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ABSTRACT

Introduction: Over the years, multiple models have been
developed for the evaluation of pulmonary nodules (PNs).
This study aimed to comprehensively investigate clinical
models for estimating the malignancy probability in pa-
tients with PNs.

Methods: PubMed, EMBASE, Cochrane Library, and Web of
Science were searched for studies reporting mathematical
models for PN evaluation until March 2020. Eligible models
were summarized, and network meta-analysis was per-
formed on externally validated models (PROSPERO data-
base CRD42020154731). The cut-off value of 40% was used
to separate patients into high prevalence (HP) and low
prevalence (LP), and a subgroup analysis was performed.

Results: A total of 23 original models were proposed in 42
included articles. Age and nodule size were most often used
in the models, whereas results of positron emission
tomography-computed tomography were used when
collected. The Mayo model was validated in 28 studies. The
area under the curve values of four most often used models
(PKU, Brock, Mayo, VA) were 0.830, 0.785, 0.743, and 0.750,
respectively. High-prevalence group (HP) models had better
results in HP patients with a pooled sensitivity and speci-
ficity of 0.83 (95% confidence interval [CI]: 0.78–0.88) and
0.71 (95% CI: 0.71–0.79), whereas LP models only achieved
pooled sensitivity and specificity of 0.70 (95% CI: 0.60–
0.79) and 0.70 (95% CI: 0.62–0.77). For LP patients, the
pooled sensitivity and specificity decreased from 0.68 (95%
CI: 0.57–0.78) and 0.93 (95% CI: 0.87–0.97) to 0.57 (95%
CI: 0.21–0.88) and 0.82 (95% CI: 0.65–0.92) when the
model changed from LP to HP models. Compared with the
clinical models, artificial intelligence-based models have
promising preliminary results.

Conclusions: Mathematical models can facilitate the eval-
uation of lung nodules. Nevertheless, suitable model should
be used on appropriate cohorts to achieve an accurate
result.

� 2022 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Pulmonary nodules; Lung cancer; Prediction
model; Network meta-analysis; Machine learning
Introduction
A pulmonary nodule (PN) is defined as an approxi-

mately round lesion surrounded by pulmonary paren-
chyma that is less than 3 cm in diameter. PNs have
become increasingly common with the increased use of
computed tomography (CT).1–3 Although most nodules
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are benign, a proportion of nodules are lung cancers,
which is the leading cause of cancer-related death
worldwide.4 It is considered that the incidence of cancer
in patients with solitary PNs ranges from 3.2% to
4.5%.5,6 Therefore, the main goal for PN management is
to identify patients with malignant nodules and admin-
ister proper treatment.

Current guidelines for the management of PNs
recommend a systematic approach to PN assessment on
the basis of clinical and radiographic characteristics.7–9

The evaluation could be carried out either by experi-
enced clinicians or by mathematical models developed to
quantify the probability of malignancy of PNs. For pa-
tients with a high risk of malignant PNs, more aggressive
interventions such as surgical intervention and CT bi-
opsy are recommended, whereas serial high-resolution
CT on a regular basis is recommended for PNs with a
low risk of malignancy.10

Over the years, multiple models have been developed
for the evaluation of PNs. Nevertheless, owing to various
results and a lack of comparison, a consensus has not
been made on the diagnostic value of these models.
Moreover, with the development of deep learning, arti-
ficial intelligence (AI)-based models have been devel-
oped, and few articles have compared them with
mathematical models. To perform a comprehensive
analysis, we reviewed current clinical mathematical
models that evaluate the probability of the malignancy of
PNs and conducted a network analysis of the diagnostic
accuracy of most often used models. We also summa-
rized AI-based models that reported area under the
curve11 (AUC) values and compared them with those of
the mathematical models.
Materials and Methods
Search Strategy

First, we searched the Medical Subject Headings term
database of the National Center for Biotechnology In-
formation for all possible expressions for “lung cancer”
and proposed possible expressions for “prediction
model.” Then, we used the combination of the expres-
sions to search the PubMed, EMBASE, Cochrane Library,
and Web of Science databases up to March 30, 2020,
without language limitations. The specific search strat-
egy is listed as follows: (“Clinical Model” or “Clinical
Prediction Model” or “Mathematical Model” or “Mathe-
matical Prediction Model” or “Prediction Model” or
“Gurney Model” or “Mayo Clinic Model” or “Herder
Model” or “VA Model” or “PKU Model” or “Brock Model”
or “TREAT Model” or “Bayesian Inference Malignancy
Calculator” or “BIMC”) and (“Pulmonary Neoplasms” or
“Lung Neoplasm” or “Pulmonary Neoplasm” or “Lung
Cancer” or “Pulmonary Cancer” or “Pulmonary Cancers”
or “Cancer of the Lung” or “Cancer of Lung” or “Pulmo-
nary Nodule” or “Lung Nodule”).

Titles and abstracts were used to identify papers
related to prediction models for the cancer probability
assessment of PNs. Full texts were then retrieved to
extract data for calculation. This analysis was performed
according to Preferred Reporting Items for Systematic
Reviews and Meta-Analyses statement.12 The study
design was registered in the PROSPERO database
(CRD42020154731).

Selection Criteria
Reviews, case studies, editorials, meeting abstracts,

and search results that were not related to any search
criteria were excluded. All articles that proposed or
validated prediction models for cancer probability
assessment were included, and further screening was
conducted after reading the full-text articles. The exclu-
sion criteria for full-text screening were as follows: (1)
the models were not built for predicting the cancer
probability of lung nodules; (2) the models were not
built with mathematical methods; (3) the models did not
take clinical information into consideration; and (4)
insufficient data for analysis.

Data Extraction
The following basic information was extracted: first

author’s name, year of publication, nation, size of the
study, characteristics of the patients included in the
study, prevalence of malignancy among the patients,
average nodule size, models compared, and the result of
comparisons (including the AUC, sensitivity, and speci-
ficity of each model compared). For papers that did not
report the sensitivity and specificity of the models
compared from publicized materials, we sent an e-mail
to request the data. Then, we calculated the number of
true positives, false negatives, false positives, and true
negatives from the data acquired. The AUC values of
other PN evaluation methods, including biomarkers,
imaging, and physician assessments, were collected in
the process for further analysis. Two authors (KZ and
ZW) determined the study eligibility and extracted data
independently, and any discrepancies between the two
authors were resolved by discussion with a third author
(KC).

Evaluation of AI-Based Models
Recently, AI-based models were reported to have a

fairly good performance in PN evaluation.13,14 Therefore,
we also analyzed AI-based models in this study. The AUC
values reported by AI-based models were collected, even
when these articles were excluded from the major
network meta-analysis. Although there has been no
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article on March 30, 2020, that has compared mathe-
matical models with AI-based models directly, the AUC
values of AI-based models were summarized and the
trend was analyzed.

Statistical Analysis
All models compared in the studies were included,

and the variables used in the models were reviewed. The
AUC values were compared by depicting a network plot.
Most often used and externally validated models (Brock,
Mayo, PKU, VA) were selected for a network meta-
analysis; the summary receiver operating characteristic
(SROC) curve was plotted with the method proposed by
Reitsma et al.15; and the area under the SROC curve
(AUSROC) was calculated. Sensitivity and specificity of
each model were also pooled using analysis of variance
model,16 and diagnostic OR and superiority index were
calculated.

In this article, we considered a model as most often
used if it has been used in at least five independent co-
horts. We noticed that the malignant rate of PNs in the
included articles fell into the following two distributions:
>40% and <25% (Supplementary Fig. 1); therefore, we
used the cut-off value of 40% to separate patients into
high prevalence (HP) and low prevalence (LP) and per-
formed a subgroup analysis. Accordingly, models devel-
oped using HP nodules (malignant rate >40%) were
defined as HP models and models using LP nodules
(malignant rate <25%) were defined as LP models.
During the analysis, when we encountered studies from
the same medical center, we included the study using
data from multiple hospitals to prevent duplicated
patients.

All analyses were performed by R Software (R
version 3.6.1 [2019-07-05], The R Foundation for Sta-
tistical Computing, with packages “mada” and
“meta4diag”).

Quality of Evidence
Quality Assessment of Diagnostic Accuracy Studies 2

is a tool designed by the Quality Assessment of Diag-
nostic Accuracy Studies 2 group for the evaluation of the
quality of diagnostic accuracy studies.17 The tool com-
prises the following four domains: patient selection, in-
dex test, reference standard, and flow and timing. The
methodological quality of the eligible studies was eval-
uated by this tool by two reviewers (KZ and ZW;
Supplementary Table 1).

Results
Our search resulted in 1816 articles, and after

assessment, 42 articles were eligible for the study
(Fig. 1A). Further searches through the reference list did
not reveal additional relevant articles. The status of the
data collection is summarized in Supplementary
Figure 2.

The characteristics of all 42 articles were summa-
rized in Table 1. A total of 23 original models were
proposed by these 42 articles (Supplementary Table 2),
among which 10 models were externally validated. Most
articles used logistic regression to generate a new model,
and a few used Bayesian analysis. The variables collected
to propose a new model were summarized in Figure 1B,
and the variables used in the final model are summa-
rized in Figure 1C. Among the 23 articles that proposed a
new model, 22 articles collected data on the age and 21
collected data on the nodule size of the patient, and most
of them used these variables in the final model. Never-
theless, although sex was also most often collected, it
was seldom used in the final model. Moreover, although
there were only a few models that collected the level of
uptake or maximum standardized uptake value from
positron emission tomography (PET)-CT results, all of
them used the result in the final model. The character-
istics of the CT images of PNs, including lobulation,
calcification, cavitation, border, and pleural retraction
sign, were also widely used in the final models.

For further analysis, we included models that had
been validated by at least two external sources for a
descriptive analysis of AUC values and seven models
qualified for the analysis. A detailed comparison is found
in Figure 2A (AUC; Supplementary Table 3). Among the
models that were compared more than 10 times, the
PKU model had a better AUC value in 26 of 34 of the
comparisons. Although only a few articles compared the
BIMC model with the other models, the BIMC model
yielded an excellent AUC value and wined in all the
comparisons. Then, we selected the most often used
models for a network meta-analysis. SROC curves were
plotted for most often used models (used in at least five
independent cohorts) (Fig. 2B), and the PKU model
yielded the best AUC. The AUSROC values for the PKU,
Brock, VA, and Mayo models were 0.830, 0.785, 0.750,
and 0.743, respectively. Diagnostic OR and superior in-
dex were also calculated, which revealed similar ten-
dencies (Fig. 2B). The pooled sensitivity and specificity
of all externally validated models with diagnostic values
provided are compared in Figure 2C, in which most often
used models display better and more balanced perfor-
mance in sensitivity and specificity.

Because the prevalence of lung cancer differs
considerably in HP and LP patients, further analysis was
performed after separating patients into the HP group
and LP group. The PKU model remained the best model
among the four most often used models for HP patients
(AUSROC 0.826; Fig. 3A) and had a balanced perfor-
mance in diagnostic values (Fig. 3B). For LP patients, the



Figure 1. Process of study selection and summarization of all variables collected and used in eligible models. (A) PRISMA flow
diagram of the study selection process. (B) All variables collected by eligible models. The variables are summarized in a
pyramid chart and separated into five levels. Variables with a higher frequency occupy a higher level. The frequency is
labeled after the variable names. (C) All variables used by the models. The variables are summarized in a pyramid chart and
separated into four levels. Variables with a higher frequency occupy a higher level. The frequency is labeled after the
variable names. BMI, body mass index; CEA, carcinoembryonic antigen; CT, computed tomography; CTR, consolidation/tumor
ratio; FEV1, forced expiratory volume in the first second; FVC, forced vital capacity; miRNA, microRNA; NSE, neuron-specific
enolase; PET, positron emission tomography; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses;
SCCA, squamous cell carcinoma antigen.
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Mayo model yielded the best AUSROC (0.928; Fig. 3C)
with a smaller confidence region of its summary point.
Therefore, according to available data, the Mayo model is
suitable for cancer risk prediction in LP patients, with
applicable diagnostic value (Fig. 3D).

A subgroup analysis was conducted to investigate the
effect of the prevalence of malignancy in different co-
horts on the models. As found in Figure 4, HP models
had a better result in predicting the cancer probability of
PNs in HP patients, with a pooled sensitivity and speci-
ficity of 0.83 (95% confidence interval [CI]: 0.78–0.88;
Fig. 4A) and 0.71 (95% CI: 0.63–0.79; Fig. 4B) compared
with the LP models, which had a pooled sensitivity and
specificity of 0.70 (95% CI: 0.60–0.79; Fig. 4G) and 0.70
(95% CI: 0.62–0.77; Fig. 4H). For LP patients, we
observed that the pooled sensitivity and specificity
decreased from 0.68 (95% CI: 0.57–0.78; Fig. 4E) and
0.93 (95% CI: 0.87–0.97; Fig. 4F) to 0.57 (95% CI: 0.21–
0.88; Fig. 4C) and 0.82 (95% CI: 0.65–0.92; Fig. 4D)
when the model was changed from LP models to HP
models. Overall, the pooled sensitivity and specificity of
the HP models were 0.82 (95% CI: 0.77–0.87;
Supplementary Fig. 3A) and 0.72 (95% CI: 0.65–0.79;
Supplementary Fig. 3B), and the pooled sensitivity and
specificity of the LP models were 0.70 (95% CI:
0.61–0.77; Supplementary Fig. 3C) and 0.76 (95% CI:
0.68–0.83; Supplementary Fig. 3D), respectively.

To explore the influence of PET-CT on the diagnostic
performance of the models, we performed subgroup
analysis on the PET-CT results. Models using PET-CT re-
sults as a variable had a high pooled sensitivity of 0.88
(95% CI: 0.77–0.95; Supplementary Fig. 4A) compared
with 0.73 (95% CI: 0.68–0.77; Supplementary Fig. 4C) for
models that did not use PET-CT. Nevertheless, the pooled
specificity seemed to be lower in models with PET-CT
results of 0.71 (95% CI: 0.49–0.89; Supplementary
Fig. 4B) compared with 0.76 (95% CI: 0.71–0.80;
Supplementary Fig. 4D) for models without PET-CT.

Among some of the included articles, the diagnostic
value of the model was also compared with that of



Table 1. Characteristics of Eligible Studies

ID Article Country Models Study Population Subgroup Sample Size
Prevalence of
Malignancy, %

Average Nodule
Size (mm)

1 Gurney et al.18,a United States Gurneyb Pathologically confirmed SPNs HP 66 67 B 15
M 29

2 Swensen et al.19,a United States Mayob Pathologically confirmed SPNs LP 629 23 B 11.6
M 17.8

3 Herder et al.20,a Netherland Herder,b Mayob SPN without benign calcifications,
referred for PET scan

HP 106 57 —

4 Gould et al.21,a United States VAb PNs measured between 7 and 30
mm on CT

HP 375 54 17.03

5 Schultz et al.22 United States Mayo,b VAb SPNs confirmed by pathology or 2-
y follow-up, age between 39
and 87 y

HP 151 44 15

6 Li et al.23,a People’s Republic of
China

PKU,b Mayo,b VAb Pathologically confirmed SPNs
after surgery

HP 371 53 19.8

7 Tian et al.24,a People’s Republic of
China

R Tian et al. SPNs with PET result HP 105 71 12.8

8 McWilliams et al.25,a Canada Brockb PNs from current or former
smokers, ages between 50 and
75 y

LP 7008 (PanCan) 1 4.3
LP 5021 (BCCA) 1 3.7

9 Xiao et al.26 People’s Republic of
China

Mayo,b VA,b PKUb Pathologically confirmed SPNs
after surgery

HP 107 73 19.3

10 Deppen et al.27,a United States TREAT, Mayob Nodules from VUMC cohort and VA
cohort

HP 492 (VUMC) 72 28
HP 226 (VA) 93 29

11 Zhang et al.28 People’s Republic of
China

PKU,b Mayo,b VAb Nodule count < 5, mGGO, and
solid, no metastasis

HP 154 81 —

12 Al-Ameri et al.29 United Kingdom Herder,a Mayo,a VA,a

Brocka
PNs confirmed by pathology or 2-y
follow-up, without pure GGO

HP 244 41 —

13 Vachani et al.30,a United States A Vachani et al. PNs confirmed by pathology or 2-y
follow-up, age >40 y

HP 141 55 13

14 Soardi et al.31,a Italy BIMC, Gurneyb SPNs with PET result, without
calcification

HP 343 58 14.9

15 Yang et al.32,a People’s Republic of
China

J Yang et al., PKU,b

Mayo,b VAb
Pathologically confirmed SPNs
after surgery

HP 252 67 17

16 Zhang et al.33,a People’s Republic of
China

GMUFH,a Mayo,b VA,b

Brock,b PKUb
Pathologically confirmed SPNs HP 120 60 —

17 Chen et al. 201634,a People’s Republic of
China

J Chen et al., PKU,b

Mayo,b VAb
Pathologically confirmed SPNs HP 200 68 17.41

HP 89 (Validation) 79 18.91
18 Perandini et al.35 Italy Herder,b BIMC SPNs with PET result, without

calcification
HP 180 54 17.8

19 Perandini et al.36 Italy Mayo,b Gurney,b PKU,b

BIMC
Pathologically confirmed SPNs HP 285 55 15.36

20 Soardi et al.37 Italy BIMC, Mayob SPNs from three medical centers HP 200 54 15.89
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Table 1. Continued

ID Article Country Models Study Population Subgroup S mple Size
Prevalence of
Malignancy, %

Average Nodule
Size (mm)

21 Chen et al.38 People’s Republic of
China

Mayo,b PKUb Pathologically confirmed PNs
after surgery

HP 4 76 —

22 Yang et al.39,a People’s Republic of
China

Li Yang et al., VA,b

Mayob
SPN referred to CT-guided biopsy HP 1 784 67 18.43

HP 3 4 (Validation) 69 18.16
23 Tanner et al.40 United States Mayo,b VAb SPN with progression in 60 d, age

> 40 y
HP 3 7 47 15.8

24 W Yu (2017)41,a People’s Republic of
China

W Yu et al. Pathologically confirmed GGO HP 3 24 67 1.6
HP 2 6 (Validation) 70 1.5

25 Lin et al.42 People’s Republic of
China

Mayob PNs from current or former
smokers, ages between 55 and
74 y

HP 1 5 (JPHTCM) 51 15.14
HP 1 6 (BVAMC) 50 14.365

26 She et al.43,a People’s Republic of
China

Y She et al., VA,b

Mayo,b PKU,b Brockb
Pathologically confirmed solid
SPNs after surgery

HP 8 94 67 17.3
HP 8 9 (Validation) 66 17.3

27 Yang et al.44 Korea Mayo,b VA,b Brock,b

Herderb
Nodule count < 5, mGGO, and
solid, no metastasis

HP 2 2 77 20

28 Kim et al.45 Korea Brock Single subsolid nodules confirmed
as AAH or AIS or MIA or IPA

HP 1 1 (GGO) 58 B 11.1
M 14.2

HP 3 9 (mGGO) 91 B 13.6
M 17.6

29 Wang et al.46,c People’s Republic of
China

ZU,b Mayo,b VAb SPNs with PET result HP 1 7 67 18.89

30 Nair et al.47 United States Brock,b Mayo,b VAb Nodules from NLST LP 2 96 (Set 1) 9 12.1
LP 6 68 (Set 2) 3 7.6

31 Ying et al.48,c People’s Republic of
China

Ying et al., Mayob Pathologically confirmed
microsized SPN (<10 mm)

HP 1 24 76 —

HP 1 (Validation) 60 —

32 Winter et al.49 United States A Winter et al., Brockb Nodules from NLST LP 7 79 3 6.89
33 Xiao et al.50,a People’s Republic of

China
CJFH, Mayo,b VA,b

Brock,b PKU,b

GMUFHb

Pathologically confirmed nonsolid
SPNs after surgery

HP 3 2 87 17.6

34 Kim et al.51,a Korea H Kim et al., Brockb Pathologically confirmed subsolid
nodules after surgery

HP 3 14 72 15.7
HP 1 6 (Validation) 72 15.8

35 Uthoff et al.52 United States Mayo,b VA,b Brock,b

PKUb
SPNs, age between 40 and 87 y LP 3 7 22 B 9.2

M 16.3
36 Xi et al.53,a People’s Republic of

China
K Xi et al. Pathologically confirmed SPNs HP 4 70 B 19

M 25.1
HP 5 75 B 14.0

M 18.3
37 Hammer et al.54 United States Brockb GGO and PSN from NLST LP 4 4 6 —

38 Marcus et al.55,a United Kingdom UKLSb Nodules from UKLS trial LP 1 13 5 —

39 Cui et al.56,a People’s Republic of
China

Mayo,b Brock,b VA b SPNs confirmed by pathology or 2-
y follow-up

HP 2 7 73 17
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various biomarkers, imaging methods, and physician
assessment. The AUC values of each method were
collected and analyzed. The average AUC value of the
models was higher than that of the other methods,
although no significant difference was observed
(Supplementary Fig. 5A).

When evaluating AI-based models, 11 articles
were included, and five of them were developed
using HP patients whereas others were developed
using LP patients from screening projects. The AUC
values of the AI-based models were compared with
those of the models, biomarkers, imaging, and phy-
sicians (Supplementary Fig. 5B). In recent 5 years,
the AUC of the AI-based models had raised from an
average of 0.831 (±0.071) in 2017 to 0.919 in 2020,
whereas the AUC of the mathematical models seems
to bear a better robustness. Further regression of the
AUC values of the AI-based models revealed that the
AUC values of the AI-based models increased with
the development of AI throughout the years (p ¼
0.074; Supplementary Fig. 5C), whereas mathematical
models did not. Though the development of AI-based
models seemed not statistically different, the trend
can also be validated by studies in the same data
set.59 Nevertheless, this might indicate that the per-
formance of well-trained AI models might exceed
that of the current methods in PN evaluation in the
future. External validation is still needed for the AI-
based models.
Discussion
With the increasing use of CT in lung cancer

screening, it has become increasingly considerable to
estimate the cancer probability accurately during the
management of PNs for both inpatients in the surgical
department and outpatients who participate in CT
screening. In view of this, we summarized all clinical
mathematical models for the evaluation of PNs and
conducted a network meta-analysis for the first time. To
ensure objectivity and fairness, we contacted the authors
of all published articles that lacked the desired data
(Supplementary Fig. 2).

As the first probability model that used logistic
regression, the Mayo model has become the most
externally validated among all models (Table 2). It is
built from a retrospective data set of 419 patients with
more than 20 variables taken into consideration. Owing
to the large number of variables collected, the Mayo
model has remained a rather accurate model throughout
the years. Among most often used models, the PKU
model yields the best AUC. It is the first model built with
the Chinese population and is the only eastern popula-
tion model that has been validated with the western



Figure 2. Comparisons of the AUC values, SROC curves, and diagnostic values among the models. (A) AUC comparison of
seven models validated by at least two external sources. Each circular node represents a validated model. The area of the
node is proportional to the total number of comparisons in eligible studies. The ratio of the times of better performance to
the total number of comparisons is listed inside the node. Each line represents a type of head-to-head comparison, and the
color of the line is identical to that of the winning model. The width of the lines is proportional to the number of head-to-
head comparisons. (B) SROC curves of models with sufficient external validation (at least five independent cohorts). The solid
line depicts the SROC curve plotted by the method proposed by Reitsma et al.,10 and individual observations are marked with
round points. The summary point is marked with a triangle point on the SROC curve, and its 95% confidence region is plotted
with a dotted line. Different colors are assigned to each model. AUC values are listed in parentheses after the model names in
the figure legend. Result of network meta-analysis using ANOVA model is listed below. (C) Comparison of the pooled sensi-
tivity and specificity of the validated models. The value in each cell is defined as the pooled sensitivity or specificity of the
model in the same row divided by the pooled sensitivity or specificity of the model in the same column. Cells with the model
name are marked in orange, and cells containing the sensitivity and specificity values are marked in yellow and blue,
respectively. ANOVA, analysis of variance; AUC, area under the curve; BIMC, Bayesian Inference Malignancy Calculator; DOR,
duration of response; SROC, summary receiver operating characteristic.
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population. Compared with the Mayo model, all patients
enrolled in the PKU model had a defined pathologic
diagnosis and comprehensive radiographical
characteristics.
Owing to the variation in research cohort, models
proposed in past studies can be separated into two
categories. The first category is models on the basis of
the population who underwent lung cancer screening.



Figure 3. Subgroup analysis based on patient characteristics. (A) SROC curves of models with sufficient external validation
(at least five independent cohorts) used in HP patients. (B) Comparison of the pooled sensitivity and specificity of the
validated models in HP patients. (C) SROC curves of models with sufficient external validation used in LP patients. (D)
Comparison of the pooled sensitivity and specificity of the validated models in LP patients. In the SROC plots, the solid line
depicts the SROC curve plotted, and individual observations are marked with a round point. The summary point is marked
with a triangle point on the SROC curve, and its 95% confidence region is plotted with a dotted line. Different colors are
assigned to each model. AUC values are listed in parentheses after the model names in the figure legend. In the comparison of
the diagnostic value, the value in each cell is defined as the pooled sensitivity/specificity of the model in the same row
divided by the pooled sensitivity/specificity of the model in the same column. Cells with the model name are marked in
orange, and cells containing the sensitivity and specificity values are marked in yellow and blue, respectively. AUC, area
under the curve; HP, high prevalence; LP, low prevalence; SROC, summary receiver operating characteristic.
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The characteristic of this type of model is that benign
nodules account for most of the PNs enrolled in model
development. The other category is models on the basis
of patients treated in clinic or surgery. The characteristic
of this type of model is that eligible patients for model
development have already undergone preliminary
screening, during which only people with HP nodules are
admitted for further treatment. Therefore, the malignant
rate differs considerably in these two categories. As
found in Supplementary Figure 1, the malignant rate in
the first category is below 25%, whereas in the other
category, this rate is usually above 40%. As a result, the
effectiveness of the models established by different
populations differs, and it is not fair to compare different
models using the same population. The original cut-off
value may no longer be suitable if the models are not
used on the targeted populations (Supplementary Table
4). Nevertheless, previous studies often failed to
compare these two types of models in different pop-
ulations. For the first time, we distinguished between the
HP group and the LP group on the basis of the proba-
bility of malignancy. Furthermore, subgroup analysis
revealed that regardless of the HP model or LP model,
sensitivity and specificity dropped as long as they were



Figure 4. Subgroup analysis of the effect of study population on the models. (A) Forest plot of the pooled sensitivity when the
HP model is used on HP patients. (B) Forest plot of the pooled specificity when the HP model is used on HP patients. (C) Forest
plot of the pooled sensitivity when the HP model is used on LP patients. (D) Forest plot of the pooled specificity when the HP

10 Zhang et al JTO Clinical and Research Reports Vol. 3 No. 4
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not used on the targeted populations. Thus, we recom-
mend that the more suitable model should be used for
the appropriate cohorts to achieve the best result.

Nevertheless, there are few limitations in our anal-
ysis. First, although AUC is the most important indicator
of model accuracy, AUC alone cannot comprehensively
describe a model. For example, performance calibration
is also important for clinical use of a model, but not
enough data were provided for a subgroup analysis in
our research. Moreover, most of the values of sensitivity
and specificity are acquired by Youden index. Although
the Youden index provides the highest overall accuracy,
in some cases, one would prefer additional sensitivity at
the loss of some specificity or vice versa, which makes
the Youden index not suitable for some clinical scenario.
Another limitation lies in the cohort included in the
analysis, as the prevalence was much higher than some
recent screening cohorts, which may lead to bias when
used in these cohorts. Moreover, owing to the lack of
data, some results bear a large 95% CI, which makes the
conclusions not so determinate, and more cohorts are
needed (especially outpatient cohorts) for further vali-
dation to achieve a more accurate result in the com-
parisons of models.

It is noteworthy that PET-CT results are included in
the final model as long as they are collected, suggesting
that positive PET-CT results are a strong indicator for
malignancy. Nevertheless, problems remain for PEC-CT,
which are as follows: (1) although PET-CT improves
the sensitivity, it may also have a false-positive result for
inflammation, tuberculosis, and so on; (2) PET-CT is only
recommended for solid nodules instead of ground-glass
opacities, making the clinical application of the model
restricted to solid nodules; and (3) because of the high
cost of PET-CT in some countries, the result is not
available in all situations, which is also a limitation for
clinical application. These limitations are also the reason
why PET-CT is viewed as a preclinical evaluation instead
of as a standard procedure for lung cancer diagnosis by
most researchers.

A few studies evaluated both models and physician
assessments. We analyzed these articles and found that
the models have a better result than the clinicians, but
there were no significant differences (Supplementary
Fig. 5A). It is important to note that in these studies,
the physicians were experienced and familiar with the
models, which might lead to bias. The greatest strength
of the models is that they are stable and easy to widely
use. In fact, many doctors in small hospitals or rural
model is used on LP patients. (E) Forest plot of the pooled sensit
of the pooled specificity when the LP model is used on LP patien
is used on HP patients. (H) Forest plot of the pooled specificity w
FP, false positive; HP, high prevalence; LP, low prevalence; TN
hospitals do not have sufficient experience in differen-
tiating benign and malignant PNs. We believe that the
models are more accurate than these doctors and thus
are of value in clinical application. Another advantage of
prediction models would be the objectivity. Physician
judgment of the same nodule may vary in different
scenarios (different environment, emotional state,
physical state, etc.), but the prediction result of a model
stays the same, making the model’s assessment much
more objective and repeatable. We believe that a better
model could aid more in clinical work both for experi-
enced clinicians and younger clinicians and could make a
more objective conclusion for patients.

Although there are guidelines recommending using
models for PN evaluation, the clinical applications of
these prediction models are still limited. An important
reason for this is that the mathematical formula is not
practical for clinical practice, and it is time consuming to
calculate the cancer probability of each nodule encoun-
tered. In fact, models can be exported to an easy-to-read
form, such as nomograms or web calculators. Especially
for the latter, with only the clinical information of the
patient as input, the malignant risk of a PN can be
conveniently calculated in less than 10 seconds. Never-
theless, only a few models had a web version built at the
time of publication. An example is given in
Supplementary Figure 6, illustrating the typical calcula-
tion process with the mathematical formula, nomogram,
and web calculator, revealing that the nomogram and
web calculator are clearer and easier for clinical use. In
addition, decision-making in clinical practice cannot
exclusively depend on the risk probability of the model.
On one hand, clinical treatment is also affected by many
other factors, such as patient preference. On the other
hand, the model is merely a generally comprehensive
analysis. Owing to the heterogeneity of patients’ nodules,
the model might not be accurate for individuals. The role
of the model is to only provide a relatively reliable
reference for clinical judgment, but it cannot completely
replace the clinicians to make the final decision.

In recent years, AI has started to play a role in the
cancer risk prediction of PNs, and AI-based prediction
models have been compared with traditional mathe-
matical models. Therefore, we summarized all reported
computer-aided diagnosis (CADx) systems with their
AUC values (Supplementary Table 5). As we were pre-
paring this meta-analysis, Baldwin et al.10 reported the
result of a comparison of CADx system and the Brock
model, revealing that the CADx achieved a better AUC.
ivity when the LP model is used on LP patients. (F) Forest plot
ts. (G) Forest plot of the pooled sensitivity when the LP model
hen the LP model is used on HP patients. FN, false negative;

, true negative; TP, true positive.



Table 2. Summarization of Highlights of Different Models
First Established Model Gurney et al.1 (First Model

Using Bayesian Analysis)
Mayo (1997) (First Model

Using Logistic Regression)
Model with the largest sample size Brock (7008 nodules)
Most verified model Mayo (compared in 28 articles)
Best performing model BIMC (among all validated models) PKUPH (among all models

validated by �5 cohorts)
Model with the most variables collected Mayo (23 variables)
Models with external validation when established Brock, TREAT
Models compared with physicians Gurney, Mayo, VA, Brock
Models with a nomogram or a web calculator Y She et al., Herder, BIMC, GLCI
Sample with highest and lowest cancer rates Highest: TREAT Lowest: Brock
Models with highest and lowest cut-off values

(mentioned in original article)
Highest: CJFH (0.794) Lowest: W Yu et al. (0.3649)

Model that has been compared with AI models Brock (compared with AI based on CNN in David Baldwin et al., AI had better
result in HP patients)

AI, artificial intelligence; BIMC, Bayesian inference malignancy calculator; CJFH, China-Japan Friendship Hospital; CNN, convolutional neural networks; GLCI,
Guangdong Lung Cancer Institute; HP, high prevalence; PKUPH, Peking University People’s Hospital; TREAT, thoracic research evaluation and treatment; VA,
Department of Veterans Affairs.

12 Zhang et al JTO Clinical and Research Reports Vol. 3 No. 4
Nevertheless, the analysis was conducted on a HP cohort,
whereas the accuracy of the Brock model might be
underestimated as it was developed on the basis of LP
cohorts. According to our result, it is more equitable in
future studies to use identical background models for
the comparison to evaluate whether such AI models have
transcended the mathematical model. Despite the
outstanding AUC values reported, problems remain for
the CADx systems. First, because researchers seldom
provide a model for external validation, there is a lack of
prospective studies to validate its efficacy in different
populations. In addition, because of the lack of clinical
information in open data sets, all current CADx systems
can only predict malignant risk with radiographical
characteristics and cannot take clinical features into
consideration as clinicians or models do. In some cases,
such as the evaluation of PNs in patients with a history of
cancer, the judgment of CADx may bear notable bias.
Therefore, further exploration and improvement are still
needed for the CADx systems. Mathematical models and
machine learning models are both statistical models in
some ways. Deep learning, the typical method used in
nodule detection, uses simple functions such as the sig-
moid function or the rectified linear unit function as the
activation function inside individual neurons. The utili-
zation of large amounts of neurons results in a multi-
layer network, whereas its purpose is still to separate
nodules into benign and malignant nodules. Therefore, it
is safe to say that this network places individual obser-
vations into a higher dimension and finds a function to
fit the observations, which is basically the idea behind
mathematical models. In fact, the discovery of new
regression functions is how humans fit the observations,
whereas the training of neural networks is how ma-
chines fit them. In some ways, AI is an extension of
mathematical models. According to our result, it is
possible that with the continuous training of AI, its
diagnostic efficiency may be further improved, and
eventually exceed the prediction accuracy of mathe-
matical models in the future. Nevertheless, so far, there
is no enough evidence to prove that the accuracy of AI
can be improved in the future and more comparisons
between AI-based models and mathematical models in
the same population are still needed. Therefore, for now,
the widely validated mathematical models are still the
most convenient and relatively accurate way to assist PN
management.

In conclusion, we systematically reviewed and
analyzed a variety of prediction models of PNs. The Mayo
model is the most widely used and validated model,
whereas the PKU model yields the best AUC among the
most often used models. Because of the discrepant
development cohorts among the models, it is vital that
the most suitable model is used on the appropriate co-
horts, and mixing models might lead to decreased ac-
curacy. Nomograms or web calculators are intuitive and
preferred by clinicians, but their clinical application
needs to be further investigated.
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