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Abstract

Astrocyte reactivity is a hallmark of neuroinflammation that arises with Alzheimer’s disease (AD) 

and nearly every other neurodegenerative condition. While astrocytes certainly contribute to 

classic inflammatory processes (e.g. cytokine release, waste clearance, and tissue repair), newly 

emerging technologies for measuring and targeting cell specific activities in the brain have 

uncovered essential roles for astrocytes in synapse function, brain metabolism, neurovascular 

coupling, and sleep/wake patterns. In this review, we use a holistic approach to incorporate, and 

expand upon, classic neuroinflammatory concepts to consider how astrocyte dysfunction/reactivity 

modulates multiple pathological and clinical hallmarks of AD. Our ever-evolving understanding of 

astrocyte signaling in neurodegeneration is not only revealing new drug targets and treatments for 

dementia but is suggesting we reimagine AD pathophysiological mechanisms.
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1. Introduction

Astrocytes are an abundant and highly ramified cell type in the brain with processes that 

ensheathe the cerebrovasculature as well as many, if not most, excitatory synaptic 

connections. Astrocytes provide essential metabolic support for neighboring neurons and 

other cell types, while simultaneously protecting their neighbors through the uptake of 

excess glutamate and K+ as well as the release of growth factors, mitogens, and other 

essential chemical messengers. With aging, injury, and disease, astrocytes can undergo 

remarkable morphologic and molecular phenotype changes, the most extensively 

characterized of which are cellular hypertrophy and the upregulation of the intermediate 

filament protein, GFAP. Astrocyte hypertrophy, in close proximity to “senile plaques”, was 

one of the primary pathologies identified by Alois Alzheimer in 1910 and is now recognized 

as a hallmark of AD and most other forms of brain injury and chronic neurodegeneration 

(Verkhratsky et al., 2019). Despite the long history and prominent appearance of reactive 

astrocytes in AD, these cells have generally taken a back seat to other major cell types in the 

brain, namely neurons and microglia. As a consequence, the functional impact of reactive 

astrocytes on AD pathophysiology has remained murky and speculative. In this review, we 

will discuss evolving evidence showing that several major AD pathophysiological processes 

including neuroinflammation, synapse dysfunction/degeneration, impaired cerebrovascular 

function, hypometabolism, and sleep disturbances are all fundamentally linked through 

astrocyte reactivity and/or dysfunction. Collectively, the evidence suggests that astrocytes 

provide many molecular targets that could be exploited for wide-ranging therapeutic 

benefits.

2. Astrocyte reactivity arises early in disease

Hallmark signs of astrocyte reactivity appear at very early stages of age-related cognitive 

decline (Landfield et al., 1977). In humans, most of the evidence supporting the early 

emergence of reactive astrocytes comes from studies on postmortem tissue showing that 

GFAP and/or a number of other astrocyte-related proteins and mRNA species are altered in 

individuals with mild cognitive impairment (MCI) or pre-clinical AD (Schipper et al., 2006; 

Assaraf et al., 2007; Abdul et al., 2009; Owen et al., 2009). In the last decade, postmortem 

evidence for the early appearance of astrocyte reactivity has been confirmed in human 

subjects using positron emission tomography (PET) and novel PET tracers, like 11C-

deuterium-L-deprenyl (11C-DED) and (S)-(2-methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-

hydroxy)propoxy]quinoline (18F-SMBT-1), which bind to the reactive astrocyte marker 

monoamine oxidase B (MAO-B) (Carter et al., 2012; Harada et al., 2020). Nordberg and 

colleagues have used 11C-DED to reveal significant elevations in astrocyte reactivity 

throughout many cortical and subcortical regions in living humans with MCI, relative to age-

matched healthy controls (Carter et al., 2012). Though 11C-DED binding was most 

prominent in MCI individuals with elevated 11C-PIB binding, consistent with the association 

of reactive astrocytes with amyloid deposits, 11C-DED was also found in MCI subjects with 

negligible 11C-PIB levels. Elevated 11C-DED uptake was also observed in individuals with 

autosomal dominant AD, long before the appearance of clear cognitive symptoms 

(Rodriguez-Vieitez et al., 2016). Astrocyte reactivity, detected in vivo with 11C-DED, has 

similarly been reported in a variety of animal models of AD-like pathology –either at the 
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outset of, or prior to the development of significant amyloidosis and neurodegeneration 

(Rodriguez-Vieitez et al., 2015; Olsen et al., 2018). The early appearance of astrocyte 

reactivity in AD may provide a key upstream mechanism for many of the intricate, and 

highly interconnected processes that go awry in AD including neuroinflammation, synapse 

dysfunction, cerebrovascular pathology, and hypometabolism.

3. Neuroinflammation: extracellular mediators and transcription factor 

pathways

Though different terms, including astrocyte activation and astrogliosis have been used 

interchangeably with astrocyte “reactivity”, the phenotype change found in AD and other 

forms of neurodegeneration is probably best described as a reaction to pathological factors 

(Escartin et al., 2021). In AD, this change appears to encompass alterations in morphology 

and/or biochemical properties, rather than an increase in the number of astrocytes, per se 

(Serrano-Pozo et al., 2013). As astrocytes exhibit substantial heterogeneity depending on 

brain region and local interacting partners (e.g. different neurons and/or synapse subtypes, 

blood vessels, etc) (Batiuk et al., 2020), it shouldn’t be surprising that astrocyte reactivity is 

also a highly heterogeneous phenomenon. Reactive astrocytes may include unique 

morphologic features (e.g. differing levels of GFAP expression, orientation of processes 

toward and/or into amyloid deposits, degeneration, or clasmatodendrosis) and/or the 

presence of unique protein markers (Perez-Nievas and Serrano-Pozo, 2018; Sofroniew, 

2020). Astrocytic tauopathies, which may be found in AD, can include up to six different 

astrocyte subtypes: thorn-shaped, granular/fuzzy, tufted, ramified, plaques, and globular 

inclusions (Kovacs, 2020). Recently, there has been much interest in the field about the 

binary classification of reactive astrocytes according to an “A1” neurotoxic phenotype or an 

“A2” neuroprotective phenotype based on distinct transcriptional profiles (Zamanian et al., 

2012; Liddelow et al., 2017). While this categorization is conceptually useful, it is unlikely it 

effectively captures the nuances of astrocyte heterogeneity at the molecular or functional 

levels (Escartin et al., 2021; Sofroniew, 2020). We will therefore avoid this terminology in 

most cases in favor of describing discrete astrocyte-based properties/functions and how they 

change with AD.

3.1. Factors that modulate astrocyte reactivity

Amyloid is one of the best characterized factors for triggering astrocyte reactivity. Delivery 

of pathogenic Aβ peptides to primary astrocytes (Pike et al., 1994), or intracranial delivery 

to intact animals (Craft et al., 2004) is associated with robust changes in astrocyte 

morphology. And, of course, Aβ deposits in both humans and in rodent models of 

amyloidosis are typically surrounded by reactive astrocytes (Duffy et al., 1980; Dickson et 

al., 1988; Mandybur and Chuirazzi, 1990; Borchelt et al., 1997; Benzing et al., 1999; Oakley 

et al., 2006) (see Fig. 1A). In addition to AD specific pathology, astrocyte reactivity arises 

from loss of oxygen and glucose during hypoperfusion and from the entry of blood borne 

factors into the parenchyma following cerebral infarct/hemorrhage (Symon et al., 1975; 

Kowianski et al., 2003). Frank neuronal damage and the release of reactive oxygen species 

(ROS), nucleotides, excitatory amino acids, and myelin fragments also commonly trigger 

reactive astrocyte phenotypes in a variety of animals, as do numerous cytokine species 
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arising from reactive microglia and other sources (Giovannoni and Quintana, 2020; 

Sofroniew, 2020). Many of these factors are found at elevated levels in AD and linked to 

neural dysfunction.

Similar to reactive microglia, in response to perturbations, astrocytes produce and/or release 

an array of inflammatory mediators, including cytokines (e.g. TNFα, TGFβ, IK-1β, IL-6, 

and INFγ), chemokines (e.g. MIP-1α, CXCL10, CCL5), complement factors (e.g. C3, C5-

C9), and ROS (Giovannoni and Quintana, 2020). Many of these factors are upregulated in 

AD and have been implicated in both harmful and beneficial neuroinflammatory effects 

(Dansokho and Heneka, 2018). Selective knockdown of inflammatory signaling pathways in 

astrocytes has been shown to reduce other general markers of neuroinflammation (e.g. 

microglial activation, tissue cytokine levels) in disease/injury models (Brambilla et al., 2005; 

Furman et al., 2012; Ben Haim et al., 2015b). In addition to directly interacting with other 

local CNS constituents, astrocyte-based inflammatory signaling also has been shown to 

directly influence vascular and perivascular cells leading to alterations in blood brain barrier 

permeability (Daniels et al., 2017). Astrocytes may also provide chemoattractant cues to 

recruit peripheral macrophages, white blood cells, and lymphocytes into the brain 

parenchyma in response to neuronal damage and/or degeneration (Babcock et al., 2003; 

Moynagh, 2005). It’s clear from these observations and others, that reactive astrocytes are 

more than just a biomarker for neuroinflammation—they are critical effector cells.

3.2. Transcription factor pathways

Given the intimate association of reactive astrocytes with neuroinflammation, it may not be 

surprising that the transcriptional pathways linked to the reactive astrocyte phenotype are 

some of the same pathways involved in peripheral and innate immune/inflammatory 

responses (Fig. 1B). Numerous studies have shown that key components of JAK/STAT, 

FOXO3, C/EPB, AP-1 and NFκB pathways are expressed in astrocytes in vitro and in vivo 

where they are coupled to numerous cytokine receptors, toll-like receptors, and CD proteins, 

and are therefore activated by many of the same factors that trigger astrocyte reactivity (i.e. 

pro-inflammatory cytokines, blood-borne factors, Aβ and tau oligomers) (Cui et al., 2011; 

Ben Haim et al., 2015a; Brenner et al., 2019). In turn, these transcriptional pathways 

promote the expression of cytokines, chemokines, complement factors, prostaglandins, and 

extracellular matrix modifying factors that drive or maintain glial reactivity and 

neuroinflammation. In addition to these classic inflammatory pathways, astrocytes also use 

Ca2+ to regulate transcription through activation of the protein phosphatase, calcineurin, and 

its target transcription factor, nuclear factor of activated T cells (NFATs) (Furman and 

Norris, 2014; Lee et al., 2016; Sompol and Norris, 2018). Similar to the other classic 

inflammatory pathways, activation of calcineurin/NFATs leads to the production of 

numerous cytokine species and/or the modulation of other key metabolic changes linked to 

the reactive astrocyte phenotype. While calcineurin provides a relatively direct route 

between Ca2+ signals and transcriptional activity (through NFATs), many of the other classic 

inflammatory pathways are also affected by extensive calcineurin-mediated crosstalk 

(Furman and Norris, 2014). For instance, FOXO3 and NFκB are both activated in astrocytes 

directly (FoxO3) or indirectly (NFκB) by calcineurin (Fernandez et al., 2012). Depending on 

the source of cellular activation, astrocytic calcineurin can drive pro-inflammatory responses 
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through the coordination of FOX-O3-NFκB interactions, or anti-inflammatory responses 

through the promotion of NFκB-PPARγ interactions. NFATs also interact closely with 

different transcription factors, such as NFκB, AP-1, and others, to trigger dramatic changes 

in cellular phenotype (Rao et al., 1997; Hogan et al., 2003).

Thus, addition of a Ca2+ signal provides a critical mechanism for shaping and/or fine-tuning 

reactive astrocyte responses. As a corollary, Ca2+ dysregulation in reactive astrocytes, which 

has been noted in multiple disease models including AD (Sompol and Norris, 2018; 

Verkhratsky, 2019), may be a major contributing factor to the maintenance of chronic 

neuroinflammation. With severe Ca2+ dysregulation resulting from excitotoxicity and/or 

amyloid pathology, calcineurin is proteolized into a hyperactive fragment (ΔCN) that is 

partially uncoupled from regulated Ca2+ signaling (Wu et al., 2004; Wu et al., 2010; 

Mohmmad Abdul et al., 2011). Pathologic ΔCN fragments alongside the NFAT4 isoform are 

found at very high levels in subsets of reactive astrocytes in humans and mouse models, 

usually in conjunction with amyloid deposits, vascular pathology, and upregulation of GFAP 

(Serrano-Perez et al., 2011; Pleiss et al., 2016; Sompol et al., 2017). Moreover, forced 

overexpression of ΔCN in primary astrocytes leads to the transcriptional induction of 

numerous immune/inflammatory genes associated with astrocyte reactivity (Norris et al., 

2005, Fernandez et al., 2007) and propagates elevated CN/NFAT signaling across nearby 

astrocyte networks (Sama et al., 2008). In wildtype rodents, overexpression of ΔCN in 

astrocytes has been associated with both detrimental (Pleiss et al., 2016) and beneficial 

(Fernandez et al., 2012) consequences for surrounding nervous tissue, perhaps reflecting the 

complex role of neuroinflammation in degenerative diseases.

4. Astrocyte reactivity and synapses

Fast communication between neurons in the CNS occurs primarily through the transfer of 

neurotransmitter molecules across synapses. The process of synaptic transmission, primarily 

the vesicular release and repackaging of neurotransmitters, is energetically expensive and is 

overwhelmingly responsible for the disproportionate amount of oxygen and glucose 

consumed by the brain (Harris et al., 2012). Given their high-metabolic demand, synapses 

are also among the most vulnerable structures in the brain and are easily damaged by insults 

that occur acutely or arise with aging. Among the most fascinating and important properties 

of synapses is the capacity to change and adapt to new experiences. Synaptic plasticity is at 

the center of who we are as individuals; it’s how we learn and remember. When synapses are 

lost, cognitive deficits usually follow. Reduced synapse number and density, or reduced 

expression of synaptic proteins, is associated with the very earliest stages of cognitive 

decline in humans with AD (Mufson et al., 2012) and also in many animal models of AD-

like pathology (Spires-Jones and Knafo, 2012; Pozueta et al., 2013). In fact, synapse loss is 

generally a better predictor of failing cognition than other major AD neuropathological 

hallmarks. Consequently, synapses are intensely studied, not only for their mechanistic role 

in pathophysiology, but also for their potential as a therapeutic target.

Glutamate is the most common excitatory neurotransmitter in the mammalian brain. After 

release from presynaptic terminals, glutamate interacts primarily with two major ionotropic 

glutamate receptors on the postsynaptic membrane: AMPA/kainate receptors and NMDA 
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receptors (AMPARs and NMDARs). NMDARs provide the primary Ca2+ signal responsible 

for initiating receptor trafficking events (e.g. AMPAR insertion into or removal from the 

postsynaptic membrane) and gene expression changes necessary for long-term increases and 

decreases in synaptic strength implicated in new learning and memory formation: i.e. long-

term potentiation (LTP) and (LTD) (Andersen et al., 2017). Though essential for mediating 

synaptic plasticity, high levels of Ca2+ in neurons, arising from excess glutamate receptor 

activation can lead to the degeneration of synapses and neurites, and ultimately cause 

neuronal death (Zhou et al., 2015; Carvajal et al., 2016). Glutamate-mediated excitotoxicity 

has been hypothesized to play a major role in the neurodegeneration that arises with AD and 

related disorders (Wang and Reddy, 2017; Armada-Moreira et al., 2020). In support of this 

hypothesis, individuals with AD are at greater risk for seizures (Vossel et al., 2017; 

Asadollahi et al., 2019; Gail Canter et al., 2019; Powell et al., 2019), and many rodent 

models of AD-like pathology exhibit signs of synaptic hyperexcitability, especially in 

regions of frank pathology (Siskova et al., 2014; Siwek et al., 2015; Tamagnini et al., 2015; 

Maeda et al., 2016; Fontana et al., 2017; Sompol et al., 2017; Hijazi et al., 2019). Alleviation 

of excitotoxicity is thought to underlie the modest clinical efficacy observed in AD patients 

treated with the weak NMDAR blocker memantine (Kabir et al., 2019).

The vast majority of research on synapse loss and dysfunction in AD has historically 

focused on neuron-intrinsic mechanisms, including alterations in neuronal Ca2+ regulation, 

oxidative stress, and gene regulation. However, it’s increasingly appreciated that synapse 

function and stability are also heavily regulated by other extra-neuronal cell types, including 

astrocytes and microglia. Astrocytes, in particular, appear to play fundamental roles in 

regulating synapse formation, stability, and turnover under both healthy and pathological 

conditions (Allen and Eroglu, 2017). Many, if not most, of the synapses in the mammalian 

CNS are in very close proximity to astrocyte processes. In adult rats, for instance, astrocytes 

appear to contact up to 90 % of synapses in the hippocampus, depending on the synapse 

subtype (Witcher et al., 2007). At the astrocyte/synapse interface, specialized astrocyte 

membranes ensheath or “cradle” pre and postsynaptic neuronal elements, extracellular 

matrix (ECM) components, and even microglial processes (Verkhratsky and Nedergaard, 

2014). Within these cradles, astrocytes express and/or excrete numerous proteins that 

respond to and/or modulate the function and structure of synapses. There is presently much 

debate over whether astrocytes directly contribute to synaptic transmission via the release of 

gliotransmitters. Resolving this debate is beyond the scope of this review, but evidence for 

and against physiologic gliotransmission has been summarized in outstanding dual 

perspective articles: pro-gliotransmission (Savtchouk and Volterra, 2018) and anti-

gliotransmission (Fiacco and McCarthy, 2018). In the current review, we instead focus on 

key astrocyte-derived proteins that both interact with synapses, and undergo changes with 

astrocyte reactivity and/or AD. These include (1) scaffolding proteins that modulate synapse 

formation and stability; (2) innate immunity factors that regulate phagocytic removal of 

synapses; (3) glutamate transporters that modulate the duration of chemical transmission and 

dampen excitability; and (4) cytokines that modulate synaptic viability and plasticity (see 

Fig. 2).
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4.1. Secreted scaffolding proteins

Synapses are formed and maintained in part by interactions between pre and postsynaptic 

adhesion molecules in the synaptic cleft. These proteins not only promote synapse stability, 

they help to cluster critical pre- and postsynaptic elements (e.g. synaptic vesicles and 

neurotransmitter receptors) in optimal locations for synaptic transmission. Very commonly, 

pre-synaptic adhesion molecules, like neurexins, interact with specific postsynaptic partners, 

like neuroligins. However, these interactions are usually indirect and require the help of 

scaffolding proteins to make stable connections. These scaffolding proteins are secreted and 

may arise from neurons and/or astrocytes (Yuzaki, 2018). The matricellular proteins 

thombospondin-1, hevin and sparc are some of the best characterized scaffolding proteins 

produced and released by astrocytes. Thrombospondin and hevin interact with cell adhesion 

molecules to promote synaptogenesis, whereas sparc inhibits hevin-mediated synaptogenesis 

(Christopherson et al., 2005; Jones et al., 2011; Kucukdereli et al., 2011). Levels of glial-

derived scaffolding proteins tend to be elevated during development, as synaptic 

connectivity is established and fine-tuned, and then decreased somewhat during adulthood. 

Expression levels increase again following acute brain injury and are strongly associated 

with astrocyte reactivity (Jones and Bouvier, 2014). Under these conditions, reactive 

astrocytes and glial-derived scaffolding proteins may play a critical role in sprouting and 

synapse remodeling.

During AD, changes in thrombospondin 1, hevin, and sparc appear to be more complex or at 

least different from what is observed with acute neurodegeneration. For instance, 

thrombospondin-1 levels are reduced in human AD brain, in mouse models of parenchymal 

amyloid pathology, and in primary astrocytes treated with Aβ peptides (Son et al., 2015). 

Moreover, exogenous application of thrombospondin-1 prevented Aβ-mediated loss of 

synaptic markers, such as PSD-95. A similar reduction in thrombospondin-1 was observed 

in astrocytes from human subjects with Down Syndrome (Garcia et al., 2010), which shares 

common amyloid pathologies with AD. Notably, primary neurons co-cultured with human 

Down Syndrome astrocytes exhibited reduced dendritic spine density and synapse viability: 

a finding that was mitigated by addition of thrombospondin-1 to the cell culture medium. In 

addition to synaptic-modulatory properties, thrombospondin-1 is also a potent inhibitor of 

angiogenesis in peripheral tissues (Lawler, 2002). As discussed below, vascular 

inflammation and reduced cerebral perfusion lead to increased angiogenesis during AD 

pathology (Vagnucci and Li, 2003), which is thought to disrupt the blood-brain-barrier 

(BBB) and exacerbate inflammation and other brain pathologies. Thus, the loss of 

thrombospondin-1 in reactive astrocytes during AD may also contribute significantly to 

cerebrovascular dysfunction.

As mentioned, hevin and sparc are also altered in AD brain. qPCR performed on laser 

captured brain sections revealed mRNA for sparc is increased relative to hevin. Elevations in 

sparc were particularly pronounced near Aβ deposits, whereas hevin levels were generally 

reduced in AD relative to cognitively normal individuals (Strunz et al., 2019). The relative 

increase in sparc associated with astrocyte reactivity may offset hevin-induced 

synaptogenesis contributing to a net loss of synapses in AD. However, somewhat at odds 

with this study is another report that identified hevin in cerebrospinal fluid (CSF) samples 
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from AD cases using a proteomic fingerprinting approach. In a panel of 7 peptide markers, 

hevin provided the greatest predictive value for discerning AD from cognitively normal 

controls (Vafadar-Isfahani et al., 2012). Further research is needed to clarify the extent to 

which hevin and sparc change with AD, and how these changes affect synaptic maintenance 

and/or turnover.

4.2. Complement factors

Establishing efficient neural networks not only requires the formation and maintenance of 

necessary synaptic contacts, it also requires the elimination of unnecessary or dysfunctional 

contacts. Resident microglia play the predominant role in physically removing synaptic 

elements, but their actions appear to be guided, in part, by the release of complement 

components C1q from neurons and C3 from astrocytes (Stevens et al., 2007; Stephan et al., 

2012). At synapses of the developing nervous system, nearby astrocytes induce the release 

of C1q from neurons, leading to the cleavage of astrocyte derived C3. Activated C3 

fragments (C3b), in turn, bind to or “tag” inactive or dysfunctional synaptic structures which 

are bound by C3 receptors (C3R) expressed on microglial cells. C3b-C3R interactions then 

trigger microglial-mediated phagocytosis of tagged synapses.

Several reports have shown that C3 levels are increased in reactive astrocytes in AD and 

mouse models of AD-like pathology (Tomimoto et al., 1997; Fonseca et al., 2011). Elevated 

C3 expression in astrocytes has been linked to hyperactive calcineurin signaling (Norris et 

al., 2005) and NFκB activation (Lian et al., 2015). In mouse models of parenchymal 

amyloidosis, a significantly greater proportion of synapses were associated with C1q and 

C3, relative to WT littermates (Hong et al., 2016). NFκB-mediated C3 expression led to 

deleterious changes in dendritic spines, neuronal Ca2+ dysregulation, and impaired synaptic 

function (Lian et al., 2015). Similarly, knockdown of C3 preserved synaptic density and 

improved cognition in APP/PS1 mice, despite enhanced amyloid plaque load under these 

conditions (Shi et al., 2017). Together, these findings suggest that astrocyte derived C3 plays 

a critical role in synapse loss and cognitive decline in AD.

4.3. EAATs

Excitatory amino acid transporters (EAATs), including EAAT1 (mouse homologue, 

GLAST1) and EAAT2 (mouse homologue, Glt1) are highly expressed in astrocyte 

plasmalemma near synapses, where they take up 80 % or more of the glutamate in the 

extracellular space (Lopez-Bayghen and Ortega, 2011) and help terminate glutamatergic 

synaptic transmission (Weng et al., 2007). Perhaps even more important than fine-tuning 

synaptic transmission, astrocytic EAATs prevent glutamate spillover at the synapse and 

minimize hyperactivation of extra-synaptic receptors (Shen et al., 2014). In this role, EAATs 

provide a fundamental protective mechanism against glutamate-related hyperexcitability and 

excitotoxicity. For every glutamate molecule transported, EAATs co-transport three Na+ ions 

and one H+, and countertransport one K+ ion (Levy et al., 1998). Once taken into the 

astrocyte cytosol, glutamate is converted to glutamine by glutamine synthetase and 

transported back to neurons where it is converted back to glutamate (i.e. the so-called 

glutamate-glutamine cycle) (Robinson and Jackson, 2016). The electrogenic and redox 

properties of EAATs stimulate glucose uptake and drive the glycolytic production of lactate, 
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arguably the preferred energy substrate of neurons (Pellerin and Magistretti, 1994). Thus, 

astrocytic EAATs are also critical for ensuring that energy substrates are made available to 

neurons according to their demand (see Fig. 3).

In many brain regions, the majority of glutamate uptake is carried out by EAAT2/Glt1, 

which is either lost or undergoes extensive oxidative damage in a variety of 

neurodegenerative diseases such as amyotrophic lateral sclerosis, stroke, Alexander disease, 

and AD (Sheldon and Robinson, 2007). In primary astrocytes, the downregulation of EAATs 

are triggered by extracellular factors (e.g. pro-inflammatory cytokines, Aβ peptides) and 

transcriptional pathways (i.e. NFATs and NFκB) linked to astrocyte reactivity (Su et al., 

2003; Prow and Irani, 2008; Sama et al., 2008; Abdul et al., 2009; Tolosa et al., 2011; Fang 

et al., 2012). EAAT2 protein and/or activity is lost in AD brain (Masliah et al., 1996; Abdul 

et al., 2009). These changes can occur at very early stages of cognitive decline (Abdul et al., 

2009), and are observed in parallel with signs of astrocyte reactivity (Simpson et al., 2010), 

or upregulation of NFAT transcription factors (Abdul et al., 2009). A similar drop off in 

Glt-1 levels/function has been reported in several common rodent models of AD-like 

pathology (Schallier et al., 2011; Scimemi et al., 2013; Meeker et al., 2015). Downregulation 

of Glt-1 expression in reactive astrocytes is clearly sufficient to precipitate synaptic 

hyperexcitability and excitotoxic neurodegeneration in experimental models (Rothstein et 

al., 1996; Petr et al., 2015). Moreover, forced overexpression of EAAT2/Glt-1 in astrocytes 

and/or pharmacologic activation of EAAT2/Glt-1 in disease models imparts neuroprotection 

and enhances cognitive function (Prow and Irani, 2008; Zumkehr et al., 2015; Fontana et al., 

2016; Hefendehl et al., 2016). Notably, riluzole, a polypharmacological compound that 

enhances EAAT2 function, is FDA approved for the treatment of ALS and is currently in 

Phase 2 clinical trials for AD (NCT01703117).

4.4. Alpha7 nicotinic acetylcholine receptors

Alterations in CNS cholinergic signaling in the CNS, particularly a loss of basal forebrain 

cholinergic neurons, has long been proposed as a mechanism of cognitive dysfunction 

during AD (Francis et al., 1999). The effects of acetylcholine are generally thought to occur 

through the activation of muscarinic and nicotinic acetylcholine receptors (AChRs) on 

neuronal membranes where they modulate synaptic function and plasticity. But, in addition 

to neurons, astrocytes and other glial cell subtypes also express AChRs and likely play a 

significant role in brain cholinergic signaling (Zoli, Pucci et al. 2018). Some AChR 

subtypes, such as the Alpha-7 nicotinic acetylcholine receptor (nAChR) have garnered much 

interest in AD due to its high binding affinity for, and activation by, Aβ peptides (Wang et 

al., 2000; Dineley et al., 2002). Interestingly, nAChR levels exhibit complex changes in AD 

that depend on brain region and cell type examined. For instance, though alpha7 nAChRs 

levels appear to be reduced in several brain regions affected by AD (Shimohama et al., 

1986), the proportion of astrocytes expressing alpha-7 nAChRs appears to increase 

(Teaktong et al., 2003). Moreover, in multiple cell types, alpha-7 nAChRs have been 

proposed to either promote or inhibit the deleterious actions of amyloid pathology (Ma and 

Qian, 2019). In astrocytes and other non-neuronal cells, alpha-7 nAChRs can impart 

neuroprotection through the dampening of harmful neuroinflammatory signaling (Kalkman 

and Feuerbach, 2016; Foucault--Fruchard and Antier, 2017). However, in rodent 
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hippocampal brain slices, application of Aβ was shown to increase astrocytic Ca2+ levels 

and trigger inward currents through extrasynaptic NMDARs in nearby CA1 pyramidal 

neurons, which was suggested to be a critical mechanism for excitotoxicity (Pirttimaki et al., 

2013; Talantova et al., 2013). The complex role of alpha-7 nAChRs in brain circuits 

highlights some of the difficulties in developing therapeutic strategies for targeting 

cholinergic deficits in AD.

4.5. Cytokines

As discussed above, astrocytes secrete numerous cytokines as part of a coordinated (or 

dysregulated) neuroinflammatory response. In addition to acting on glial cells or innate 

immune cells, many cytokines also directly interact with receptors located on neuronal 

membranes, where they activate or modulate pathways involved in synaptic function and 

plasticity (e.g. p38 MAPK and NFκB pathways). However, the role of cytokines in shaping 

synaptic signaling properties is very complex. Several cytokine species, including TNFα, 

IL-1β, and IL-6 are elevated in local neural networks following the induction of LTP (del 

Rey et al., 2013), though it’s unclear whether these cytokines are produced in astrocytes or 

other cell types. These studies have suggested that cytokines may play an important role in 

the maintenance of increased synaptic strength. Cytokines may regulate basal synaptic 

function as well. For instance, astrocytic release of TNFα was shown to trigger the 

exocytosis and increased surface expression of AMPARs through a neuronal TNFR1-PI3 

kinase signaling pathway (Beattie et al., 2002; Stellwagen et al., 2005). TNF-mediated 

elevations in postsynaptic AMPARs are especially important for “scaling-up” synaptic 

sensitivity in neural networks after periods of relative inactivity (Stellwagen and Malenka, 

2006). Despite these beneficial actions, many other reports have shown that non-specific 

anti-inflammatory compounds, or compounds that inhibit specific cytokines like TNFα and 

IL-1, help to improve synapse function and plasticity in animal models of aging and AD-like 

pathology (Kotilinek et al., 2008; Bachstetter et al., 2012; Sama et al., 2012; MacPherson et 

al., 2017). Beneficial vs. detrimental actions could be attributable to the relative levels of 

cytokines in the local parenchyma (Beattie et al., 2002; Bernardino et al., 2005), to divergent 

signaling pathways in neurons vs. glial cells (Marchetti et al., 2004; Huang et al., 2011), or 

both. Indeed, TNFα, IL-1β, and other cytokines tend to impair synapse function when 

present at high levels in tissue (Pickering et al., 2005; Sama and Norris, 2013), which may 

be more likely to occur when astrocytes and microglia are highly reactive. Additionally, 

neurons express different receptors (relative to glia) for some cytokines (e.g. IL-1β) and, at 

least in some cases (e.g. the neuronal IL-1β pathway), these signaling components may 

preferentially impart neuroprotection (Huang et al., 2011). Some newly developed cytokine 

inhibitors have been designed to exploit differences in cytokine receptor pathways. For 

instance, XPro1595 is a dominant negative soluble TNF biologic that preferentially inhibits 

type 1 TNF receptors, which are linked to cytotoxic caspase pathways while preserving the 

activity of type 2 TNF receptors that are coupled to neuroprotective PI3K/Akt pathways 

(Steed et al., 2003). XPro1595 has been shown to restore LTD and LTP balance in aged rats 

and 5xFAD mice (Sama et al., 2012; Cavanagh et al., 2016; MacPherson et al., 2017; 

Cavanagh and Wong, 2018), and is in Phase 1b Clinical trials for treating AD 

(NCT03943264).
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5. Astrocyte reactivity and the neurovascular unit

The neurovascular unit (NVU) is comprised primarily of vascular endothelial cells, 

pericytes, astrocytes, and neurons. More recently, the cellular anatomy of the neurovascular 

unit has been extended to include both microglia and perivascular macrophages (Keaney and 

Campbell, 2015). The multicellular NVU serves a number of functions including the tight 

regulation of blood flow through the vasculature, BBB permeability, neuroimmune 

responses, and neurovascular remodeling (Stanimirovic and Friedman, 2012; Kapasi and 

Schneider, 2016). The vascular endothelial cells lining the cerebral blood vessels are the 

core anatomical unit of the BBB. Both tight junctions and adherens junctions formed 

between adjacent vascular endothelial cells underlie the physical barrier responsible for 

limiting the paracellular diffusion of polar solutes (Keaney and Campbell, 2015). Pericytes 

are mural cells with elongated processes that encase the walls of pre-capillary arterioles, 

capillaries, and post-capillary venules (McConnell et al., 2017). Both their morphology and 

protein expression vary with their position along the vascular bed, reflecting the existence of 

subpopulations with diverse functions in regulating vessel diameter, cerebral blood flow, and 

extracellular matrix protein secretion (Winkler et al., 2011; Keaney and Campbell, 2015; 

Attwell et al., 2016). Astrocytes are centrally positioned within the brain parenchyma where 

they extend processes that communicate with local neurons, synapses, and blood vessels, 

allowing them to sense and respond to both neuronal and vascular activity. Thus, the BBB is 

composed of microvascular endothelial cells, astrocytes, pericytes, and neurons in close 

physical proximity to the endothelium, and together comprise a functional NVU. Notably, 

despite significant structural diversity of the NVU across the cerebrovascular network (Dahl, 

1973; Roggendorf and Cervos-Navarro, 1977; Iadecola, 2017), more than 99 % of the 

cerebrovasculature of the brain is ensheathed in astrocytic end-feet (Nimmerjahn, 2009).

5.1. Neurovascular Astrocytes

Astrocytic end-feet are specialized processes that function to maintain the ionic and osmotic 

homeostasis of the brain and express a number of channels indicative of their specialized 

functions (Amiry-Moghaddam et al., 2003; Simard and Nedergaard, 2004). End-feet-

enriched channels include the aquaporin 4 (AQP4) water channel, the inwardly rectifying K 

+ channel Kir4.1, and the Ca2+-dependent K+ channel MaxiK (or BK) (Dunn and Nelson, 

2010; Strohschein et al., 2011). The astrocytic endfoot is anchored to the vascular basement 

membrane via the alph a-b eta dystroglycan complex (Noell et al., 2011; Gondo et al., 

2014). A common link between the Kir4.1, BK, and AQP4 channels at the astrocytic endfoot 

appears to be a shared anchoring protein, dystrophin 1. The brain expresses a short isoform 

of dystrophin 1 referred to as Dp71. Dp71 complexes with alpha-syntrophin forming the 

endfoot anchoring complex and is, therefore, responsible for anchoring the Kir4.1, BK, and 

AQP4 channels to the vascular basement membrane. Astrocytic end-feet are vital regulators 

of neuronal function given they modulate extracellular potassium concentrations, aid in 

removing neurotransmitters from synapses, and ensure metabolic needs are met via 

neurovascular coupling.
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5.2. Potassium Buffering

The resting membrane potential (RMP) of a neuron (−70 to −80 mV), or the electrical 

potential difference across the plasma membrane at rest, is closer to the K+ equilibrium 

potential of −90 mV than the Na+ equilibrium potential of +65 mV. At rest, the neuronal 

plasma membrane is slightly permeable to both Na+ and K+, however, the permeability to K
+ is much greater due to the presence of K+ leak channels embedded in the plasma 

membrane. Due to this enhanced permeability, K+ is close to electrochemical equilibrium 

and the neuronal membrane is close to equilibrium potential of K+. Conversely, the neuronal 

membrane at rest exhibits very low permeability for Na+. When an action potential is 

initiated, voltage-gated Na+ channels in the membrane open to allow an influx of Na+ ions 

(Fig. 4a). The influx of Na+ results in depolarization of the neuronal membrane, in turn 

opening additional voltage-gated Na+ channels via a positive feedback loop. Once the peak 

membrane potential (~ +35 mV) is reached, the neuronal membrane begins to repolarize by 

inactivating voltage-gated Na+ channels and opening voltage-gated K+ channels. The efflux 

of K+ ions from the neuron results in a decrease in the membrane potential towards the 

neuron’s resting voltage. Both voltage-gated Na+ and K+ channels begin to close once the 

membrane potential falls below the threshold potential. However, due to the slow kinetics of 

voltage-gated K+ channels they remain open longer than necessary, resulting in a brief 

hyperpolarization of the neuronal membrane, which ultimately prevents a second, rapid 

depolarization. The removal of K+ ions from the extracellular space following an action 

potential is critical in order for the neuronal membrane to adequately repolarize and reset 

channel function for the next action potential to occur. A single action potential can increase 

the extracellular K+ concentration by as much as 1 mM under normal conditions and ≥10–12 

mM under pathologic conditions (Nwaobi et al., 2016). Even the relatively small elevations 

in extracellular K+ observed during physiologic neuronal activity depolarize the neuronal 

membrane, thereby increasing the probability of action potential propagation (Nwaobi et al., 

2016). An essential function of neurovascular astrocytes is to maintain the neuronal RMP by 

modulating the extracellular K+ concentration, a process termed K+ siphoning (e.g. K+ 

buffering) (Harrower et al., 1984).

5.3. Connexins, Kir4.1, and K+ homeostasis

In addition to K+ channels, astrocytes abundantly express plasmalemmal hemichannels, 

made up of connexin proteins (primarily connexin 43 (Cx43) and connexin 30 (Cx30)) 

(Orellana 2016). Many hemichannels are directly apposed to hemichannels on adjacent cells 

where they form “gap junctions” or conduits between astrocytes to permit the rapid 

intercellular exchange of ions and small metabolites. Thus, astrocytes are highly 

interconnected via gap junctions and can form large electrically coupled syncytiums. Uptake 

of locally released K+ via Kir4.1 channels results in the transport of K+ down its 

concentration gradient through Cx43 gap junctions (Fig. 4b). Some of this K+ will be 

exported into the circulation via the astrocytic end-feet (Wallraff et al., 2004). Movement of 

K+ in this manner helps to dissipate local K+ gradients (Neusch et al., 2006) and prevent 

neuronal hyperexcitability. Genetic deletion of Kir4.1 channel from astrocytes has a 

dramatic effect in mice; mice lacking the Kir4.1 channel only live 25 days, during which 

they suffer from seizures, ataxia, and tremor. Electrophysiological studies in these mice 

reveal significant impairment of K+ uptake by astrocytes, decreased spontaneous action 
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potential frequency and amplitude, and increased LTP (Djukic et al., 2007). Gap junction 

blockers have similarly disruptive and degenerative effects.

Interestingly, connexins and Kir4.1 channels are not only involved in the homeostasis of 

extracellular K+ ions but also in the regulation of extracellular glutamate. As discussed, 

astrocytes use EAATs to rapidly remove glutamate from the extracellular space and 

minimize excitotoxic damage to neurons. Because glutamate import across EAATs is 

partially coupled to K+ export, the presence of elevated extracellular K+ gradients exerts an 

inhibitory effect on glutamate uptake (Barbour et al., 1988). A number of studies have 

implicated the need for functional Kir4.1 channels in the regulation of glutamate 

transmission. Pharmacological inhibition of Kir4.1 led to a 33.1 % reduction in glutamate 

while siRNA mediated Kir4.1 knockdown in cortical astrocytes resulted in a 57 % reduction 

in glutamate uptake (Kucheryavykh et al., 2007). Further, threo-bet a-b enzyloxyaspartate-

sensitive glutamate uptake was reduced by more than 50 % in Kir4.1 null mice when 

compared with wildtype littermates (Nwaobi et al., 2016). These results suggest that by 

allowing the astrocyte to maintain a K+ electrochemical gradient that favors K+ unbinding in 

the extracellular space, Kir4.1 helps facilitate the regulation of glutamate transmission.

5.4. AQP4

Water movement in the brain is critical for cellular function given it regulates cell volume 

and homeostasis between extracellular and intracellular compartments. Ionic movement 

across cell membranes is commonly coupled with the movement of water and with the 

maintenance of osmotic equilibrium. The net transport of water always has to be driven by 

osmotic forces due to solute movement considering there is no primary, active transport, 

ATP-driven, water pump (Kimelberg, 2004). Most water movement into and out of cells 

occurs via water channels in the plasma membrane known as aquaporins. AQP4 is expressed 

by astrocytes of the neurovascular unit and is highly polarized to the endfoot membrane 

where it functions to bring water into specific cells or to remove excess water to alleviate 

swelling (Doody et al., 2013). Under conditions of food and water deprivation, AQP4 has 

demonstrated an ability to alter its expression levels in order to maintain the brains normal 

water content and prevent cell loss (Ye et al., 2016). Astroglial water movements induced by 

AQP4 have also been proposed to be a driving force contributing to the paravascular 

clearance of interstitial solutes such as Aβ and tau.

Given the brain’s high metabolic rate and the sensitivity of neurons and glia to alterations in 

their extracellular environment, there exists a critical need for the rapid clearance of brain 

waste products. In 2012, a landmark study by Iliff et al. used in vivo two-photon imaging of 

small fluorescent tracers to show that CSF moves by convective (bulk) flow along the 

perivascular space between vessels and the astrocytic end-feet and is cleared via 

paravascular drainage routes (Iliff et al., 2012) (Fig. 5). Notably AQP4 null mice exhibited 

perturbed CSF influx through this system as well as a 70 % reduction in interstitial solute 

clearance, ultimately suggesting that glymphatic clearance is supported by astrocyte water 

transport. Furthermore, Iliff et al. demonstrated that fluorescently tagged Aβ peptides are 

transported through this system and deletion of AQP4 suppressed the clearance of soluble 

Aβ peptides, implicating a role for this pathway in removing Aβ from the brain.
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Recently, AQP4 has been shown to function not only as a water channel protein but also as 

an adhesion molecule involved in cell migration (Papadopoulos et al., 2008). During 

migration cells undergo rapid changes in their morphology due to the rapid formation and 

retraction of cell membrane protrusions. These rapid changes are accompanied by changes 

in cell volume attributable to water flow into and out of the cell. Granted, changes in cell 

volume not only facilitate morphological changes, but may also aid in propelling the cell 

forward. Thus, it is likely aquaporin-mediated transmembrane water movements facilitate 

changes in morphology and physically propel the cell forward. Evidence supporting the role 

of AQP4 in astrocyte migration primarily comes from acute injury models. In 2005, Saadoun 

et al. showed that while AQP4 is expressed strongly in astrocytes in the normal mouse brain, 

it is upregulated following stab wound injury, resulting in the migration of reactive 

astrocytes to the injury site. Notably, this same study observed enhanced polarization of 

AQP4 to the leading edge of migrating astrocytes as well as a greater number of cell 

membrane protrusions at the leading edge of migrating AQP4-expressing versus non-AQP4 

expressing astrocytes (Saadoun et al., 2005). This may explain observations of robust 

upregulation of AQP4 in areas surrounding Aβ plaques (Yang et al., 2017).

Lastly, AQP4 plays a role in neuroexcitation given that when K+ ions are released into the 

extracellular space by neurons following an action potential, astrocytes on the other side of 

the synaptic cleft take up both excess K+ ions and water. AQP4 immunoreactivity is strongly 

expressed on the majority of the cerebrovasculature where it has been shown to bind alpha-

syntrophin (Amiry-Moghaddam et al., 2003; Amiry-Moghaddam et al., 2004a, 2004b, 

Wilcock et al., 2009; Camassa et al., 2015). When alpha-syntrophin is deleted in mice, 

AQP4 is no longer localized to astrocytic end-feet. The mislocalization of AQP4 in the alpha 

syntrophin knockout mice is associated with significant functional defects including 

prolonged seizure durations with slowed K+ kinetics in the brain extracellular space. K+ 

clearance deficits are also observed in alpha-syntrophin deficient mice, where AQP4 is not 

properly targeted to the cell membrane.

5.5. Neurovascular Coupling

As previously discussed, the maintenance of brain homeostasis alongside cognitive 

processing requires substantial energy expenditures compared to the rest of the body. 

Though the brain only accounts for 2% of total body mass, it consumes up to 20 % of the 

whole-body energy budget and calculations estimate that the greatest proportion of the 

energy expenditure in the brain is attributable to synaptic transmission (Howarth et al., 

2012). Therefore, it is likely that synaptic transmission will be heavily impacted by 

reductions in cerebral blood flow (CBF) that prevent sufficient energy supply to the brain. 

Autoregulatory mechanisms ensure that CBF is not impacted as a consequence of alterations 

in systemic blood pressure, thereby ensuring basal CBF is maintained and the brain 

continues to receive adequate blood supply at all times. In the resting brain CBF varies in 

proportion to the energy consumption of each brain region such that CBF is higher in 

regions with higher energy utilization and lower in regions consuming less energy (Iadecola, 

2017). CBF is also regulated in response to brain activity such that increases in neural 

activity lead to increases in CBF which are highly localized to activated brain regions. This 

response is known as functional hyperemia or neurovascular coupling (Freygang and 
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Sokoloff, 1958; Cox et al., 1993; Iadecola, 1993; Chaigneau et al., 2003) and is thought to 

reflect the need for a well-timed delivery of oxygen and glucose to activated brain regions at 

times of intense activity. In fact, CBF increases to such an extent that more oxygen is 

provided to active brain regions than is consumed (MacVicar and Newman, 2015). Granted, 

increases in CSF may also reflect the need to clear active regions of potentially toxic 

byproducts of neural activity (e.g. lactate, CO2, Aβ, tau) as well as for brain temperature 

regulation (Tarasoff-Conway et al., 2015). A series of studies have demonstrated that 

neurovascular coupling is mediated, to a significant degree, by calcium-dependent astrocytic 

mechanisms.

5.6. Arachidonic acid metabolite-mediated neurovascular coupling

For arterioles, glutamate released during routine neural activity plays a critical role in 

informing the blood vessel of the requirement for increased local CBF. Glutamate released 

from presynaptic neurons acts on astrocytic metabotropic glutamate receptors (mGluR) 

resulting in increased levels of intracellular calcium (Fig. 6a). Increased intracellular Ca2+ 

levels lead to the activation of phospholipase A2 (PLA2), an enzyme localized to the 

astrocytic endfoot responsible for liberating arachidonic acid from plasma membrane lipids. 

In 2004 Mulligan and MacVicar showed that Ca2+ transients in astrocytes lead to arteriolar 

constriction which directly contradicted a 2003 study by Zonta et al. demonstrating that 

Ca2+ transients induce arteriolar dilation (Zonta et al., 2003; Mulligan and MacVicar, 2004). 

Subsequent work by Metea and Newman (2006) showed that, in the same preparation, Ca2+ 

uncaging in astrocytes and retinal glial cells could trigger both arteriolar constriction and 

dilation (Metea and Newman, 2006).

It has since been elucidated that three mechanisms control arteriole diameter through 

arachidonic acid metabolism. As a consequence of mGluR activation, intracellular Ca2+ 

concentrations increase via IP3 signaling resulting in activation of phospholipase A2 

(PLA2), which generates arachidonic acid (AA) from the plasma membrane. Arachidonic 

acid can itself act as a signaling molecule or be converted to several different lipid 

derivatives, each of which act on vascular smooth muscle cells through different 

mechanisms to influence vessel diameter. In order to induce vasoconstriction, AA must be 

converted into 20-hydroxyeicosatetraenoic acid (20-HETE) by the cytochrome P450 4A 

(CYP4A) enzyme (Gordon et al., 2008). 20-HETE functions to inhibit smooth muscle cell K
+ conductance to depolarize and contract these cells (Lange et al., 1997) (Fig. 6c). 

Conversely, for vasodilation, AA must be converted to prostaglandin E2 via COX enzymes 

or to epoxyeicosatrinoic acids (EETs) by CYP2C11 enzymes (Fig. 6b). In 2008 work by 

Gordon et al. demonstrated that the vascular response to astrocyte Ca2+ transients is dictated 

by brain metabolic elements such as oxygen, lactate, and adenosine (all of which rapidly 

change during neuronal activity; both electrical and sensory stimulation triggers a fall in 

tissue pO2 and an increase in external lactate.

Irrespective of whether an astrocyte is inducing constriction or dilation of an arteriole, the 

first step involves the liberation of AA from the plasma membrane by Ca2+-sensitive PLA2. 

In response to high pO2 AA is converted to 20-HETE by the CYP4A enzyme. The 

combination of low extracellular adenosine levels and 20-HETE leads to an elevation in 
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smooth muscle cell free Ca2+ and subsequent arteriolar constriction (Gordon et al., 2008). 

On the other hand, low pO2, results in AA being converted to PGE2 by COX then released 

via diffusion. Prostaglandin transporters normally take up PGE2 from the extracellular 

space; however, as external lactate level begin to rise as a consequence of enhanced 

glycolysis, lactate attenuates PGE2 clearance, resulting in the accumulation of this 

vasodilator which acts on smooth muscle cells (Gordon et al., 2008). Importantly, 

extracellular adenosine levels also rise as a consequence of low pO2. Extracellular adenosine 

reduces smooth muscle cell intracellular free Ca2+ via A2A receptor activity, thereby 

blocking the constrictor pathway and facilitating the switch from vasoconstriction to 

vasodilation (Gordon et al., 2008).

It is worth nothing that, although regulation of cerebral blood flow was traditionally thought 

to occur at the level of arterioles, capillaries are also enveloped by contractile pericytes and 

are better spatially situated to respond to neuronal activity and control blood flow at a more 

local level. This fact, alongside more recent studies revealing mGluR5 expression is 

downregulated in adult astrocytes and animals lacking the primary IP3 receptor in astrocytes 

display unaltered neurovascular coupling, led Mishra et al. to reinvestigate the role of 

astrocytes in neurovascular coupling (Mishra et al., 2016). Data now suggests that neuronal 

activity induces ATP release from postsynaptic neurons which acts on astrocyte ATP 

receptors containing P2 × 1 subunits to induce intracellular rises in Ca2+. Increased 

intracellular calcium in turn activates PLD2, resulting in AA synthesis via DAGL, and 

downstream metabolism by COX1 into vasodilatory PGE2. PGE2 then works by acting on 

capillary pericytes to induce dilation via the EP4 receptor. Interestingly, this study also 

found that, in contrast to capillary dilation, arteriole dilation does not depend on P2 × 1 

receptors, PLA2, PLD2 or astrocyte calcium signaling. Rather, arteriole dilation was shown 

to be dependent upon NMDA receptor activation and nitric oxide synthesis. The divergence 

of new data may be a reflection of the different kinds of stimuli applied as well as the 

surveyed brain region. Thus, mGluR-driven astrocyte Ca2+ signaling likely still contributes 

to arteriole dilation, though this mechanism may decrease in importance with age.

5.7. Potassium-mediated neurovascular coupling

K+ is vasoactive, meaning that when K+ is infused into the arterial supply of a vascular bed, 

blood flow increases. K+-mediated vasodilation occurs when hyperpolarization of vascular 

smooth muscle cells following neuronal activity is detected by astrocytic end-feet processes 

adjacent to synapses. Neuronal activity results in PLC-mediated liberation of IP3 and DAG 

from membrane PIP2 pools, ultimately inducing the propagation of an IP3-mediated Ca2+ 

wave into astrocytic end-feet (Longden and Nelson, 2015). The resulting Ca2+ wave 

engages the large-conductance Ca2+-dependent K+ channel BK (MaxiK) on the astrocyte 

endfoot plasma membrane thereby initiating the efflux of K+ into the extracellular space 

between the astrocyte endfoot and vascular smooth muscle cell (Fig. 6b). The resulting rise 

in extracellular K+ levels activates strong inwardly rectifying K+ channels (Kir2.1 or Kir2.2) 

on vascular smooth muscle cells of intracerebral arterioles, leading to membrane 

hyperpolarization, closure of voltage dependent Ca2+ channels, vasodilation and subsequent 

increases in blood flow (Filosa et al., 2006; Longden and Nelson, 2015). In this case, 

increased blood flow sustains the augmented metabolic needs of the locally activated 

Price et al. Page 16

Ageing Res Rev. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



neurons. Notably, more intense neuronal activity leads to the propagation of larger Ca2+ 

waves into astrocytic end-feet ultimately promoting the release of higher concentrations of K
+ from the astrocyte endfoot (Longden and Nelson, 2015). This, in turn, leads to the 

depolarization of the vascular smooth muscle cell membrane, VDCC activation, and 

subsequent vasoconstriction. Studies have demonstrated that blocking BK channels 

pharmacologically or ablating the gene encoding these channels results in a reduction of 

whisker stimulation-evoked blood flow increases in the cortex, ultimately garnering support 

for the BK channel mediated hypothesis of neurovascular coupling (Filosa et al., 2006; 

Girouard et al., 2010).

Of consideration is that, in response to increased metabolic demand, the dilation of arterioles 

in the area of activation may not increase blood flow in that region effectively unless 

upstream vessels also dilate. In other words, increasing blood flow into the microcirculation 

(i.e. capillary beds) may require a reduction in resistance upstream. The extensive coupling 

of endothelial cells as well as the electric coupling existing between endothelial cells and 

vascular smooth muscle cells allows for coordinated dilating responses along the length of 

the intracerebral arteriole. Once initiated via the local activation of K+ channels in 

endothelial cells, hyperpolarization is conducted along gap junctions and spreads into the 

surrounding vascular smooth muscle cells through myoendothelial gap junctions to promote 

their relaxation (i.e. dilation (Segal, 2015)).

6. Astrocyte endfoot disruption in AD and related disorders

6.1. Aging and AD

Several studies have demonstrated astrocytic endfoot disruption in both murine models and 

human AD. Astrocytic end feet surrounding vascular Aβ deposits exhibit morphological 

changes including retraction and swelling, as well as reduced expression of glutamate and 

lactate transporters (Merlini et al., 2011). These alterations were shown to occur at early 

stages of the disease and are consistent with neurovascular uncoupling. Further, as 

previously discussed, AQP4 facilitates CSF flow into the brain parenchyma allowing it to 

mix with ISF (Iliff et al., 2012; Kress et al., 2014). The CSF-ISF fluid mixture containing 

toxic proteinaceous metabolites is then driven towards the venous perivascular space where 

it ultimately exits into meningeal lymphatic vessels and the systemic circulation. (Xie et al., 

2013) Interestingly, AQP4 gene expression has been shown to increase in the cerebral and 

cerebellar cortices as well as the hippocampal CA1 region of aged mice (Gupta and 

Kanungo, 2013; Bronzuoli et al., 2019). This increase in AQP4 gene expression may reflect 

a physiological need to compensate for astrocyte morphological and/or functional alterations 

known to occur throughout the aging process. Yet, despite this perceived physiological need, 

loss of perivascular localization of AQP4 has been reported in 24-month-old TgSwDI mice, 

which develop age-dependent accumulation of amyloid (Duncombe et al., 2017). Notably, 

similar results have been demonstrated in postmortem frontal cortex of cognitively normal 

individuals as well as individuals with histopathologically confirmed AD. In 2017, 

Zeppenfeld et al. demonstrated that altered AQP4 expression is associated with advancing 

age and that, when controlling for age, loss of perivascular AQP4 localization was associated 

with increased levels of Aβ and tau. Perhaps more convincing of the brain’s need to 

Price et al. Page 17

Ageing Res Rev. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



continuously remove toxic metabolic waste via glymphatic drainage is the fact that 

Zeppenfeld et al. also demonstrated that preservation of perivascular AQP4 localization in 

aged brains was predictive of preserved cognitive abilities (Zeppenfeld et al., 2017).

6.2. Cerebral amyloid angiopathy (CAA)

Cerebral amyloid angiopathy (CAA) refers to the deposition of beta amyloid in the media 

and adventitia of small arteries, arterioles, and (less often) the capillaries of the 

leptomeninges and cerebral cortex (Viswanathan and Greenberg, 2011). Although CAA and 

AD pathology frequently co-occur, CAA is also often present in the brains of cognitively 

normal individuals. Unlike AD-induced brain injury, which centers on Aβ-triggered loss of 

synapses and neurons, CAA-driven brain injury appears to arise from blood vessel 

dysfunction characterized either by the loss of vessel integrity and subsequent hemorrhage 

or by hypoperfusion and subsequent ischemic events (Greenberg et al., 2020). Like other 

vascular risk factors implicated in the development of dementia (i.e. atherosclerosis, 

hypertension, diabetes mellitus, hyperhomocysteinemia, and cerebrovascular small vessel 

disease) CAA itself, in the absence of comorbid pathologies, can cause dementia.

In 2009 Wilcock et al. crossed mouse strains expressing the Swedish APP mutation or the 

Swedish, Dutch, and Iowa APP mutations (APPSw or APPSwDI, respectively) with mice 

lacking the gene for inducible nitric oxide synthase (NOS2) to generate unique models 

displaying all three primary pathological features of Alzheimer’s disease (i.e. amyloid 

deposition, tau pathology, and neuronal loss). Interestingly, the resulting mouse models were 

shown to demonstrate clear differences in vascular amyloid deposition thereby allowing the 

investigators to compare astrocyte characteristics in mice with mild CAA (APPSw), 

moderate CAA with tau pathology and neuron loss (APPSw/NOS2−/−), severe CAA 

(APPSwDI), and severe CAA with tau pathology and neuron loss (APPSwDI/NOS2−/−). 

This study revealed that moderate-to-severe levels of CAA lead to decreases in the number 

of astrocytic processes contacting the vasculature in the cerebral cortex and hippocampus. 

Furthermore, this study demonstrated that mice with moderate-to-severe CAA experience 

significant reductions in AQP4-positive staining associated with blood vessels as well as 

decreased Kir4.1 and MaxiK (i.e. BK) gene and protein expression compared to mice with 

mild CAA (Wilcock et al., 2009). Notably, changes in Kir4.1 and MaxiK gene and protein 

expression were not isolated to transgenic mice but were also demonstrated in human AD 

cases with apparent CAA. Results of the aforementioned study are further supported by 

others showing that, in response to vascular amyloid deposition, astrocytes secrete 

inflammatory cytokines, metabolizing enzymes, and ROS thereby contributing to 

neuroinflammation and possibly contribute to subsequent alterations in BBB integrity and 

astrocytic end-feet-specific channels (Niwa et al., 2000; Yin et al., 2006; Yang et al., 2007; 

Miners et al., 2010; Carrano et al., 2012; Han et al., 2015).

6.3. Vascular contributions to cognitive impairment and dementia (VCID)

Vascular contributions to cognitive impairment and dementia (VCID) is an umbrella term 

used to define conditions arising from vascular brain injuries that lead to significant decline 

in memory, thinking and behavior (Price et al., 2018). It serves as the second leading cause 

of dementia, behind only AD, and can be attributed to a number of pathologies (Corriveau et 
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al., 2016). Studies suggest vascular injury precedes hallmark AD pathologies, thereby 

highlighting a role for neurovascular dysfunction in AD progression (Canobbio et al., 2015; 

Janota et al., 2016). One major, yet underappreciated, modifiable risk factor for VCID is 

hyperhomocysteinemia (HHcy), a condition in which individuals exhibit elevated plasma 

homocysteine levels and are therefore more likely to suffer cardiovascular disease, stroke, 

VCID, and AD (Graham et al., 1997; Bostom et al., 1999; Eikelboom et al., 1999; Beydoun 

et al., 2014). HHcy has also been associated with hippocampal atrophy, white matter lesions, 

and lacunar infarcts (Vermeer et al., 2002; Firbank et al., 2010).

In 2013, Sudduth et al. described a HHcy model of VCID that emulates multiple VCID 

pathologies including neuroinflammation, cognitive impairment, and blood-brain barrier 

breakdown culminating in microhemorrhages throughout the cerebral cortex and, less 

frequently, the hippocampus (Sudduth et al., 2013). In this model, HHcy is induced through 

dietary modification that eliminates vitamins B6, B9 (folic acid), and B12 from mouse 

chow; all of which are essential cofactors of the enzymes responsible for converting 

homocysteine. In 2017, Sudduth et al. built upon this work by demonstrating that astrocytic 

end-feet are disrupted in mice on a HHcy-inducing diet. They found astrocytic endfoot 

disruption was characterized by a reduction in Dp71 labeling concurrent with reduced 

vascular labeling for AQP4. Their model also exhibited reduced gene and protein expression 

of the Kir4.1 and MaxiK potassium channels. Considering microglial activation is apparent 

in the HHcy model at all time points examined, Sudduth et al. concluded that microglial 

activation and subsequent pro-inflammatory responses precede astrocytic changes. This is 

important given astrocytic end-feet are anchored to the vascular basement membrane by an 

α-β dystroglycan complex (Noell et al., 2011; Gondo et al., 2014). There are a number of 

proteinases capable of degrading such protein complexes, however, matrix metalloproteinase 

9 (MMP9) has been shown to be a major β-dystroglycan-degrading enzyme (See (Weekman 

and Wilcock, 2016) for review). As such, in 2018, Price et al. proposed that HHcy induces a 

pro-inflammatory response at the vasculature resulting in the activation of astrocyte-derived 

MMP9 which acts in two ways: 1) MMP9 cleaves the a-b dystroglycan complex leading to 

subsequent disruption of the astrocytic connection to the vasculature and 2) MMP9 degrades 

the dystrophin Dp71 anchoring complex initiating the downregulation of astrocytic endfoot 

channels; the end result of which is likely impaired potassium homeostasis and insufficient 

neurovascular coupling.

Estimates suggest at least 60 % of AD patients have co-occurring cerebrovascular 

pathologies (such as CAA, micro- and macro-infarcts, micro- and macro-hemorrhages, 

cerebral hypoperfusion, white matter hyperintensities, and stroke) hypothesized to act as a 

secondary “hit” to the brain that lowers the threshold for cognitive impairment in persons 

with existing AD pathology (Schneider and Bennett, 2010; Vemuri and Knopman, 2016). In 

2019, Weekman et al. demonstrated a robust neuroinflammatory response, followed by 

cognitive defeats, microhemorrhages, and the redistribution of amyloid from the 

parenchyma to the vasculature in a VCID/AD comorbidity mouse model (Weekman et al., 

2019). Given this study showed significant increases in TNFα and IL-1β, two pro-

inflammatory cytokines responsible for activating MMP9, one can speculate this 

comorbidity model also displays astrocytic endfoot disruption. Furthermore, the pathological 

activation of astrocyte derived MMP9 likely has additional consequences for BBB integrity.
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6.4. Additional consequences for blood-brain-Barrier (BBB) integrity

The BBB is a tightly sealed, continuous endothelial membrane enveloped by perivascular 

astrocytic endfeet (Sweeney et al., 2018). Tight junction proteins (occludins, claudins, and 

junctional adhesion molecules or JAMs) between the endothelial cells confer high 

transendothelial electrical resistance and low paracellular and transcellular permeability 

(Zlokovic, 2011). The average distance between the BBB and neurons (~8um) allows for the 

rapid exchange of molecules between capillaries and neurons (Pardridge, 2015). Thus, the 

BBB regulates the composition of the neuronal internal milieu, which is essential for proper 

neuronal and synaptic function (Zhao et al., 2015).

Increased BBB permeability has been reported both in normal aging and AD, among other 

neurodegenerative conditions (Montagne et al., 2015). Studies using advanced dynamic 

contrast-enhanced MRI have demonstrated BBB breakdown occurs before brain atrophy or 

dementia in the hippocampus (Montagne et al., 2015) and several gray and white matter 

regions (van de Haar et al., 2016, 2017) in both mild cognitive impairment (MCI) and early 

AD. BBB breakdown in AD has been further confirmed by more than 20 independent 

postmortem human neuropathology studies. Some studies have identified peripheral 

macrophages (Hultman et al., 2013) and neutrophils (Zenaro et al., 2015) suggesting BBB 

breakdown allows the influx of circulating leukocytes into the brain; while others have 

shown perivascular accumulation of blood-derived neurotoxic products (e.g. fibrinogen, 

thrombin, albumin, IgG, and hemosiderin) alongside pericyte and endothelial degeneration, 

loss of tight junction proteins, and red blood cell (RBC) extravasation (See (Nelson et al., 

2016) for review). This is quite problematic given RBC-derived hemoglobin and free iron 

generate ROS, which subjects neurons to oxidant stress; while fibrinogen, plasminogen, 

thrombin and autoantibodies induce neuroinflammation, neuronal damage, and immune cell 

recruitment into the brain. Additionally, the presence of albumin may lead to the 

development of edema, followed by hypoperfusion and subsequent tissue hypoxia.

Although astrocytes are crucial for maintaining BBB characteristics in endothelial cells 

through the release of specific growth factors (VEGF, GDNF, bFHF, and ANG-1), astrocyte 

reactivity can lead to the secretion of cytokines and proteases that negatively impact 

endothelial tight junctions, pericyte phenotype, and BBB permeability. As previously 

suggested, BBB dysfunction is commonly observed alongside activation of matrix 

metalloproteinases (MMPs), of which astrocytes are the main source. Under physiologic 

conditions, secreted MMPs aid in remodeling the pericellular environment though the 

cleavage of extracellular matrix proteins. Conversely, MMPs also possess the ability to 

stimulate numerous pro-inflammatory mediators (CXCL-8, IL-1β, TNFα, etc.), and are 

themselves up-regulated by neuroinflammatory stimuli such as oxidative stress, cytokines, 

and Aβ pathology. In fact, accumulating evidence suggests MMPs are key regulators of Aβ 
metabolism and play a role in astrocyte-mediated Aβ degradation. The gelatinase class of 

MMPs, which consists of MMP2 and MMP9, can digest the endothelial basal lamina and 

tight junction scaffold proteins, both of which are necessary for BBB integrity (Qiu et al., 

2011; Zhang et al., 2012). The gelatinase MMPs also have a high affinity for dystroglycan, 

which anchors the astrocytic endfoot to the vascular basement membrane. Due to its variety 

of substrates, the expression, translation, and activity of MMP9 are normally tightly 
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regulated, but may become aberrant in disease. Although MMP9 is more abundant in the 

CSF of AD individuals compared with cognitively normal controls (Stomrud et al., 2010), 

astrocyte derived MMP9 is not the only contributor to BBB dysfunction.

The presence of BBB breakdown is most pronounced in individuals carrying the e4 allele of 

Apolipoprotein E (APOE). In fact, Montagne et al. recently demonstrated that APOE-e4 

individuals are distinguished from those without APOE-e4 by breakdown of the BBB in the 

hippocampus and medial temporal lobe. Notably, this finding is evident in cognitively 

normal APOE-e4 carriers and more severe in those with cognitive impairment but is not 

related to CSF Aβ or tau levels as measured by PET imaging (Montagne et al., 2020). Upon 

analysis of human brain tissue, Montagne and colleagues noted higher activation of the 

cyclophilin A-MMP9 pathway in degenerating capillary pericytes of APOE-e4 carriers when 

compared to individuals homozygous for APOE-e3, confirming a pathogenic mechanism 

earlier described by Bell et al. (Bell et al., 2012). Blanchard et al. expanded upon this work 

by generating a reconstructed BBB model in vitro with iPSC-derived endothelial cells, 

pericyte-like mural cells and astrocytes (Blanchard et al., 2020). Their work shows that 

APOE and NFAT–calcineurin signaling are upregulated in APOE4 pericyte-like iPSC-

derived mural cells (iMC) as well as in pericytes in the human brain. However, while 

addition of astrocytes to the iBBB decreased permeability, it did not substantially alter the 

majority of the functional or transcriptional pathological outcomes measured (further 

suggesting these APOE-mediated effects were primarily due to pericyte-like mural cells). 

Importantly, inhibition of calcineurin/NFAT reduced APOE expression and decreased 

vascular amyloid accumulation both in vitro and in vivo, highlighting the therapeutic 

potential of targeting this pathway (Blanchard et al., 2020).

Though the aforementioned studies draw attention to pericyte dysfunction as the major 

driver of BBB disruption in AD, it is important to consider the intricate crosstalk between 

pericytes, astrocytes, and endothelial cells. Pericytes have been shown to facilitate the 

attachment of astrocytic endfeet to the vascular basement membrane (Ihara and Yamamoto, 

2016; Geranmayeh et al., 2019) and pericyte-deficient mice exhibit reduced AQP4 

expression in astrocytes (Armulik et al., 2010). Conversely, astrocytes have been shown to 

control pericyte migration, differentiation, and the juxtaposition of pericytes to endothelial 

cells (Nakagawa et al., 2009; Brinton et al., 2015). Moreover, astrocyte-derived 

apolipoproteins differentially modulate cyclophilin A signaling in pericytes (Bell et al., 

2012). Thus, dysfunction of either cell type influences the other, likely leading to BBB 

disruption and consequent cognitive impairment.

7. Astrocytes and brain metabolism

As previously discussed, the brain consumes up to 20 % of body’s oxygen (and up to 25 % 

of glucose). Despite this long-known outsized role in energy usage, there are still many 

remaining questions of how tight spatial and temporal coupling of neuronal activity to 

vascular supply of oxygen and nutrients is maintained. ATP is produced via two 

interconnected metabolic pathways, glycolysis and oxidative phosphorylation. The 

contribution of each of these two biochemical pathways varies depending on cell type – for 

example, erythrocytes lack mitochondria and thus rely exclusively on glycolysis. Generally 
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speaking, when ample oxygen is present, most cells generate ATP via oxidative 

phosphorylation, whereas under anaerobic conditions, the faster yet less energetically 

efficient glycolytic pathway is the primary ATP supply source. Undifferentiated cells and 

many cancerous cell types are the prime exceptions to this rule, as they rely heavily on 

glycolysis even in the presence of sufficient oxygen, a feature described as “aerobic 

glycolysis”.

While it is widely accepted that the vast majority of ATP generated in the normal adult brain 

is derived from glucose, the devil remains in the details which are hotly debated— e.g. 

when, where and how much ATP is generated via oxidative vs non-oxidative (“anaerobic” 

glycolysis) glucose utilization (Schurr, 2018)? As critical as it has been in informing on 

global and regional rates of cerebral glucose metabolism in human health and disease, PET 

imaging cannot (yet) provide cell-specific resolution. Thus, much remains unknown 

regarding the contributions of neurons vs glia – i.e. what is the individual metabolic 

programming of each distinct cell type in the brain, and how do they interact? Still, in vitro 

studies have provided much critical information in defining the metabolic profiles of various 

CNS cell types, and in most cases have been confirmed ex vivo and/or in vivo. Generally 

speaking, these studies collectively paint a picture whereby astrocytes are primarily 

glycolytic, while neurons are primarily oxidative and have a high rate of glucose flux into 

the pentose phosphate pathway.

7.1. Cerebral metabolic changes in Alzheimer’s disease; a role for astrocytes?

Glucose hypometabolism, or decreased cerebral metabolic rate of glucose (CMRglc), is 

typically defined by a decrease in the uptake of 18 F-deoxyglucose (FDG) as measured by 

PET imaging. This cerebral glucose hypometabolism is a hallmark of AD (Small et al., 

2000), and FDG-PET is able to differentiate AD from other types of dementia with a high 

degree of specificity due to specific regional patterns of signal (Laforce and Rabinovici, 

2011). Clinical AD symptoms essentially never occur without glucose hypometabolism, and 

the extent of the metabolic changes are strongly correlated with the severity of clinical 

symptoms (Grady et al., 1986; Haxby et al., 1990; Blass, 2002). Furthermore, recent 

evidence suggests that these alterations in glucose metabolism occur very early in the 

neurodegenerative process (Small et al., 1995; Reiman et al., 1996; de Leon et al., 2001; 

Mosconi et al., 2008). What is the contribution of astrocytes to this signal?

In vivo studies aimed at determining the contribution of neurons vs astrocytes to glucose 

uptake have produced varying results, with some studies showing higher rates of uptake in 

neurons, while others show higher increases in NBDG accumulation in astrocytes (Chuquet 

et al., 2010). A major challenge for distinguishing the relative contributions of neurons and 

astrocytes in glucose uptake is the lack of spatial resolution inherent to modern PET imaging 

techniques. However, advances in cell-specific transcriptional and proteomic analyses may 

be able to offer some important insight. In this regard, a recent large-scale, unbiased 

proteomics analysis of AD brain tissue highlighted several biological pathways among the 

most altered across the patho-clinical progression from normal cognition, to mild cognitive 

impairment, to AD dementia. The pathway most affected across this “disease-span” was 

“glial sugar metabolism” (Johnson et al., 2020). This proteomic node was upregulated in 
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both asymptomatic and symptomatic AD brains and consisted of proteins primarily involved 

in glycogen metabolism and glycolysis, including lactate dehydrogenase (LDH), the enzyme 

responsible for interconversion of pyruvate and lactate. Importantly, the glial sugar 

metabolism cluster identified was reproduced across multiple cohorts, tissues, and proteomic 

techniques, and thus strongly implicates astrocyte metabolism as an upstream driver of AD 

pathology and cognitive decline.

Despite many remaining questions, the central importance of astrocytes in cerebral 

metabolism has become clear. In fact, one of the most well-known neuronal support 

functions of astrocytes is a metabolic one – i.e. the astrocyte-neuron lactate shuttle (ANLS). 

The ANLS is a hypothetical framework for cerebral metabolism (backed by substantial 

evidence), which posits that astrocytes metabolize glucose to lactate, which is then released, 

taken up by nearby neurons and metabolized via oxidative phosphorylation as a fuel source. 

Astrocytes contain the main stores of glycogen in the brain – a store that is broken down to 

glucose, metabolized to lactate and shuttled to neurons. As mentioned, glucose utilization 

and lactate production in astrocytes is closely coupled to the activity of local neurons via 

EAATs (see Fig. 3), which not only take up synaptically released glutamate (for recycling 

via the glutamine/glutamate cycle), but also generate electrochemical gradients that 

stimulate glucose uptake and utilization via glycolysis. Inhibition of astrocyte glycogen 

metabolism at any of these steps has been shown to be detrimental to both acute neural 

function and for the extended processes of LTP and memory formation. Accumulating 

evidence over the past 25 years reveals that neurons actively utilize lactate as an energy 

source, and in fact, when presented with the choice, neurons preferentially utilize lactate 

over glucose (van Hall et al., 2009; Wyss et al., 2011). Given that lactate is an energy 

substrate used by the brain (Newington et al., 2013) and a competitive glucose alternative 

(Tabernero et al., 1996; Bouzier-Sore et al., 2006; Rasmussen et al., 2011), it is perhaps 

important to revisit the decreased FDG-PET signal in AD knowing that lactate itself has 

been shown to decrease FDG-PET signal (Smith et al., 2003). Thus, a potential increase in 

astrocyte-derived lactate may serve to compete with glucose as a substrate for brain 

metabolism and decrease CMRglc.

With the current understanding that this critical source of neuronal lactate is astrocyte 

derived, it becomes clear how this cell type (and its relative rate of lactate production) might 

play a foundational role in brain health and homeostasis. As noted above, aerobic glycolysis 

refers to the metabolism of glucose to lactate instead of the oxidative TCA cycle, despite the 

presence of abundant oxygen. This seemingly counterintuitive phenomenon actually occurs 

quite frequently in the young human brain, with a peak around five years of age (when up to 

30 % of the brain’s glucose is processed this way), and then gradually declines with age 

(Goyal et al., 2017). Further, this process appears to be both regionally and cell-type 

specific, with astrocytes playing a major role in certain regions such as the precuneus, 

posterior cingulate cortex, and dorsolateral prefrontal cortex (Magistretti, 2016). 

Interestingly, the areas associated with high rates of aerobic glycolysis tend to overlap with 

areas known to accumulate amyloid β, indicating that perhaps the metabolic profile of 

certain brain regions may predispose them to later life amyloid burden (Vlassenko et al., 

2010).
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While the brain primarily relies on glucose as an energy substrate, other energy substrates – 

mainly fatty acids and ketone bodies – also contribute significantly to cerebral metabolism. 

While the traditional view has long been that the brain does not utilize a significant amount 

of fatty acids (FA), recent studies prove otherwise, estimating up to 20 % of cerebral ATP is 

generated from FA (Ebert et al., 2003; Panov et al., 2014). Although transport of FA through 

the BBB may be too limited to make FA a primary energy substrate in brain compared to 

glucose, appreciable concentrations of FA cross the BBB and are oxidized, (Allweis et al., 

1966; Dhopeshwarkar and Mead, 1970; Spitzer, 1973) including FA derived from peripheral 

lipoproteins (Gao et al., 2017; Lee et al., 2017). Unlike neurons, astrocytes can readily β-

oxidize FA (Edmond et al., 1987; Auestad et al., 1991). Despite the ability and favorable 

energetics of FA oxidation compared to glucose (the energy density of fat is over twice that 

of carbohydrate), the astrocytes (and the brain at large) still appear to largely avoid FA 

oxidation. Several explanations for this avoidance have been proposed (Schonfeld and 

Reiser, 2013). First, neuronal activation is a temporally constrained process that requires 

rapid responses to meet energy demands, and while FA β-oxidation is more efficient than 

glycolysis on a molar basis, it is a biochemically slower process. Second, an increased rate 

of FA oxidation would require more oxygen (1 mol of palmitate for example would require 

23 mol of oxygen, versus just 6 per mole of glucose), potentially leading to cerebral 

hypoxia. Third, an increased rate of FA oxidation would result in increased generation of 

ROS, and in spite of high pentose phosphate pathway activity to manage these ROS, neurons 

are particularly sensitive to oxidative stress (Wang and Michaelis, 2010; Schonfeld and 

Reiser, 2013).

Fatty acids also serve as the precursor to ketone bodies, another important cerebral energy 

substrate. Ketone bodies (acetoacetate, beta-hydroxybutyrate, and acetone (the breakdown 

product of acetoacetate)), are small molecules produced by the liver from fatty acids. 

Ketones are primarily produced by the liver during periods of very low carbohydrate intake, 

such as prolonged fasting, carbohydrate restricted diets, intense exercise, and/or starvation. 

Cerebral ketone body uptake is directly correlated to circulating levels (i.e. it is “pushed” 

into the brain at a rate proportional to plasma concentrations), and the brain readily utilizes 

ketone bodies for energy production. Interestingly, ketone body utilization rates change 

dramatically over the course of the lifespan (Cunnane et al., 2011). Unlike the adult human 

brain, which appears to only utilize ketones during periods of glucose insufficiency, infants 

use ketones both as a primary source of ATP and as a principal substrate for lipid synthesis 

in the brain (Cunnane et al., 2003).

Interestingly, astrocytes appear to be a local source of ketone synthesis. In fact, astrocytes 

are the primary site of fatty acid oxidation and the only known source of ketone body 

production in the brain (Edmond et al., 1987; Edmond et al., 1998; Blazquez et al., 1999; Le 

Foll and Levin, 2016). In addition to using fatty acids as precursors for the synthesis of 

ketone bodies which are then exchanged with neurons, astrocytes can also produce ketones 

from amino acids (Auestad et al., 1991; Guzman and Blazquez, 2001). Importantly, cell 

culture studies suggest that when glucose availability is limited, astrocytes readily shift their 

metabolism from glycolysis to fatty acid oxidation and efficiently utilize fatty acids as their 

primary source for ATP generation (Weightman Potter et al., 2019). Moreover, studies show 

that even when sufficient glucose is available, ketone supplementation results in decreased 
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cerebral glucose uptake, suggesting that ketones may actually be the preferred substrate for 

the brain (Hasselbalch et al., 1995). Additionally, 11C-acetoacetate (AcAc) PET studies have 

shown that, unlike glucose uptake, cerebral uptake of AcAc did not significantly differ 

between AD and MCI brains and those of cognitively healthy controls in all brain regions 

measured (Cunnane et al., 2016). These observations have led some to suggest ketones as a 

therapeutic energy substrate replacement for glucose, given that AD is associated with 

consistent and progressive decreases in glucose uptake. Further support for this idea is 

garnered from the fact that the menopausal transition is also characterized by reductions in 

brain glucose metabolism and mitochondrial respiration (Yao et al., 2010; Ding et al., 2013; 

Brinton et al., 2015; Yin et al., 2015; Mosconi et al., 2017a, 2017b). When ketone 

availability is limited myelin lipids are used to generate ketone bodies, thereby inducing 

myelin catabolism (Klosinski et al., 2015) and subsequent loss of white matter volume 

(Mosconi et al., 2017a, 2017b). Furthermore, this hypometabolic state is known to promote 

Aβ accumulation (Mattson and Magnus, 2006; Brinton et al., 2015); an effect that is only 

exacerbated in postmenopausal, APOE-e4 carriers (Mosconi et al., 2017a, 2017b). Several 

approaches designed to increase circulating ketone body concentrations have been proposed, 

including indirect pharmacological stimulation of ketone production via a variety of 

pathways, prolonged fasting, ketogenic diets, and dietary supplementation of medium chain 

triglycerides (which are metabolized to produce AcAc and BHB). However, while seemingly 

safe and well justified from a neuroenergetic perspective, ignoring glucose hypometabolism 

that accompanies aging and AD in favor of a ketogenic approach requires further long-term 

clinical testing to determine if it is a clinically effective treatment strategy (Cunnane et al., 

2016).

7.2. Metabolic changes in reactive astrocytes

The rapidly growing field of immunometabolism has outlined a clear picture of metabolic 

reprogramming in myeloid cells during activation. Advances in cancer research have 

provided detailed descriptions of the metabolic shift from oxidative phosphorylation 

(resting) to glycolysis (activated) in immune cell populations – findings that have also 

applied to microglia as neuroinflammation and immunometabolism have pushed to the 

forefront in the AD field. Despite new knowledge regarding the intersection between 

microglial activation and metabolism, comparatively little is known about the metabolic 

consequences of astrocyte activation, particularly in vivo.

Unlike microglia, which at rest rely primarily on oxidative phosphorylation for ATP 

production, astrocytes are thought to be preferentially glycolytic. Recent transcriptomic 

studies examining astrocyte reactivity under a variety of injury or disease paradigms have 

provided invaluable datasets in which to explore metabolic changes during reactivity – some 

of which hint at increased glycolysis in reactive astrocytes (Zamanian et al., 2012; Liddelow 

et al., 2017, Boisvert et al., 2018). The relative youth of the field means that studies 

specifically addressing metabolic changes in reactive astrocytes are still relatively sparse. 

Nonetheless, a handful of studies have begun to directly examine astrocyte, as opposed to 

microglial, metabolic reprogramming following exposure to pro-inflammatory stimuli 

(Afridi et al., 2020). For example, experiments by various groups consistently revealed 

similar phenotypic changes characterizing the metabolic response of reactive astrocytes as 
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increased ATP production via glycolysis and reduced oxygen consumption (Ferrick et al., 

2008; Motori et al., 2013). Similarly, Allaman et al. demonstrated increases in glycolysis 

and lactate release in astrocytes following exposure to Aβ (Allaman et al., 2010). 

Additionally, a study by Jiang and Cadenas showed that rat primary astrocytes exhibit age-

dependent increases in mitochondrial oxidative metabolism in concert with augmented 

responses to inflammatory cytokines (Jiang and Cadenas, 2014). Treatment with IL-1β and 

TNFα stimulate oxidative phosphorylation and mitochondrial biogenesis in these rat 

astrocytes, suggesting that the increased mitochondrial respiration and inflammatory 

response are interconnected (Jiang and Cadenas, 2014). In sum, these studies highlight an 

intriguing inflammation-induced shift toward glycolysis in reactive astrocytes. Granted, it 

remains unclear whether these changes reflect mitochondrial dysfunction or a “voluntary” 

reprogramming toward glycolysis.

8. Astrocytes and sleep disturbances

Although dementia disorders are not a normal part of aging, advanced age is the most 

profound risk factor for AD and other related dementias [62]. The risk imposed by age may 

be due in part to the association between normative aging and the reduced ability to initiate 

and maintain sleep [63]. Both sleep-wake abnormalities and circadian dysfunction are 

prevalent in AD (Pollak and Perlick, 1991; Vitiello and Borson, 2001; McCurry and Ancoli-

Israel, 2003; Bliwise, 2004). In fact, compared to cognitively normal older adults, 

individuals with AD experience more fragmented sleep and insomnia, with estimates 

approaching 25–66 % of mild-to-moderate AD patients being affected (Bianchetti et al., 

1995; Guarnieri et al., 2012). Sleep deprivation has not only been shown to impair memory 

consolidation but a bidirectional relationship between poor sleep quality and AD has been 

reported. In 2014, Ju et al. demonstrated that patients with AD experience sleep disturbances 

and also showed that poor sleep predisposes individuals to AD. Interestingly, emerging 

evidence suggests that sleep disturbances precede clinical AD diagnoses by years. In 2013 

Hita-Yañez et al. reported shorter bouts of REM sleep and increased slow wave sleep 

fragmentation in individuals with MCI (Hita-Yanez et al., 2013). Additionally, this same 

study found that disruptions in REM sleep were exacerbated in APOE-e4 carriers, indicating 

that, even in prodromal phases, sleep disturbances exist in individuals with increased risk of 

developing AD.

Recent studies have shown that both neurons and glial cells are essential for sleep. In 2009, 

Halassa et al. provided the first evidence that the sleep/wake cycle is modulated by 

astrocytes [64]. It is now understood that astrocytes promote sleep drive through the release 

of adenosine, an endogenous sleep promoting factor in the brain (Porkka-Heiskanen et al., 

1997), which acts on adenosine A1 receptors to induce presynaptic inhibition [64]. 

Astrocytes also promote sleep-dependent brain-waste clearance mechanisms and aid in 

shifting neocortical neuronal activity to synchronized slow-oscillations, a hallmark of slow-

wave (i.e. deep) sleep, by altering extracellular glutamate levels (Poskanzer and Yuste, 

2016). A recent study by Bojarskaite et al. quantified astrocytic Ca2+ signaling during 

natural sleep and found that astrocytic IP3-mediated Ca2+ signaling changes across the sleep/

wake cycle, being reduced during sleep but abruptly increasing prior to behavior and 

neurophysiological signs of the sleep-to-wake transition (Bojarskaite et al., 2020). It should 
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be noted that astrocytic Ca2+ signaling was found to precede awakenings from slow-wave 

sleep (both non-REM and IS sleep), but not from REM sleep. Interestingly, this is consistent 

with the temporal profile of cortical norepinephrine (NE) release from locus coeruleus (LC) 

neurons upon awakening, suggesting that astrocytic Ca2+ signals upon awakening are 

triggered by NE. Notably, LC degeneration and subsequent NE loss are among the first 

identifiable pathological alterations in AD, appearing around the same time sleep issues 

arise (German et al., 1992). Considering NE is an anti-inflammatory molecule (Heneka et 

al., 2002) which promotes glial-mediated degradation and phagocytosis of Aβ (Kong et al., 

2010), loss of NE suppresses anti-inflammatory responses, thereby inducing a pro-

inflammatory state which impairs Aβ degradation and clearance. Thus, LC degeneration and 

consequent impaired astrocytic Ca2+ signaling could explain the link between the origin of 

sleep abnormalities and the simultaneous accumulation of senile plaques (Chalermpalanupap 

et al., 2013).

In vivo microdialysis studies have shown that levels of Aβ rise in the ISF of the CNS during 

wakefulness and decline during sleep (Kang et al., 2009). A single night of sleep deprivation 

has been shown to increase morning Aβ42 levels in the CSF of healthy young adults (Ooms 

et al., 2014). Similarly, a recent study found that sleep deprivation increased overnight CSF 

levels of Aβ38, Aβ40, and Aβ42 by 25–30 % compared to controls who had a night of 

normal sleep (Lucey et al., 2018). Moreover, the clearance rate of Aβ from the CNS of 

individuals with AD is impaired (Mawuenyega et al., 2010). It is now understood that during 

wakefulness there is little exchange between the CNS and the glymphatic pathway; however, 

during sleep, brain waste products such as excessive Aβ and tau are cleared from the ISF by 

a process that requires astrocytes (Xie et al., 2013; Haydon, 2017; Shokri-Kojori et al., 

2018). While it is unclear exactly how the sleep/wake cycle regulates solute exchange in this 

pathway, it is clear that proper perivascular AQP4 localization is crucial. A recent study 

investigated the association of single-nucleotide polymorphisms (SNPs) in the AQP4 gene 

with sleep latency, duration, and the amount of radiolabeled Aβ present on PET scans in 

healthy volunteers age 60 years or older (Rainey-Smith et al., 2018). Rainey-Smith et al. 

found one SNP associated with poor sleep quality and two associated with abbreviated sleep 

duration and enhanced Aβ signal on PET. These results and others suggest that Aβ and tau 

deposition are consequences of impaired clearance rather than of increased production and 

that proper perivascular AQP4 localization is necessary for glymphatic clearance 

(Benveniste et al., 2019).

Yet, studies show that the effect of wakefulness extends beyond control of the glymphatic 

pathway to regulate both structural and transcriptional aspects of astrocytes. Genes 

associated with the ANLS have been shown to be altered in murine cortical astrocytes 

following sleep deprivation (Petit et al., 2013), suggesting astrocytes link neurometabolic 

coupling to the sleep/wake cycle. The fact that wakefulness is associated with increases in 

both glutamate and lactate alongside a simultaneous reduction in glucose levels provides 

further support for this idea (Dash et al., 2009; Naylor et al., 2012; Dash et al., 2013). 

Interestingly, increased wakefulness and neural activity have been shown to regulate 

extracellular Aβ levels in mice (Bero et al., 2011; Roh et al., 2012). In 2012, Roh and 

colleagues demonstrated that in the absence of aggregation in amyloid depositing mouse 

models, diurnal oscillations in Aβ are closely related to the sleep/wake cycle and wake-
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related lactate levels (Roh et al., 2012). Given neural activity and wakefulness increase Aβ 
release, data collectively suggests that sleep disturbances may slow Aβ clearance while 

simultaneously encouraging added wakefulness-induced Aβ release. Together, these data led 

Vanderheyden et al. to hypothesize that slowed clearance increases the chance of Aβ 
oligomerization, aggregation, and subsequent plaque formation and that newly formed 

plaques generate a concentration gradient favoring additional plaque formation. 

Vanderheyden et al. further speculate that this Aβ gradient recruits both astrocyte and 

microglia-driven clearance mechanisms while also effectively mobilizing astrocytes away 

from glutamatergic uptake at synapses, thereby preventing normal ANLS coupling 

(Vanderheyden et al., 2018). Still, astrocytes may also respond to pathological amyloid 

deposition by changing their phenotype, rather than their location (Galea et al., 2015). 

Granted, the number of different astrocyte polarization states remains elusive and the ways 

in which these different astrocyte activation states impact Aβ uptake, ANLS function, and 

sleep require further exploration.

To further complicate matters, deficient slow-wave activity in deep sleep stages has been 

reported in individuals with significant tau pathology. in vivo microdialysis studies have 

shown that increasing excitatory neuronal activity significantly increases ISF tau levels 

within hours (Yamada et al., 2014), and that increased wakefulness leads to rapid elevations 

in extracellular monomeric tau levels, tau spreading and aggregation (Holth et al., 2019). Tau 

pathology is also associated with reduced NREM slow-wave activity in both cognitively 

normal and very mildly cognitively impaired individuals (Lucey et al., 2019). One study 

reported that individuals 60 years or older who present higher tau accumulation on tau PET 

experience decreased slow-wave sleep power, further implicating astrocyte dysfunction as a 

contributor to sleep disturbances in AD.

In all, sleep disturbance is now widely recognized as a highly disruptive behavioral 

manifestation of AD. Changes in sleep efficiency and quality precede the onset of cognitive 

decline in AD patients and progress in parallel with the development of AD pathology and 

cognitive impairment. Though the relationships between the sleep/wake cycle and the 

development of AD-related pathologies are just beginning to be understood, astrocytes 

appear to play a major role given they are essential for normal slow-wave sleep, which is 

itself imperative for the consolidation of new episodic memories. Not to mention, many 

astrocytic functions are likely to be modulated by the sleep/wake cycle considering brain 

metabolism, neural activity, and synaptic turnover change as a function of behavioral state.

9. Astrocyte-specific targeting approaches

While changes in astrocyte signaling molecules and pathways associated with synapses, 

blood vessels and metabolism reflect discrete outcomes of astrocyte reactivity, they are also 

extensively intertwined and may impact one another in deleterious ways, leading to a chain 

reaction of sorts. In fact, many of these signaling events act both upstream and downstream 

of one another, or impact common targets in parallel. For instance, reduced glutamate uptake 

and transporter expression — common biomarkers of astrocyte reactivity— are triggered by 

transcription factor pathways activated by amyloid pathology and neuroinflammation. In 

turn, reduced glutamate uptake is likely to disrupt glucose uptake and modulate the 
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production of lactate, both of which are necessary to drive high fidelity neuronal activity. At 

the same time, excess extracellular glutamate can lead to excitotoxic damage of synapses, 

astrocyte endfeet, and the BBB, which would not only have adverse effects on neurovascular 

coupling and glymphatic clearance of protein aggregates but would also lead to the physical 

erosion of perivascular elements and synapses. The resulting damage, characterized by BBB 

breakdown as well as fragmentation and phagocytosis of synaptic contacts, is likely to 

further exacerbate and maintain elevated neuroinflammatory signaling. Fig. 7 provides an 

admittedly simplified overview of how the various changes in astrocyte signaling discussed 

in this review are interconnected. This incredible degree of integration highlights just how 

delicate the balance is between beneficial and abnormal astrocyte signaling en route to 

progressive chronic astrocyte reactivity during the development of AD. One possible benefit 

of this interconnectivity is that the resolution of astrocyte reactivity (and presumably the 

preservation of neuronal viability and function) could be achieved by targeting any number 

of different astrocyte functions. Testing this idea has proved to be a major challenge for 

pharmacologic approaches, considering most of the potential drug targets discussed here are 

expressed (to some degree) in other cell types of the brain and periphery where they may or 

may not be contributing to pathophysiology. To overcome this challenge, a growing number 

of studies have utilized genetic targeting approaches to selectively modulate astrocyte 

signaling pathways in intact animals.

Below we discuss studies that have targeted transcription factor pathways, connexins, and 

intermediate filament proteins using astrocyte-specific recombinant viruses and/or 

conditional knock-out/knock-in mice. The preponderance of data at this point (summarized 

in Table 1) indicates that interference of astrocyte reactivity at multiple levels can reverse 

neural dysfunction and other biomarkers of AD. Collectively, these data have established 

critical proof-of-principle for astrocyte modulatory strategies in AD, while simultaneously 

corroborating that reactive astrocytes play a causative role in AD pathophysiology. 

Nonetheless, some studies have come to the opposite conclusion— that promotion (rather 

than reduction) of astrocyte reactivity helps to limit pathophysiology and neural dysfunction. 

These mixed findings reinforce the lesson that astrocytes are very heterogeneous, and that 

astrocyte reactivity is a highly complicated (and likely also heterogenous) process that 

requires further extensive investigation. From a therapeutic standpoint, the data compel more 

sophisticated approaches for limiting deleterious effects of reactive astrocytes while 

simultaneously promoting beneficial actions.

9.1. Transcription factor pathways

Modulation of the calcineurin/NFAT pathway was among the very first approaches at 

directly modulating astrocyte specific function in a mouse model of AD-like pathology 

(Furman et al., 2012). Selective expression of the NFAT inhibitory peptide VIVIT in 

APP/PS1 mice using AAV vectors equipped with a GFAP promoter reduced the number of 

large hypertrophied astrocytes in the hippocampus, ameliorated microglial labeling (Iba1), 

stabilized synaptic function (i.e. improved synaptic strength and LTP), and protected 

cognitive function. The effects of VIVIT on amyloid pathology were mild (~20 % 

reduction), but significant. When delivered to hippocampal astrocytes of 5xFAD mice, 

VIVIT increased the expression of Glt-1 transporters, reduced the width and frequency of 
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spontaneous glutamate transients, quelled synaptic hyperexcitability, and preserved neurite 

integrity (Sompol et al., 2017). These results are consistent with numerous other studies 

suggesting that reactive astrocytes negatively impact local neurons via dysregulation of 

glutamate transport (Prow and Irani, 2008; Sama et al., 2008; Zumkehr et al., 2015; Fontana 

et al., 2016; Hefendehl et al., 2016). Cell culture data suggest that calcineurin may mediate 

similar neuroinflammatory and degenerative effects through its interaction with NFκB (Lim 

et al., 2013) and FOXO3 transcription factors (Fernandez et al., 2016). In contrast to these 

observations, hyperactivity (rather than inhibition) of calcineurin in reactive astrocytes has 

been shown to mediate the neuroprotective and nootropic effects of IGF-1 in an AD mouse 

model through interactions with PPARγ signaling pathways, though a more recent study 

found that expression of a similar hyperactive calcineurin fragment disrupted hippocampal 

synaptic strength (Pleiss et al., 2016). Together, these results suggest that calcineurin can 

drive both detrimental and beneficial properties of reactive astrocytes.

Inhibition of the JAK/STAT pathway in reactive astrocytes in mouse models of AD-like 

pathology has produced similar results as calcineurin/NFAT inhibition. Delivery of SOCS3 

(an endogenous JaK/Stat inhibitor) to astrocytes of APP/PS1 or 3xTg mice using AAV 

vectors reduced glial reactivity, lowered amyloid pathology, and improved synaptic function 

and plasticity, whereas delivery of a constitutively active JAK2 subtype exacerbated 

pathology and functional deficits (Ceyzeriat et al., 2018). In a separate study, conditional 

knockout of Stat3 in astrocytes of APP/PS1 mice led to molecular and morphologic changes 

in astrocytes near to amyloid plaques coincident with microglia-mediated phagocytosis of 

Aβ (Reichenbach et al., 2019). Astrocytic STAT3 knockout also corresponded to the reduced 

frequency of neuronal and astrocytic Ca2+ transients as well as improved cognition in 

APP/PS1 mice. In contrast to these observations, inhibition of astrocytic JAK/STAT did not 

reduce amyloid pathology in 3xTg mice (Guillemaud et al., 2020), even though effects on 

glial reactivity were similar to those reported in APP/PS1 mice.

9.2. EAATs

Loss of EAAT2/Glt-1 has been implicated in synaptic deficits, neuronal hyperexcitability, 

and neurodegeneration in AD. To determine if EAAT2/Glt-1 restoration ameliorates synaptic 

and cognitive deficits in the context of AD-like pathology, Takahashi et al., crossed APP 

mice with mice overexpressing EAAT2/Glt-1 selectively in astrocytes (Takahashi et al., 

2015). Compared to APP control mice, APP/EAAT2 mice demonstrated improved 

performance on Y- and T-mazes, as well as a novel object recognition task. Restoration of 

EAAT2/Glt-1 also stabilized synaptophysin levels, reduced amyloid plaque pathology, and 

resulted in an overall increase in survival. These results are similar to other studies that have 

found a variety of protective effects in amyloid and tau rodent models treated with drugs like 

ceftriaxone and riluzole which enhance EAAT2/Glt-1 expression/function (Zumkehr et al., 

2015; Hefendehl et al., 2016; Mokhtari et al., 2017; Pereira et al., 2017; Fan et al., 2018; Wu 

et al., 2020; Yang et al., 2020).

9.3. Connexins

As discussed, Cx43 is a critical component of gap junctions and unapposed plasmalemmal 

hemichannels in astrocytes. When hemichannels expressed on adjacent cells are directly 

Price et al. Page 30

Ageing Res Rev. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



apposed to one another they can form gap junction channels between astrocytes, providing a 

conduit for the intercellular shuttling of ions and small chemical messengers. In contrast, 

unapposed hemichannels provide an open route between the extracellular milieu and the 

astrocyte cytosol. Unapposed hemichannel permeability in primary cells and brain slices is 

increased by inflammatory factors and Aβ, leading to the release of cytotoxic factors (e.g. 

glutamate, ATP) and the damage of local neurons (Yi et al., 2016). In intact APP/PS1 mice, 

hemichannel activity is increased in reactive astrocytes throughout the brain but is especially 

pronounced near amyloid plaques. However, gap junction permeability does not appear to 

change in vivo, whether near to, or distant from amyloid deposits (Yi et al., 2016). 

Conditional knockout of Cx43 in astrocytes of APP/PS1 mice reduced astroglial reactivity, 

increased synapse number, improved neuronal viability, and protected cognition, but did not 

appreciably alter Aβ levels (Yi et al., 2016; Ren et al., 2018).

9.4. GFAP and vimentin knockouts

Astrocyte hypertrophy is perhaps the most commonly reported biomarker of astrocyte 

reactivity. Knockdown of key intermediate filament proteins in astrocytes, including GFAP 

and vimentin, is a highly effective way to suppress hypertrophy and limit the structural 

plasticity of astrocytes. This approach has been used to assess the impact of astrocyte 

hypertrophy in several disease models including traumatic brain injury, stroke, and AD 

(Wilhelmsson et al., 2004; Kraft et al., 2013; Laterza et al., 2018). Combined knockdown of 

GFAP and vimentin in APP/PS1 mice was initially found to reduce astrocyte hypertrophy 

and accelerate amyloid plaque pathology (Kraft et al., 2013). A subsequent study by the 

same group found that GFAP/vimentin knock-down altered the transcriptional profile of 

reactive astrocytes in APP/PS1 mice, characterized by a slight increase in 

neuroinflammatory programs, and the restoration of neuronal support genes (Kamphuis et 

al., 2015). However, while the latter study did observe some mild morphological changes in 

astrocytes, including reduced interaction/coverage of amyloid plaques, no effects on the size 

or total number of plaques were observed. The reason for this discrepancy is unclear but 

may be attributable to different genetic backgrounds. Unfortunately, it remains uncertain 

whether limitation of astrocyte hypertrophy is primarily beneficial, detrimental, or neutral in 

the context of AD pathophysiology.

10. Future directions for astrocyte research in AD

In order to develop and refine astrocyte-targeting strategies for AD, it is critical we better 

understand astrocyte heterogeneity. The recently described A1/A2 distinction for neurotoxic 

and neuroprotective reactive astrocyte (molecular) phenotypes (Liddelow et al., 2017) has 

unquestionably generated intense research around astrocytes. However, like the M1/M2 

distinction for reactive microglia, it’s likely that the A1/A2 nomenclature will fall short of 

satisfactorily describing the complexity of astrocytes in neurodegenerative diseases. New 

single-cell sequencing technologies are revealing extensive differences in the molecular 

signatures of astrocytes depending on brain region, disease state, and proximity to 

neuropathological lesions (Itoh et al., 2018; Tassoni et al., 2019; Wheeler et al., 2020). 

Granted, this heterogeneity may only be touching the tip of the iceberg. In their efforts to 

identify subpopulations of astrocytes that express Glt1 glutamate transporters, Miller et al. 
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(2019) serendipitously discovered a small group of astrocytes in cortical layer V that express 

a unique set of genes/proteins that respond to and maintain local synapses in a specific 

subpopulation of neurons (Miller et al., 2019). It was suggested that the breakdown in this 

highly specific astrocyte-neuron feedback loop was the underlying cause of the 

developmental disorder, Norrie disease. Whether unique astrocyte phenotypes and/or a 

breakdown in astrocyte-neuron networks contributes to the characteristic pattern of synapse 

loss observed at early stages of AD is not known, but it is intriguing to speculate.

Based on these findings and others, it seems reasonable to suspect that astrocytes are every 

bit as heterogeneous as neurons and become reactive in ways that defy a simple binary 

classification. Indeed, we haven’t even really factored in all the nuances of functional 

phenotype that are being detected with new imaging and physiologic approaches (Bindocci 

et al., 2017). This heterogeneity is forcing the field to reconsider what astrocyte “reactivity” 

really is (Escartin et al., 2019). The use of GFAP as the defining feature of the reactive 

astrocyte phenotype is no longer sufficient. Instead, multiple biomarkers assessed with both 

molecular and functional approaches (preferably with multivariate and/or clustering 

analyses) will be necessary to validate reactive astrocyte phenotypes. While no nomenclature 

or set of criteria will be perfect, new terminology will likely be needed to describe reactive 

astrocytes specific to unique (and perhaps overlapping) molecular and functional states, 

depending on brain region, disease, and/or distance from primary lesions. Reactive astrocyte 

phenotypes may be detrimental, beneficial, or neutral in regard to pathophysiology. 

Furthermore, astrocyte reactivity under some conditions may not be a static state, but instead 

a dynamic process that could be normalized or even reversed. Because astrocytes are 

inherently protective/beneficial cells, a goal for astrocyte-targeting strategies in AD and 

related neurodegenerative disease research should be the identification of molecular 

pathways that drive detrimental phenotypes and/or inhibit reversion to neutral or beneficial 

phenotypes.

Another pressing question in the field is whether rodent models are sufficient for 

understanding the impact of human astrocytes in disease. Despite all the technological 

advances for investigating astrocytes in animal models of AD, there is still the problem of 

species’ differences. Subsets of human astrocytes have morphologic features that astrocytes 

in rodents (and even non-human primates) simply don’t have. Using tissue excised from 

human brain (because of intractable epilepsy and other issues), Oberheim et al. identified 

two classes of GFAP + astrocytes (varicose and intralaminar) with millimeter-long processes 

that pass through other astrocyte territories and reach across cortical layers (Oberheim et al., 

2009). These astrocytes are also bigger on average, have more processes, and transmit Ca2+ 

signals faster than astrocytes in corresponding rodent brain regions. The implications of 

these species-related differences for astrocyte reactivity, or for the role of astrocytes in AD, 

remain unclear but suggest that animal models may have very significant limitations. One 

option is to focus physiologic studies on fresh post-autopsy human AD brain tissue. While 

this has been accomplished in a relatively small number of studies, research on fresh autopsy 

material is a major challenge for investigators without access to research volunteers and/or a 

dedicated autopsy team. Moreover, tissue for physiologic analyses is severely complicated 

by long postmortem autopsy intervals (>2−3 h, at best). Biopsy tissue doesn’t suffer from 
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postmortem delays but is usually obtained from patients with serious comorbid brain 

pathologies (e.g. epilepsy) leading to the issue of proper controls for comparison.

In an attempt to study experimental models that are more relevant to humans, some 

researchers have recently utilized human induced pluripotent stem cells to establish human 

astrocyte cultures and 3-D blood brain barrier models (Barbar et al., 2020; Blanchard et al., 

2020). The astrocytes established in vitro exhibit morphologic diversity and express many of 

the same markers as human astrocytes investigated in postmortem tissue. Astrocytes in 

monocultures also exhibit gain of function (i.e. cytokine expression) and loss of function 

(i.e. glutamate uptake) changes when treated with pro-inflammatory stimuli. These models 

could be amenable to high throughput screening of astrocyte-targeted therapies for AD and 

other neurodegenerative diseases. However, it’s important to note that many of the same 

caveats that apply to rodent cell culture models also apply to human cultures. Specifically, 

astrocytes are metabolic cells that regulate and participate in the dynamic interplay between 

neuronal activity and blood flow. In the absence of this metabolic coupling and other factors 

(e.g. advanced age) astrocytes may behave very differently, and/or in unpredictable ways in 

response to insult and therapeutics.

11. Conclusion

Alzheimer’s disease currently afflicts 5.8 million Americans and represents a looming global 

health crisis that is only predicted to worsen. The current lack of disease-modifying 

therapies only exacerbates our need to better understand underlying disease mechanisms. 

Therapeutic approaches to the treatment of AD continue to focus on the major pathological 

hallmarks of the disease: amyloid plaques and neurofibrillary tau tangles. However, evidence 

presented in this review implicates astrocyte dysfunction in AD pathophysiology, urging us 

to move beyond the amyloid cascade hypothesis. As discussed, astrocyte signaling 

mechanisms are extensively intertwined and likely impact one another in deleterious ways in 

disease. This incredible degree of interconnectivity offers two potential benefits: 1) the 

resolution of astrocyte reactivity could be achieved by targeting any number of different 

astrocyte functions and 2) modifying pathological astrocyte responses will likely improve a 

number of AD clinical hallmarks (e.g. synaptic dysfunction, impaired glymphatic clearance, 

cerebral hypoperfusion, hypometabolism, sleep disturbances). Granted, we must first 

understand the breadth of astrocyte heterogeneity before we can successfully employ 

astrocyte-targeted treatment strategies. Thus, though much work remains to be done, it is 

evident astrocyte modulation could present a viable treatment strategy for AD.
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Fig. 1. Reactive astrocytes are a key component to neuroinflammation in AD.
A) Cartoon showing astrocytes and microglia surrounding a parenchymal amyloid deposit. 

Both cell types respond to amyloid (and other extracellular factors) with morphologic and 

biochemical changes including the release of numerous cytokines, chemokines, and other 

inflammatory factors which can maintain and/or propagate glial reactivity. 

Neuroinflammatory processes resulting from chronic glial activation can have many 

deleterious (and sometimes beneficial) effects on neurons. B) Inflammatory factors trigger 

astrocyte reactivity through a number of transcriptional pathways involving NFκB, MAPK, 

Jak/Stat, and/or FOXO3. Concurrent Ca2+ signaling and/or Ca2+ dysregulation leads to the 

activation of the calcineurin/NFAT pathway, which further shapes astrocyte reactivity 

through extensive interactions with other transcription factors and second/third messenger 

systems. These pathways, in turn, regulate the production of numerous cytokines and 

chemokines involved in triggering and maintaining glial reactivity.
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Fig. 2. Astrocytes regulate synaptic transmission, synapse stability, and synapse removal.
Pre- and postsynaptic neuronal compartments are cradled by specialized astrocytic processes 

that express numerous factors that directly shape synapse/structure and function. Astrocyte 

secreted factors (ASF), including thrombospondin (TSP), hevin, and sparc help anchor pre- 

and postsynaptic cell adhesion molecules together. This arrangement not only aligns and 

stabilizes presynaptic terminals with dendritic spines, but it also helps to cluster important 

synaptic machinery, including postsynaptic density constituents and neurotransmitter 

receptors, to active zones. Reactive astrocytes in AD brain tissue may release less of the pro-

synaptogenetic factors thrombospondin and hevin, relative to sparc (which opposes hevin-

mediated synaptogenesis), leading to a net loss of synapses. Astrocytes are also a major 

source for complement C3, which is released by reactive astrocytes and binds to C3 

receptors (C3R) on “weakened” pre- and postsynaptic elements, leading to microglial-

mediated phagocytosis. Increased C3 levels arising from reactive astrocytes have been 

shown to contribute to abnormal synapse loss in mouse models of amyloid pathology. 

Finally, astrocytes express several different types of glutamate transporters (EAATs 1 and 2, 

aka Glast and Glt-1) that help terminate synaptic glutamate signaling and prevent 

hyperactivation of extrasynaptic glutamate receptors. The downregulation of EAAT2/Glt-1 

levels and/or function in reactive astrocytes is thought to be a primary mechanism for 

excitotoxic neuronal degeneration during AD.
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Fig. 3. Astrocytic metabolic pathways are essential for meeting the energy demands of neurons.
Astrocytes are the major source of lactate in the brain, which appears to be the preferred 

energy substrate of neurons. Three intertwined sources drive lactate production in astrocytes: 

glycogen, glucose uptake through GLUT1 transporters, and glutamate uptake through 

EAATs. Glucose taken up from blood vessels, or derived from the breakdown of glycogen, 

is converted to pyruvate and subsequently lactate, which is ultimately released to nearby 

neurons. Glutamate uptake during neuronal activity helps create an electrochemical gradient 

(with nearby Na+/K+ exchangers) that facilitates both glucose uptake via GLUT1 and the 

conversion of glucose to lactate. Glutamate uptake via astrocytic EAATs is also recycled 

back to neurons in the form of glutamine. Inhibition of astrocyte glycogen metabolism at 

any of these steps has been shown to be detrimental to both acute neural function and for the 

extended processes of LTP and memory formation, which are disrupted in many rodent 

models of AD-like pathology.
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Fig. 4. Astrocytes modulate neuronal excitability through potassium spatial buffering.
Neuronal excitability relies on inward Na+ and outward K+ fluxes during action potentials. 

A) Schematic demonstrating the individual phases that comprise a single action potential. 

Once an action potential is initiated, voltage-gated Na+ channels in the membrane open to 

allow an influx of Na+ ions. The influx of Na+ further depolarizes the neuronal membrane, 

in turn opening additional voltage-gated Na+ channels. Once the peak membrane potential is 

reached, the neuronal membrane begins to repolarize by inactivating voltage-gated Na+ 

channels and opening voltage-gated K+ channels. The efflux of K+ ions from the neuron 

results in a decrease in the membrane potential towards the neuron’s resting voltage. B) 

Through Kir4.1 channels (shown in pink) and the Cx43-containing gap junctions (shown in 

teal), astrocytes are able to take up excess extracellular K+ and transfer it either into the 

circulation via the astrocytic end-feet (indicated by the black arrows) or to an area of the 

brain lacking K+ via their gap junctions (indicated by the red arrows). The removal of K+ 

ions from the extracellular space following an action potential is critical in order for the 

neuronal membrane to adequately repolarize and reset channel function for the next action 

potential to occur. A single action potential can increase the extracellular K+ concentration 

by as much as 1 mM under normal conditions and ≥10–12 mM under pathologic conditions. 

Even the relatively small elevations in extracellular K+ observed during physiologic 

neuronal activity depolarize the neuronal membrane, thereby increasing the probability of 

action potential propagation. Thus, impaired K+ buffering can lead to hyperexcitability and 

subsequent excitotoxicity. Murine models of AD manifest hyperexcitability, with some 

models also exhibiting evident epileptiform and seizure activity. Moreover, early onset 

hyperexcitability is a well known feature of human AD.
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Fig. 5. Waste products are cleared from the brain by a process that requires astrocytes.
Under physiological conditions, AQP4 channels (shown in navy blue) are polarized to 

astrocytic endfeet and support rapid water movement between the periarterial space and 

astroglial syncytium. This anatomic arrangement facilitates the convective bulk flow of CSF 

from the periarterial space across the astrocytic endfeet and into the interstitial space, where 

it mixes with interstitial fluid (ISF) and waste products such as Aβ (shown in brown). Waste 

products and excess fluids are then driven toward the perivenous space and ultimately 

cleared from the brain through the meningeal lymphatic vessels. Altered AQP4 localization 

has been described in aged brains, whereas loss of perivascular AQP4 has been 

demonstrated in human AD brains and is associated with increased levels of Aβ and tau 

pathology. It should be noted that while the astrocytic arbors appear to overlap in this figure, 

in reality their arbors occupy distinct fields with little to no overlap.
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Fig. 6. Mechanisms underlying astrocyte-mediated vascular responses.
From an anatomical standpoint, astrocytes are perfectly positioned to bi-directionally 

communicate information between neurons and blood vessels. In order to meet the 

metabolic needs of active neurons, increased neuronal activity induces a rapid vasodilatory 

response and consequent spatiotemporally restricted delivery of glucose and oxygen. A) 

Glutamate released from presynaptic neurons acts on astrocytic metabotropic glutamate 

receptors (mGluR5) resulting in increased intracellular Ca2+. B) PLA2 is activated in 

response to rises in intracellular Ca2+ concentrations, leading to the generation of 

arachidonic acid (AA) and its subsequent conversion to either prostaglandin E2 (PGE2) via 

COX enzymes or to epoxyeicosatrinoic acids (EETs) by CYP2C11 enzymes. Both PGE2 

and EETs act on vascular smooth muscle cells to dilate vessels. Increases in intracellular 

Ca2+ also engage the Ca2+-dependent K+ channel BK (shown in yellow) on the astrocyte 

endfoot plasma membrane. Activation of BK results in the efflux of K+ into the extracellular 

space where it is taken up by vascular smooth muscle cells via Kir2.1 or Kir2.2. Like PGE2 

and EETs, K+ also induces vasodilation. C) Conversely, in response to high pO2, AA is 

released from astrocytes and converted into 20-HETE in the vascular smooth muscle cells. 

The combination of low extracellular adenosine levels and 20-HETE leads to an elevation in 

smooth muscle cell free Ca2+ and subsequent arteriolar constriction. Thus, neurovascular 

coupling, which ensures that the brain has a proportionally matched cerebral blood flow in 

response to local neuronal activity, is largely mediated by astrocytic Ca2+ signaling. Both 

BBB and NVU breakdown are evident in AD and may impair neurovascular coupling by 
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preventing astrocytes from relaying signals between the vasculature and neuronal circuitry, 

creating a mismatch between neuronal activity and the provision of oxygen and glucose 

required to meet metabolic demands.
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Fig. 7. 
Astrocyte reactivity is a primary nexus for the cerebrovascular and neuronal pathologies that 

arise with AD. The major functional phenotypes associated with astrocyte reactivity include 

neuroinflammation, impaired glutamate/potassium homeostasis, hypometabolism, and loss 

of endfoot integrity, all of which are extensively intertwined. Neuroinflammatory pathways 

directly affect nearby glial cells, neurons, and neurovascular elements (orange arrows). 

Glutamate and potassium dysregulation directly affect astrocyte metabolism, synapse 

function, and vascular endothelial cells (green arrows). Breakdown of astrocyte endfoot 

processes, lead to the loss of BBB integrity, Ca2+ dysregulation, and impaired glymphatic 

clearance. Impaired astrocyte metabolism directly erodes neuronal viability and glymphatic 

clearance of interstitial toxins, including Aβ (blue arrows), which, in turn, create an 

inhospitable environment for neurons marked by elevated neuroinflammation and 

excitotoxicity (purple arrow).
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Table 1

Astrocyte targeting strategies in intact animal models of AD-like pathology.

Molecular 
target

Targeting method Bio/behavioral Effects

Calcineurin/
NFAT

AAV-GFa2 delivery of VIVIT to 
hippocampus of APP/PS1 mice

Reduced frequency of large, reactive astrocytes; reduced Iba1 immunolabeling and 
protein levels; reduced Aβ pathology; reduced BACE1 expression; increased 
synaptic strength and LTP; improved cognitive status (Furman et al., 2012)

AAV-Gfa2 delivery of VIVIT to 
hippocampus of 5xFAD mice

Improved cognitive status; reduced GFAP levels; reduced Aβ pathology; reduced 
frequency and duration of spontaneous glutamate transients; increased Glt-1 levels; 
reduced neurite atrophy; improved synaptic strength; reduced frequency of 
spontaneous synaptic currents; restoration of AMPA/NMDA balance (Sompol et 
al., 2017)

Gfa-ΔCN (activated calcineurin) 
overexpressing mice (dox sensitive) 
crossed with APP/PS1 mice.

Reduced Aβ; reduced GFAP, TNFα and Cd11b1 mRNA levels; improved cognitive 
status (Fernandez et al., 2012)

JAK/STAT AAV-Gfa delivery of SOCS3 into the 
hippocampus of APP/PS1 mice

Normalized astrocytic transcriptome; reduced GFAP/Vimentin immunoreactivity; 
reduced Aβ pathology improved cognitive status (Ceyzeriat et al., 2018)

AAV-Gfa delivery of SOCS3 into the 
hippocampus of 3xTg mice

Improved synaptic strength and LTP (Ceyzeriat et al., 2018); reduced GFAP protein 
levels and immunoreactivity; reduced anxiety (Geuillemaud et al., 2020)

Lentivirus delivery of SOC3 into 
hippocampus of 3xTg

Reduced number of GFAP + astrocytes and reduced GFAP immunoreactivity 
(Haim et al., 2015)

Conditional knock-out of Stat3 in 
astrocytes of APP/PS1 mice

Increased astrocyte volume around Aβ plaques; increased microglia branching 
around plaques; reduced Aβ pathology and microglial-mediated internalization/
degradation of Aβ; reduced levels of inflammatory cytokines; reduced neurite 
atrophy near Aβ plaques; reduced spontaneous Ca2+ transients in astrocytes and 
neurons; improved cognitive status (Reichenbach et al., 2019)

EAAT2/Glt-1 Gfa-human EAAT2 mice crossed with 
J20 mice.

Improved glutamate uptake; improved cognitive status; increased synapsin levels; 
reduced Aβ pathology; improved survival (Takahashi et al., 2015)

Connexins Gfa-Cx43 knock-out mice crossed 
with APP/PS1 mice

Reduced unapposed hemichannel activity; reduced astrocytic Ca2+ levels; reduced 
release of ATP and glutamate; improved neuronal viability; reduced Aβ pathology 
(Yi et al., 2016); improved cognitive status; reduced number of GFAP + astrocytes; 
improved LTP; increased dendritic spine density

GFAP/
vimentin

GFAP + vimentin knock-out mice 
crossed with

Increased Aβ pathology; increased neuritic dystrophy; reduced astrocyte coverage 
of Aβ plaques; increased microglia coverage of plaques (Kraft et al., 2013); 
increase in in neuroinflammatory genes; increased neuronal support genes; no 
effect on Aβ pathology (Kamphuis et al., 2015)
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