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Abstract: An effective feature extraction method is key to improving the accuracy of a prediction
model. From the Gene Expression Omnibus (GEO) database, which includes 13,487 genes, we obtained
microarray gene expression data for 238 samples from colorectal cancer (CRC) samples and normal
samples. Twelve gene modules were obtained by weighted gene co-expression network analysis
(WGCNA) on 173 samples. By calculating the Pearson correlation coefficient (PCC) between the
characteristic genes of each module and colorectal cancer, we obtained a key module that was
highly correlated with CRC. We screened hub genes from the key module by considering module
membership, gene significance, and intramodular connectivity. We selected 10 hub genes as a type of
feature for the classifier. We used the variational autoencoder (VAE) for 1159 genes with significantly
different expressions and mapped the data into a 10-dimensional representation, as another type of
feature for the cancer classifier. The two types of features were applied to the support vector machines
(SVM) classifier for CRC. The accuracy was 0.9692 with an AUC of 0.9981. The result shows a high
accuracy of the two-step feature extraction method, which includes obtaining hub genes by WGCNA
and a 10-dimensional representation by variational autoencoder (VAE).

Keywords: weighted gene co-expression network analysis; variational autoencoder; colorectal cancer;
hub genes; classifier

1. Introduction

Colorectal cancer (CRC) is a malignant tumor that ranks third for incidence and second for
mortality worldwide [1]. Despite advances in medical technology, most CRC patients go to the hospital
because of pain when the cancer is in the middle and late stage. These statistics call for an effective
early diagnosis and novel prognostic markers for CRC. Classification models for an accurate screening
and diagnosis are required for precision medicine [2]. An effective feature extraction method can
avoid the problem of overfitting [3]. The feature extraction method is a key factor which affects the
performance of the classifier so as to improve the accuracy of microarray gene expression datasets in
predicting CRC.

Researchers have presented many methods for predicting CRC, such as SVM, logistic regression
model, discriminative deep belief networks (DDBN), and so on. Zhao et al. selected factors such as
the weight, tumor type, and tumor grade as the classification features of a classifier based on logistic
regression (LR) and a support vector machine (SVM) [4]. Agesen et al. selected the gene expression
data of 13 genes closely related to CRC as classification features to construct a ColoGuideEx classifier,
so as to achieve the effective classification of stage II colorectal cancer [5]. Gabere et al. used the gene
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expression data of 30 genes closely related to CRC as classification features of SVM for predicting
CRC, the accuracy of classifier meeting 0.95 [6]. Cubiella et al. applied 11 factors, such as age, gender,
faecal haemoglobin, and carcinoembryonic antigen to a logistic regression model for screening CRC [7].
Karabulut et al. constructed discriminative deep belief networks (DDBN) with gene expression profile
data for colorectal cancer prediction [8]. Yong et al. applied the miRNA expression profile data of
differential genes in cancer tissue and blood samples to a logistic regression model for predicting
CRC [9].

To screen and diagnose cancer, researchers usually focus on genes whose expression are
significantly different between cancer samples and normal samples. Pathogenic cancer genes are
usually correlated, and the occurrence of cancer is the result of an abnormal expression of multiple
genes [10]. If the expression of certain genes in a physiological process is similar between different
tissues, then these genes are functionally related, and thus they can be treated as a whole group [11].
Gene modules are made by grouping genes according to relevance, and genes with a higher correlation
were, accordingly, classified as one type by weighted gene co-expression network analysis (WGCNA).
WGCNA is similar to cluster analysis, but WGCNA is a more biologically significant statistical method.
WGCNA can be used for finding clusters (modules) of highly correlated genes. It can also be used to
find modules that are closely related to disease. WGCNA has been used to find genes related to lung
squamous cell carcinoma and colorectal cancer [12,13].

Microarray gene expression data have the characteristics of a high dimension and small sample
size, and there are also a large number of redundant genes that will cause a curse of dimensionality,
interfere with the diagnosis, and reduce the accuracy of a classifier. Thus, it is important to reduce
the dimensions of gene expression data. Common methods to reduce the dimensionality are a
principal component analysis [14], Fisher’s linear discriminant analysis [15], and autoencoder [16].
Autoencoder is a type of unsupervised learning technology that uses neural networks to learn to
express low-dimension features from high-dimensional features. In many tasks, the autoencoder has a
better effect than principal component analysis. There are many improved autoencoder algorithms,
such as stack autoencoder [17], sparse autoencoder [18], denoising autoencoder [19], and variational
autoencoder (VAE). AE just maps the data to a function. VAE map the data information to a distribution,
and the distribution can effectively summarize the information on this kind of data [20]. VAE successfully
reduced the dimension of microarray gene expression data, and the effective features closely related to
cancer were extracted from microarray gene expression data [21,22].

We used WGCNA to construct co-expressed gene modules and identified a key gene module that
was most closely related to cancer. We analyzed the hub genes in this key module. Hub genes may
serve as effective early diagnostic and prognostic markers for CRC. We used the hub genes as a type of
feature classifier. We applied the VAE to genes with significantly different expression data, and we
mapped the results to a 10-dimensional representation as another type of cancer feature classifier.

2. Materials and Methods

2.1. CRC Microarray Datasets

We downloaded the gene expression datasets GSE8671 [23], GSE9348 [24], GSE23878 [25],
and GSE37364 [26] from the GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) platform,
and these included 106 normal samples and 132 colorectal cancer samples (Supplementary
Information Table S1).

2.2. Datasets Preprocessing

For repeated probe values, we calculated their median as the new value of the probe to ensure
the uniqueness of the probe. The uploaders of the four datasets normalized each chip. Two datasets,
GSE23878 and GSE37364, were logarithmically processed. We first processed the dataset without
logarithm; all data were the result of log2(count), with the count representing the amount of gene
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expression [27]. Each dataset in the GEO database has a small sample size, and statistical analysis
performed on small samples is usually not robust [28]. Thus, it is necessary to perform a joint analysis
of the gene expression data from many different sources. The four expression datasets were combined
into one dataset according to the same gene symbols, and the expression data of 13,487 genes from
238 samples were obtained.

However, different conditions can lead to batch effects [29]. A number of approaches can be used
to remove batch effects between different datasets, such as the Empirical Bayes method (ComBat) [30],
singular value decomposition (SVD) [31], and distance weighted discrimination (DWD) [32]. The empirical
Bayesian algorithm can adjust the batch effect in microarray expression data [33].

After combining the four sets of GSE data, we used the sva package in R language based on the
empirical Bayesian framework [34] to remove the batch effect for the subsequent statistical analysis.

To remove the batch effect, we assume that the measured expression value of gene i in sample j of
batch g can be expressed in a general form as follows:

xi j = x′i j + bx
ij + εx

ij (1)

Then, we standardize it:

x̂i j =
xi j −

−
xi

σxi

(2)

In the above formula, xi is the average value of the expression value from gene i in all samples;
σxi is the standard deviation for xi of the expression value from gene i in all samples.

2.3. Screening of Differentially Expressed Genes

An important task of gene expression profiling analysis is to perform a variable screening based on
known data in order to find genes with significantly different expressions between samples. The typical
practice is to use a combination of fold change [35] and T test [36]. The most commonly used tools for
differential gene expression analysis are DESeq2 [37], EdgeR [38], and limma [39]. We used the limma
package, the P-values were corrected using the FDR correction toolkit in R language. We selected
genes with significant differences in choice (adj. p < 0.05) and more than double the difference in gene
expression between normal and cancer tissues (

∣∣∣log2 FC
∣∣∣ > 1) to serve as differentially expressed genes.

2.4. Construction of Co-Expression Network and Identification of Key Modules

The scale-free gene network condition should be satisfied before conducting WGCNA.
A hierarchical clustering tree (module) is built based on the correlation matrix of the gene co-expression,
adjacency function, and the dissimilarity measurements of different nodes. The dynamic tree cut
method can identify more accurately and more biologically significant co-expression modules [40].
A key module with a high correlation with a specific phenotype or disease can be extracted from these
co-expression modules. The hub genes are identified according to the internal connectivity of genes in
the key module and the correlation between genes and feature vectors of the key module [41,42].

2.5. Mining Hub Genes from the Key Module

The module membership (MM) was calculated via the WGCNA function signedKME,
which correlated the module eigengene (ME) with gene expression values, thereby quantifying
how close a gene was to a given module. The correlation between individual genes and a biological trait
(cancer or normal) was defined as the gene significance (GS). The summation of adjacency performed
for all genes in a particular network was calculated as the intramodular connectivity (K.in).

Hub genes in a module usually have high GS, high MM, and high K.in [43,44]. Therefore, we first
selected genes with GS > 0.5 and MM > 0.8. Then, we screened for genes with significantly different
expressions in normal and colorectal cancer samples from the genes that met the above conditions.
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Finally, we sorted the selected genes into descending order according to the K.in value and considered
the top ten genes as the hub genes for this analysis. This approach provided a new method for reducing
the dimension issues that often accompany, and potentially interfere with, cancer prediction and
biological significance.

2.6. Dimension Reduction with VAE

Autoencoder is a type of artificial neural network used to learn the compressed representation for
a set of data. This neural network has the same number of neuron nodes in the input layer and output
layer, but fewer in the hidden layer. The hidden layer variable of the VAE can learn the distribution
of the original data to ensure that the hidden layer can better abstract the characteristics of the input
data. Variable inference and reparameterization are used to reduce the dimension of gene expression
data. We extracted low-dimensional information from gene expression data with VAE and used this
low-dimensional information as a type of feature classifier for screening cancer.

Our pipeline for using WGCNA in order to identify hub genes of colorectal cancer and for using
VAE in order to identify a 10-dimensional representation can be freely accessed from GitHub at
https://github.com/gutmicrobes/WGCNA-VAE.git.

2.7. SVM

Support Vector Machine (SVM) is a class of generalized linear classifier, which has good robustness,
with supervised learning that carries out a binary classification of data [45]. The advantages of SVM in
predicting are quantitative and qualitative [46]. Researchers have used linear SVM to predict CRC [4].
We analyzed three data sets, GSE8671, GSE9348, and GSE23878, and we selected 10 hub genes and the
10-dimensional representation from the variational autoencoder (VAE) for 1166 genes with significantly
different expressions as the classifier for CRC.

3. Results and Discussion

3.1. Extraction of Differential Genes

We integrated four datasets as the sample set for the final calculations. To test for the existence of
batch effects and whether the four dataset samples were completely separated or whether they had
some continuity, we performed a principal components analysis (PCA) on all gene expression data
(Figure 1A). The four sample sets were not completely continuous; in particular, dataset GSE23878 was
significantly different from the other datasets. We then performed a batch effect correction, and a PCA
analysis was performed again on the corrected data. The results in Figure 1B show that the separation
among the four datasets after the correction was essentially eliminated.

We divided gene expression data that came from the datasets GSE8671, GSE9348, and GSE23878
into normal and cancer groups for a differential analysis. A volcano plot shown in Figure S1 of
the Supplementary Information shows the distribution of genes expressed between cancer and
normal tissue.

An important task in gene expression profiling is to perform variable screening based on known
data in order to find meaningful differential genes. Accordingly, we performed a differential analysis
on the gene expression profiling data after removing the batch effect, as described above. We identified
1159 significantly altered genes from four GEO datasets, of which 419 genes were upregulated and
740 genes were downregulated.

https://github.com/gutmicrobes/WGCNA-VAE.git
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As the soft threshold increased, the SET.R.sq and mean.k showed corresponding changes 
(Supplementary Information, Figure S2). Generally, SET.R.sq must be greater than 0.85; that is, the 
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3.2.2. Gene Module Construction 

We calculated the topological matrix and the adjacency matrix according to the soft threshold 
and then transformed the topological matrix into a dissimilarity matrix. We clustered according to 
the degree of dissimilarity in order to obtain the system clustering tree. In the clustering tree, each 
“twig” corresponded to a module, and each piece of “leaf” represented a gene in the module. All 
samples were clustered so as to form 17 modules, the smallest of which contained 36 genes (Figure 
2A). At most, the modules contained 6377 genes, with an average of 814 genes per module. 

Each co-expressed gene module was a set of genes with similar expression patterns, and all gene 
expression amounts in the module were then combined in order to obtain a “characteristic value,” 
which we called a module characteristic value. The module eigenvalue was the result of the operation 
of the common eigenvalues of all genes in the module. We used the module eigenvalue to calculate 
the correlation, and the thermal map is plotted in Figure 2B. 

Figure 1. PCA analysis of four datasets before and after the batch effect correction. (A) PCA analysis of
four datasets before batch effect correction. Dataset GSE23878 was significantly different from the other
three datasets; (B) PCA analysis of four datasets after batch effect correction. The batch effects of the
four datasets were basically eliminated after the correction.

3.2. Extracting Hub Gene by Weighted Correlation Network Analysis

3.2.1. Soft Threshold Screening

We used the pickSoftThreshold grid search function to calculate the β value of the scale-free
network. Table S2 in the Supplementary Information summarizes the parameters corresponding
to β. Included are the square of the correlation coefficient between log(p(k)) and log(k) (SET.R.sq),
slope and correlation coefficient of the truncation index model (truncated.R.sq), average degree of
connectivity (mean.k), median degree of connectivity (median.k), and maximum degree of connectivity
(max.k). The main parameters we considered in the table were SET.R.sq and mean.k.

As the soft threshold increased, the SET.R.sq and mean.k showed corresponding changes
(Supplementary Information, Figure S2). Generally, SET.R.sq must be greater than 0.85; that is,
the network was considered as meeting the requirement of a no scale distribution. When β = 12,
the network met the requirements of a scale-free distribution (Figure S2). Therefore, we set the
threshold β to 12.

3.2.2. Gene Module Construction

We calculated the topological matrix and the adjacency matrix according to the soft threshold
and then transformed the topological matrix into a dissimilarity matrix. We clustered according to the
degree of dissimilarity in order to obtain the system clustering tree. In the clustering tree, each “twig”
corresponded to a module, and each piece of “leaf” represented a gene in the module. All samples
were clustered so as to form 17 modules, the smallest of which contained 36 genes (Figure 2A). At most,
the modules contained 6377 genes, with an average of 814 genes per module.

Each co-expressed gene module was a set of genes with similar expression patterns, and all gene
expression amounts in the module were then combined in order to obtain a “characteristic value,”
which we called a module characteristic value. The module eigenvalue was the result of the operation
of the common eigenvalues of all genes in the module. We used the module eigenvalue to calculate the
correlation, and the thermal map is plotted in Figure 2B.
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Figure 2. (A) System clustering tree of all samples after classification. Part a is the clustering tree
constructed by genes, part b is the gene module obtained by clustering, and part c is the gene module
obtained by combining similar expression patterns; (B) The thermal map of the relationship between
the eigenvalues of different modules.

Figure 2B shows a certain correlation between different modules. Modules with a high correlation
can be further merged into the same module. Accordingly, we used the dynamic pruning method
to further merge modules with a significant correlation into the same module. To form 12 modules,
we defined a minimum of 30 genes per module and combined modules with a correlation coefficient
greater than 0.8. Table 1 shows the 12 modules and the number of genes included.

Table 1. Gene module and number of corresponding genes.

Color Tan Brown Turquoise Blue Green Purple

Number 85 2799 6377 2636 400 153

Color Black Magenta Midnight Blue Red Cyan Grey60

Number 330 175 60 318 118 36

To analyze the relationship between gene modules and cancer, we quantified cancer patients
as 1, normal people as 0, and we calculated the ME for each module; all genes in the module are
represented by ME. We calculated the Pearson correlation coefficient (PCC) between ME and cancer
(Table 2) [47]. With the exception of the midnight blue module, all other modules were significantly
correlated with cancer. The results of quantitatively analyzing the correlation between cancer and the
module eigengene indicated that the gene module division after pruning had a biological significance.

In Table 2, a large PCC and a small p-value indicated a stronger relationship between the module
and cancer. The PCC between the MEturquoise module and cancer was the highest, and the p-value
was the lowest, making the correlation biologically significant. These genes were the most important
in the module that distinguished cancer from normal tissue.
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Table 2. The PCC between each module and cancer after pruning.

MEtan MEbrown MEturquoise MEblue MEgreen MEpurple

PCC −0.1285 −0.3052 −0.9251 −0.7075 −0.2017 0.3457
p-value 0.0920 0.0000 0.0000 0.0000 0.0078 0.0000

MEblack MEmagenta MEblue MEred MEcyan MEgrey60

PCC −0.4263 −0.5753 0.0609 0.5127 0.2944 0.3082
p-value 0.0000 0.0000 0.4260 0.0000 0.0000 0.0000

3.2.3. Hub Gene Identification

According to the coefficient between ME and cancer, MEturquoise became our module of interest,
and it contained 6865 genes. Therefore, we further mined the hub genes from this module.

A hub gene in a module usually has a high GS, high MM, and high K.in. Therefore, we first
selected genes with GS > 0.5 and MM > 0.8. These conditions were met by 191 genes, of which 165 had
significant differences between cancer and normal samples.

Then, to explore the functional association between gene modules and colorectal cancer,
we performed a Gene Ontology and KEGG pathway enrichment analysis on the aforesaid 165 genes
(see Supplementary Information, Figure S3 and Figure S4).

Finally, we selected the top 10 genes with the largest K.in as the hub genes for this study (Table 3).

Table 3. Top 10 genes with the highest intramodular connectivity.

GENE NAME logFC adj.P.Val GS MM.Turquoise K.in

CDK4 1.3042 2.40 × 10−39 0.8128 −0.9076 933.8071
CDH3 6.3918 2.92 × 10−80 0.9417 −0.9206 922.1908
DKC1 1.3517 3.34 × 10−41 0.8226 −0.9055 918.2304
UBE2S 1.9085 7.08 × 10−40 0.8118 −0.8997 906.0183

GUCA2B −6.4444 6.12 × 10−53 0.8723 0.9075 895.3242
UBE2C 2.1435 9.16 × 10−52 0.8706 −0.9122 895.1551
EIF3B 1.3173 1.02 × 10−43 0.8368 −0.8970 894.6524

TRIP13 1.9410 2.07 × 10−46 0.8474 −0.8905 890.4061
GUCA2A −5.3201 2.29 × 10−50 0.8628 0.8628 887.2683

GTF3A 1.4126 5.21 × 10−39 0.8085 −0.8173 883.3120

GUCA2B (Guanylate Cyclase Activator 2B), a protein coding gene, is a physiological regulator
of intestinal fluid and electrolyte transport. Nagaraj et al. considered GUCA2B as a noninvasive
biomarker for the early detection of colorectal cancer [48]. Gene Ontology annotations for this gene
include calcium-sensitive guanylate cyclase activator activity and guanylate cyclase activator activity.
The GUCA2A gene is an important paralog of GUCA2B.

CDK4 (cyclin-dependent kinase 4) is important for cell cycle G1 phase progression. It is a regulator
of the cell cycle. Lee et al. use CDK4/6 inhibitors to inhibit the proliferation of colorectal cancer cells
effectively [49].

TRIP13 (thyroid hormone receptor interactor 13) messenger RNA was highly expressed in
multiple CRC tissues. The depletion of TRIP13 in CRC cells suppressed cell proliferation, migration,
and invasion [50].

As for EIF3B (eukaryotic translation initiation factor 3 subunit B), the researchers found that the
silencing of EIF3B gene expression could significantly inhibit the colorectal cancer cell proliferation
rate and clonability [51].

The CDH3 gene encodes cadherin, a type of cell adhesion molecule that is important in the
formation of adherens junctions that bind cells [52]. CDH3 is located in a gene cluster of chromosome
16 that is involved in breast cancer and prostate cancer. An abnormal expression of CDH3 protein is
also observed in cervical cancer. This gene is also associated with adolescent macular dystrophy and
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poor ectodermal release. CDH3 is overexpressed in colorectal tumors, and it has potential as a serum
marker for colorectal cancer surveillance [53].

GUCA2A (Guanylate Cyclase Activator 2A) is a protein-coding gene. Among its related pathways
are the Metabolism and Myometrial Relaxation and Contraction Pathways. Gene Ontology annotations
for this gene include hormonal activity and guanylate cyclase activator activity. Zhang et al. revealed
that GUCA2A was downregulated in CRC tissues [54].

3.3. Realization of VAE

We designed a VAE model to extract low-dimensional information from gene expression data
as a type of feature for the analysis and prediction of cancer. There were more nodes between
the input layer and the first hidden layer, with 680,000 parameters needing training. If we had
extracted features directly from more than 10,000 genes with expression data, we would have needed
to reduce the number of hidden layers of the model and the number of neuron nodes in the hidden
layer, thereby reducing accuracy. Therefore, the input data were genes with significant differences.
We adopted a neural network model with an input-output layer and five hidden layers. In the VAE,
the numbers of hidden layer nodes in the model were 584, 100, 10, 100, and 584, and the input layer
and output layer nodes were 1159. The learning rate was 0.0005, batch size was 20, and epoch was 6.
To measure the dimensionality reduction effect of the model, the last 65 samples of the gene expression
data were used as the test set, and all the other samples were used as the training set. We determined
that the appropriate epoch to ensure the stable convergence of the model was six by calculating the
reconstruction error and the loss function of the model on the test set. Finally, we used a VAE model to
successfully scale the gene expression data into 10 dimensions and use them as one of the characteristics
of the classifier.

3.4. Analysis Results from the Model of Cancer Prediction

We used the classifier SVM to identify a classification method suitable for the dataset described
here. We used three datasets as the training set: GSE8671, GSE9348, and GSE23878; meanwhile,
the dataset GSE37364 was the test set. The training set obtained 68 healthy samples and 105 cancer
samples, and the test set obtained 38 healthy samples and 27 cancer samples. The training set and the
test set basically balanced the positive and negative samples. SVMs are more flexible in binary tasks
and have a variety of kernel functions to choose from. A new taxonomic data set was constructed by
combining the hub genes with the expression of the low-dimensional features of the VAE. SVM was
used to classify the new classification dataset, with a test accuracy of 0.9692 and AUC of 0.9981.
The SVM classified the 65 samples in the test set exactly. The two-step dimensionality reduction
method greatly improved the classification accuracy.

4. Conclusions

We obtained 1166 genes with significant differences in gene expression from 238 normal and
cancer samples. The number of genes obtained by differential analysis was relatively large, and many
of these genes interact. We used WGCNA to construct a scale-free network of gene co-expression data.
WGCNA divided genes into different modules and found that the genes in each module were similar
in expression. On the basis of a correlation analysis between the module eigengene and the samples,
we identified the MEturquoise module, which may have an important function in carcinogenesis.
Our results showed that the genes in this module were different from those in the other modules.
That is, GUCA2A, GUCA2B, CDH3, and other hub genes were highly correlated with the occurrence of
CRC. We used 10 hub genes as one type of feature for CRC prediction. We also used VAE to reduce the
gene spectrum data to 10 dimensions and derive another type of feature for the CRC prediction model.
The accuracy of the CRC prediction model was 0.9692.
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Figure S1: Volcano map of differential genes between colorectal cancer sample and normal sample. Figure S2:
Soft threshold Screening. Figure S3: GO Functional enrichment analysis. Figure S4: KEGG function enrichment
analysis. Table S1: Sample distribution of four datasets. Table S2: Soft Threshold Screening for Network Construction.
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