a random scaling of meaning
dimensions for FCD response (blue arrows, b), and non-FCD response (red arrows, ¢). d Average arrow length in the case of b and ¢. FCD, median arrow
norm =2, 95% Cl =[1.4, 2.2], non-FCD, median arrow norm =5.2, 95% Cl = [4.1, 6.3], Mann-Whitney Test, U=1207, p<10~5, effect size = 0.64.
Center line in each box is the median value, box bounds are 25%, 75% quantiles, and whiskers show max and min values of data

is different from known search paradigms such as simulated
annealing and naive Bayesian inference search®. It offers an
effective temperature that rises with the recent success of the
search (saturation variable) and a self-focusing mechanism
(attention variable) that allows exploration of one specific
meaning dimension at a time. Thus, the focus of the search
shrinks and expands in exploitation and exploration phases in an
organic way according to the progress of the search. This search
process allows humans to achieve a difficult task—quickly finding
meaningful solutions in a high-dimensional space of possibilities.
Due to scale invariance, different players with different basal
meaning attribution to shapes exhibit a common search pattern,
consistent with our experimental results. A single parameter, the
rate of meaning accumulation (g), explains the variation in
players’ exploration-exploitation durations.

FCD in creative foraging predicts a search that is indifferent to
the absolute scale of perceived meaning. Therefore, regardless of
the content of the search, FCD ensures robust detection of the
maxima of the sensed signal®!3. Thus, individual search strategies
such as thorough explorations or mercurial discovery can be
maintained despite differences in the basal meaning score of the
meaning dimensions (e.g., search on the ubiquitous ‘digits’
dimension vs. a search on the scarcer ‘airplanes’ dimension).
Lastly, FCD sensing allows comparing between different meaning
dimensions on a ratiometric basis’. A ratiometric comparison for

different categories was demonstrated in other cognitive abilities
such as associating tones with crime severity®’, weighing different
types of rewards®, comparing performances at different domains
(e.g., different sports and musical performances) and predicting
future success from previous performance at other tasks (e.g.,
undergraduate GPA from 1st grade reading skills>”).

We find that scale-invariant FCD circuits are more likely to
show the observed exploration-exploitation behavior than non-
FCD circuits. To understand why, we note that FCD circuit
search dynamics depend only logarithmically on the parameters
(g a), thus maintaining a strong correlation between exploration
and exploitation (see Figs. 5 and 6), whereas non-FCD circuits
carry a larger change in response to changes in (g, ). Further-
more, since FCD search dynamics are robust to the global scale,
the order of entry to different meaning dimensions does not
change the exploration-exploitation dynamics, whereas in non-
FCD circuits, the search can show a finite exploration-
exploitation on one meaning dimension, but diverge on other
meaning dimensions which differ in their basal meaning scale.

Recent studies have pointed to criticality as a possible
mechanism for scale invariance in neuronal activity*>»>0, Here, we
suggest a complementary class of mechanisms, FCD circuits,
which provides scale invariant search dynamics. These two
classes have different hallmarks that can be seen at the behavioral
level. First, an FCD circuit carries a single well-defined time
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scale for search dynamics (enabling the variation along a mer-
curial/thorough search continuum due to the variation in this
time scale between players). In contrast, criticality entails many
time scales in activity, which predicts wide variability in
exploration-exploitation dynamics within a single player (which
are not observed in the human behavioral experiments). Second,
due to its long correlations and memory, a system at criticality
may respond more slowly to changes in the input compared with
the fast response time of FCD circuits. The exact adaptation of
FCD circuits drives its increased dynamic range, whereas systems
at criticality achieve dynamic range by fluctuations at all scales of
activity?74%3>, Lastly, while FCD search dynamics are robust to
fluctuations in the meaning landscape, robust to global changes in
meaning scaling, and robust to changes in the circuit’s para-
meters, a system at criticality may exhibit high sensitivity to noise
in the inputs, changes of parameters and global changes in the
input scale (but see also ref. *3).

The search for meaning through a network of shapes is akin to
previous work on search in semantic networks>*~¢2. These studies
support Mednick’s theory of flat association curves®> by a com-
putational analysis on networks of word associations®®. Similarly, in
our creative search model the parameter g, the accumulation rate of
meaning, explains the variations in people’s association curves as
expressed by their position on the exploration-exploitation corre-
lation line. Thus, an interesting application of our results is testing
whether in semantic search the exploration-exploitation times of
different players are also correlated and span a continuum. A
further test is whether semantic search dynamics are invariant
across word categories, suggestive of an underlying FCD circuit.

An important question raised by our findings is which brain
networks can implement an FCD circuit to support human
creative search. A compelling answer may come from functional
connectivity analysis that maps the relations between different
brain networks during rest and task performance in creativity
tasks®%01.64 In particular, Beaty and colleagues®®®! show that
three main brain networks co-activate during a creativity task
(Alternative Uses Test, AUT)—the default network, salience
network, and executive control network. The functions of these
networks seem to correspond to the three components of
the proposed creative search model. The default network,
involved in imagination, future-thinking, and assigning internal
meaning®%°, can drive the values of shapes’ meaning. The sal-
ience network, involved in bottom-up attention to external and
internal information and dynamic tuning between the default and
executive control systems®>¢7 can drive the attention variable in
creative search. Lastly, the executive control network, involved in
evaluation of the creative process®®~79, can drive the saturation
variable. Notably, these co-activated networks antagonize each
other in other cognitive tasks. This type of paradoxical activity,
where the system’s components both drive and repress each other
is akin to the incoherent FFL implementation of FCD>11-13,

FCD may be also related to other systems in the brain. For
example, studies of dopamine neurons in the reward system point
to a sensing mechanism that perceives relative increase in rewards
rather than absolute reward levels in static and dynamic com-
parisons?*-31, Future studies can assess brain activity changes
during the game itself, studying the correlation of activity in
different brain regions during the game, in order to compare with
the model’s predictions of attention and saturation variables, to
attempt to locate brain dynamics that correspond to the dynamics
of these variables.

The current model does not account for possible differences in
the meaning accumulation rate for different meaning dimensions,
nor for cultural and context dependent differences that may be
critical to the understanding of individual creative search trajec-
tories. Introducing a different meaning accumulation rate per

meaning dimension can account for these modifications. More-
over, our current model is deterministic, ignoring noisy percep-
tion, and stochastic effects on our attention buildup and decision
making. Future models can explore the effects of noise and sto-
chasticity on creative foraging.

Taken together, our results suggest a scale invariant fold-
change detection mechanism as a sensing mechanism for robust
search that spans organisms from E.coli chemotaxis to
human creative search.

Methods

Ethics statement. All experiments in this study adhere to the regulations and
guidelines on the use of human subjects. The behavioral experimental protocol was
approved by the Hebrew University IRB committee, and the brain activity
experimental protocol was approved by the Weizmann Institute of Science ethics
committee. All participants gave their informed consent to participate in the
experiments.

Meaning landscape construction. Every meaning category has a set of unique
shapes that are not shared with other categories, these shapes are defined as core
shapes. To construct the meaning landscape, we assign core shapes meaning scores
in their specific dimension, by the amount of times that shape was chosen as a
gallery shape by players. The more times a shape is chosen, the more meaning it
has in that meaning dimension. Next, each core shape acts as a meaning source,
spreading meaning to neighboring gallery shapes with an exponential decay of
1074, where d is the minimal distance between the source shape and the receiving
shape on the network of gallery shapes. Finally, each gallery shape acts as a source
for all other shapes on the network of shapes with the same exponential decay of
10~%, where d, is the minimal distance between the source shape and the receiving
shape on the network of all shapes up to three shapes away. We find that every
shape is at most three steps away from a gallery shape.

Pruning general model's plausible circuits. There are 316= 43,046,721 possible
circuits in the general model. This number reduces to 177,147 under the
assumptions that going back to a previous category is not allowed (hence b; does

) ), and that saturation (b;)

not decay, removing the term a;"*s"*b;"** ia.
dynamics should be activated by meaning, to make sure it represents meaning
accumulation (hence w;o = 1). Preventing exponential growth of saturation by its
own levels (setting w;; = 0), assuming saturation cannot increase attention levels
(restricting (ws,w;) = (—1,0),(0,1),(—1,1)), and assuming that meaning must con-
tribute to increasing attention levels (setting w, = 1) results with a further reduc-
tion to 6561 circuits.

The model search is robust to model parameters. In order to estimate para-
meter sensitivity, we scanned a range of 3-4 orders of magnitude in the model’s
parameters. We randomly chose parameters from a log-uniformly distributed
parameter range: ae[1,1000], ge[0.01,100]. We ran the model with 500 different
parameter sets, each parameter set 500 times, with a cutoff of 500 steps per run.
Each simulation produced a vector of meaning scores for each meaning dimension.
We defined exploitation durations as the number of steps between the event of
crossing the meaning threshold to the event of meaning score returning to
threshold. Next, we defined exploitation durations as the number of steps between
end of an exploitation phase to the start of the next one. A successful run is defined
as a run where the simulated searcher finds at least three different meaning cate-
gories and that the exploitation phases do not overlap, i.e., there is a positive
exploration phase duration. We find that for a large set of parameters, the models
exhibit an exploration-exploitation behavior within the first 500 steps (see Sup-
plementary Table 1). In particular, when measuring the median exploration and
exploitation phase durations in the model and comparing it with the convex hull
of players’ data, parameters range can vary over a 100-fold range: FCD model:
ael1, 170], ge[0.1, 2], non-FCD model: ae[3, 856], ge[1, 93].

Calculation of phase duration-variance relation. We compared the variability in
exploration and exploitation durations in the FCD and non-FCD circuits. For each
parameter set (g, «) that is in the convex hull of the behavioral data (93 (g, &) pairs
for the FCD circuit and 102 (g, «) pairs in the non-FCD circuit) we calculated the
median and median deviation in exploitation duration and exploration duration
across 500 simulations. We next plot the relation between the square root of the
sum of variances (1/0% + %) vs. the mean of the median durations (3 (fy + tr)).
For a similar result that computes the geometric mean of phases’ duration, see
Supplementary Fig. 5).

Simulations of large variations in averaged meaning score. We compared the
FCD circuit and the non-FCD circuit response to large changes in the average score
of each meaning dimension. For each parameter set (g, «) (93 FCD, 102 non-FCD)
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we created two types of simulations—First, we ran 50 simulations with the original
meaning landscape and different random seeds (resulting in different search tra-
jectories). Taking the median of exploration and exploitation durations over the
50 simulations defined the reference point in the exploration-exploitation plane.
Next, we ran 50 simulations with the original meaning landscape rescaled by a
random vector, which was sampled log-uniformly between [0.01, 100]. Taking the
median of exploration and exploitation durations and computing the median
response across the 50 simulations defined the shifted point in the exploration-
exploitation plane. The distance between the shifted point and the reference point
determine the scaling effect for that specific parameter set.

Brain activity measurements. Participants: Seventeen healthy right handed sub-
jects (ages 28 +3.8, 10 females) participated in the fMRI experiments. Fifteen of
them participated in the full set-up of the experiment and their results are pre-
sented here. Fourteen filled a beauty, iconicity and weirdness evaluation ques-
tionnaire>® post the fMRI scan and their results are presented in Supplementary
Fig. 2.

Stimuli: During the fMRI scan the created shapes were presented in blocks
lasting 9s, followed by a 9s fixation screen. Each block consisted of nine images (1 s
each): eight images in light green and one image in dark green. To reduce scan
novelty effect, an extra block (which was not analyzed) was added to the beginning
of each experiment, 29 blocks were presented in total. Each subject watched the
same sequence of blocks. In the task, subjects were required to classify the stimuli
according to color; light green (press 1) or dark green (press 2).

MRI data acquisition and preprocessing: The data were acquired on a 3 Tesla
Trio Magnetom Siemens scanner at the Weizmann Institute of Science. Functional
images of blood oxygenation level dependent (BOLD) contrast comprising of 46
axial slices were obtained with a T2*-weighted gradient echo planar imaging (EPI)
sequence (3 x 3 x 3 mm voxel, TR= 3000 ms, TE= 30, flip angle = 75°, FOV
240 mm) covering the whole brain. Anatomical images for each subject were
acquired in order to incorporate the functional data into the three-dimensional
(3D) Talairach space using 3-D T1-weighted images with high-resolution (1 x 1 x
1 mm voxel, MPRAGE sequence, TR = 2300 ms, TE = 2.98 ms). The first 7-images
of each functional scan (including the extra initial block and rest) were discarded.
Functional scan preprocessing included 3D motion correction and filtering out of
low frequency noise (slow drift), and spatial smoothing using an isotropic Gaussian
kernel of 6 mm full-width-half-maximum (FWHM). The functional images were
superimposed on 2D anatomic images and incorporated into the 3D data sets
through trilinear interpolation. Statistical analysis was based on a general linear
model in which all stimuli conditions were defined as predictors, and convolved
with the hemodynamic response function (HRF).

Data analysis: To relate blocks' meaning to brain activity, a parametric GLM
analysis was conducted. In this multi-subject, random effect analyses each block of
shapes received a weight according to its meaning score, which was represented in
the model as differential amplitude of the BOLD signal.

T-max correction analysis: To control for the Family-wise Error Rate (FWER),
we repeated the parametric GLM analysis 1000 times with randomly permuted
values of the meaning scores. We accumulated the ¢-values across the 1000 repeats
and voxels to calculate the ¢-value distribution. We find that the ¢-value at « = 0.05
was t-value = 1.7, which is lower than the t-values of the parametric map (see
Fig. 3).

Fitting of decay functions to brain activity data. To find the best description of
the meaning landscape, we calculated the correlations with brain activity data in
the bilateral LOC region of human subjects (LOC was defined independently using
an external localizing task3®). We built three different versions of the meaning
landscape, where each meaning landscape induces meaning to neighboring shapes
in a different way. First, we used the same meaning landscape construction process
as described above, where meaning decays by a constant factor with each step to
a neighboring shape, f;(1) = A~9. Thus, shapes one move away decay by a factor of
A, shapes two moves away decay by a factor of A% and so on. We assigned for each
shape in the brain imaging experiment its maximum meaning score across
meaning dimensions, and then calculated the Spearman correlation and p-value for
changing values of A. We find that maximal correlation is achieved at A ~ 10 (see
Fig. 6¢). The maximal correlation plots are shown in Fig. 6d. We repeated the same
construction process for a linear decay function f,(1) = —dA. We find that this
decay function results in poor and non-significant correlations for positive
meaning values.

Code availability. Custom code for analysis of behavioral data and simulation of
circuit topologies was written in Mathematica 11.3 (Wolfram) and can be found in
the following link—https://github.com/uvhart/scaleinvariantcreativesearch. The
analysis file contains: 1. Behavioral data analysis code, 2. FCD and Non-FCD
circuit simulations code 3. f{Gn and fBm simulations and analysis code 4. Analysis
of BIC/AIC scores for the FCD and non-FCD circuits compared to the behavioral
data.

Brain data analysis was done using Brain Voyager QX 2.6 software package for
brain imaging data analysis.

Data availability
Behavioral data is available at https://github.com/uvhart/scaleinvariantcreativesearch.
Brain activity data will be available from the authors upon request.
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