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Abstract: The establishment of antioxidative defense systems might have been mandatory for most
living beings with aerobic metabolisms, because oxygen consumption produces adverse byproducts
known as reactive oxygen species (ROS). The brain is especially vulnerable to the effect of ROS, since
the brain has large amounts of unsaturated fatty acids, which are a target of lipid oxidation, as well
as comparably high-energy consumption compared to other organs that results in ROS release from
mitochondria. Thus, dysregulation of the synthesis and/or metabolism of antioxidants—particularly
glutathione (GSH), which is one of the most important antioxidants in the human body—caused
oxidative stress states that resulted in critical diseases, including neurodegenerative diseases in the
brain. GSH plays crucial roles not only as an antioxidant but also as an enzyme cofactor, cysteine
storage form, the major redox buffer, and a neuromodulator in the central nervous system. The levels
of GSH are precisely regulated by uptake systems for GSH precursors as well as GSH biosynthesis and
metabolism. The rapid advance of RNA sequencing technologies has contributed to the discovery
of numerous non-coding RNAs with a wide range of functions. Recent lines of evidence show
that several types of non-coding RNAs, including microRNA, long non-coding RNA and circular
RNA, are abundantly expressed in the brain, and their activation or inhibition could contribute to
neuroprotection through the regulation of GSH synthesis and/or metabolism. Interestingly, these
non-coding RNAs play key roles in gene regulation and growing evidence indicates that non-coding
RNAs interact with each other and are co-regulated. In this review, we focus on how the non-coding
RNAs modulate the level of GSH and modify the oxidative stress states in the brain.

Keywords: glutathione; antioxidant; neuroprotection; long non-coding RNA; microRNA; circular
RNA; oxidative stress; central nervous system

1. Introduction

The theory on the origin of life was first proposed by Russian biochemist Aleksandr
Ivanovich Oparin [1]. According to his theory, the biological systems of the most primitive
organisms may be much simpler than those of current life on Earth [2]. As the subsequent
RNA World concept explained, RNA or RNA-like chemicals were likely to carry out most
of the information processing and metabolic transformations needed for biology to emerge
from chemistry in the early history of life [3,4]. This is consistent with the surprising find-
ing in Tetrahymena that catalytic RNAs—i.e., ribozymes—carry out enzymatic functions
similar to those carried out by proteins [5]. RNA can play several roles, including copying
DNA and synthesizing proteins, functioning as a structural component of ribosomes and
ribozymes and regulating various cellular processes [6]. It has long been considered that
non-coding RNAs that cannot translate into a protein product are merely “junk” RNA [7].
However, such non-coding RNAs have become a hot topic in recent research [8]. It is
increasingly becoming clear that many non-coding RNAs are in fact highly functional in
biological systems and compensate for their inability to be translated into proteins through
alternate mechanisms [9].
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The evolution of primitive organisms might have been destined to proceed quite
gradually in the primitive ocean. However, with the appearance of the first plants, known
as cyanobacteria, and the initiation of photosynthesis by these organisms, the explosive
evolution that is characteristic of life on this planet was begun [10]. On the other hand,
adverse effects may have driven many of the primitive organisms to extinction because of
the explosive increase of atmospheric oxygen [11]. The system of oxygen consumption thus
contributed greatly to the evolution of biological species, but it also generated byproducts
ROS that are highly toxic to living cells [12]. To protect themselves from ROS attack, surviv-
ing living beings internally acquired several distinct antioxidative defense systems [13,14].
Assuming that RNA was major molecules that regulate biological systems of life on Earth
at that time, the fact that RNA can be easily changed or mutated might have made it ideal
for rapid protective action against sudden ROS attack. In this regard, it is perhaps not
surprising that several types of RNA make up some portions of antioxidant systems.

Neuroprotection against ROS attack in the central nervous system (CNS) is one of the
most important goals of the antioxidant systems in animals with aerobic metabolisms, since
the brain governs all organs of the body, including itself. In addition, the brain consumes
more oxygen per unit of its weight than any other organ and contains numerous fatty acids
that could be ROS targets for oxidization [15,16]. GSH is especially important in the brain,
as evidenced by the fact that the levels of GSH in the brain are higher than the levels of other
antioxidants, including catalase, superoxide dismutase (SOD) and glutathione peroxidase
(GPx) [17,18]. An excess of ROS and/or depletion of antioxidants, which are defined
as oxidative stress states, causes a number of clinically important diseases, including
neurodegenerative diseases (NDs) [19]. Recently, several non-coding RNA studies in
humans also revealed that the down-regulation and/or overexpression of non-coding
RNAs is linked to diseases closely related to oxidative stress [20]. In this review, we focus
on the regulatory mechanism of GSH neuroprotection by non-coding RNAs.

2. Antioxidants against Oxidative Stress

For the proper physiological activities of living beings, a balance is required between
the levels of oxidants and antioxidants. An imbalance of redox states caused by an excess
of oxidants, a depletion of antioxidants or both is defined as an oxidative stress state [21].
Oxidative stress has been implicated in the etiology of various diseases, such as NDs,
cardiovascular diseases, chronic obstructive pulmonary disease, chronic kidney disease,
obesity, and cancer [22]. On the other hand, ROS act as signaling molecules and play im-
portant roles in a variety of physiological functions, including the regulation of autophagy,
immunity, and differentiation [23,24]. ROS are generated during the mitochondrial elec-
tron transport of aerobic respiration, as well as during cellular responses to xenobiotics,
cytokines, and bacterial invasion [25]. ROS is a general term that includes molecules or
ions formed by highly reactive and partially reduced oxygen metabolites [26].

2.1. Glutathione

One of the most important antioxidants is GSH, which is a tripeptide composed of
three amino acids, cysteine, glutamate and glycine [27]. GSH is the major non-protein
thiol distributed in most cells, and also functions as a storage and transport form of
cysteine and an important player in antioxidative defense [27]. An excess amount of
cysteine can be toxic to the cells because it induces free radical generation and extracellular
glutamate production [28,29]. In addition, it has recently been reported that cysteine
impairs mitochondrial respiration by limiting iron bioavailability through an oxidant-
based mechanism [30]. GSH is a non-enzymatic antioxidant that acts as an impregnable
defense against all forms of ROS [17]. In the brain, GSH is extremely important because
the brain contains an abundance of lipids with unsaturated fatty acids that act as a source
of peroxidation [31].

The biosynthesis of GSH occurs via a two-step ATP-requiring enzymatic process
that is catalyzed by glutamate-cysteine ligase (GCL; also known as γ-glutamylcysteine
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synthetase) and glutathione synthetase (GSS) (Figure 1) [17]. GCL catalyzes the formation
of a dipeptide, γ-glutamylcysteine (γ-GluCys), from glutamate and cysteine, which is the
rate-limiting step in GSH biosynthesis [32]. GCL is composed of a catalytic subunit (GCLc)
and modulatory subunit (GCLm) [32,33]. GCLc possesses the enzymatic activity, while
GCLm controls the kinetics of GCLc activity for GSH [34]. Mice with knockout of GCLm
had as much as 70% depletion of brain GSH, which manifested only as mild abnormalities
in neurons [35], while GCLc-knockout mice were embryonic lethal, and its conditional
knockout of GCLc shows critical GSH depletion following neurodegeneration [36]. GSS is
the enzyme in charge of the second step in GSH biosynthesis, which couples γ-GluCys with
glycine to generate GSH [37]. Mice homozygous for GSS knockout died before embryonic
day 7.5, while heterozygous mice survived with no distinct phenotype, probably because
their GSH levels remained intact [38]. Cases of GCL or GSS deficiency in humans have been
reported; these deficiencies are autosomal recessive metabolic disorders causing impaired
physiological functions such as neuronal dysfunction and can cause mortality in early
life [39].
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Figure 1. Regulation of the redox system. Among the three amino acids that form GSH—i.e.,
cysteine (Cys), glutamate (Glu) and glycine (Gly)—Cys is the rate-limiting substrate. Cys is supplied
via the Cys transporter EAAC1 or cystine (Cys2) transporter system xc-. Cys2 is intracellularly
reduced to Cys once imported into the cell, and turns out to be a building block of the antioxidant
GSH.GSH synthesis is catalyzed by GCL and GSS. GSR transfers an electron from nicotinamide
adenine dinucleotide phosphate (NADPH) to GSSG, and thereby catalyzes the reduction of GSSG
to GSH. GPx reduces peroxide (R-OOH) to a harmless compound (R-OH) by gathering the needed
reducing equivalents from GSH. SOD converts superoxide anion to less noxious hydrogen peroxide
(H2O2), and catalase (CAT) reduces H2O2 without any activator.

Once GSH acts as an electron donor, a disulfide bond is formed to produce oxidized
glutathione (GSSG) [40]. GSSG is a substrate of the flavoenzyme glutathione reductase
(GSR), which transfers an electron from nicotinamide adenine dinucleotide phosphate
(NADPH) to GSSG, thereby regenerating GSH and establishing a system for recycling
GSH [41]. On the other hand, glutathione-S-conjugation by glutathione-S-transferases
(GST) consumes GSH [42]. GSH-conjugated compounds are actively pumped out of the cell
by numerous members of the multidrug resistance-associated protein (MRP) family [43–46].
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2.2. Antioxidant Enzymes

SOD and catalase as well as GPx are enzymes that have a protective effect against
oxidative stress (Figure 1) [47]. SOD plays a role in converting superoxide anions to
less noxious hydrogen peroxide [48]. Both catalase and GPx effectively disproportionate
hydrogen peroxide into harmless water and oxygen [49,50]. While catalase does not require
any activator, GPx requires GSH for its activity as an electron donor. The formation of
a disulfide bond between two GSH molecules gives rise to GSSG in the GPx-catalyzed
reaction [50].

Three types of SOD have been identified. SOD2 (also known as MnSOD) is mainly
expressed in the mitochondria and requires manganese ion for its activation. SOD1 (also
known as Cu/ZnSOD) and SOD3 (also known as ECSOD), which require copper and zinc
ion, are respectively expressed intracellularly and extracellularly [51,52]. It has been well
established that mutations of the SOD1 gene are implicated in the etiology of amyotrophic
lateral sclerosis (ALS), one of the NDs [53]. A hallmark of SOD1-associated ALS is the
deposition of SOD1 into insoluble aggregates in motor neurons, probably as a result of
mutation-induced structural destabilization and/or oxidative damage because of mutation,
which in turn contributes to the misfolding and aggregation of SOD1 into neurotoxic
species [54].

Catalase is a heme-containing homotetrameric protein without any isoforms. Mice
lacking catalase develop normally, although catalase deficiency or mutation in humans
results in acatalasemia, which is characterized by oral gangrene, altered lipid, carbohydrate,
and homocysteine metabolism and an increased risk of diabetes mellitus, although there
are only limited reports of acatalasemia in the literature [55–58].

Eight isoforms of GPx have been identified, GPx1 to GPx8 [59]. GPx1-4 are selenium-
dependent enzymes, whereas GPx5, GPx7 and GPx8 are selenium-independent but contain
a cysteine instead of a selenocysteine [50]. GPx1 is the most abundant cellular GPx and
functions as an important antioxidative enzyme that interacts with fatty acid hydroperox-
ides as well as hydrogen peroxide in the brain. On the other hand, GPx2 and GPx3 have
been identified as gastrointestinal and plasma GPx isoforms, respectively. GPx4 is a ubiqui-
tously expressed peroxidase that can directly reduce lipid hydroperoxides in the cellular
membrane [60]. GPx5 is an epididymal-specific secretory GPx, and GPx6 is expressed in the
olfactory epithelium. GPx7 and GPx8 have been observed in the lumen and membrane of
the endoplasmic reticulum (ER), respectively. Studies using GPx1- knockout mice showed
that these animals were phenotypically normal, but they were particularly susceptible
to oxidative stress in the brain [61–63]. Although homozygotes of GPx4-knockout mice
are embryonic lethal, heterozygous mice do not show any alterations in the activities of
other major antioxidant defense enzymes, such as Gpx1 and catalase [64,65]. However, it
has been determined that Gpx4 heterozygotes show increased lipid peroxidation in the
brain [66].

2.3. Glutaredoxin, Thioredoxin and Peroxiredoxin

Glutaredoxins (Grxs), thioredoxins (Trxs) and peroxiredoxins (Prxs) have been char-
acterized as electron donors, and shown to function in the protection of the intracellular
redox state and as antioxidants [67,68]. Both Grxs and Trxs are members of a superfamily
of low-molecular-mass proteins that catalyze the reduction of disulfide bonds in a variety
of proteins. GSSG formed in the Grx reaction is reduced by GSR at the expense of NADPH,
whereas oxidized Trx is reduced by thioredoxin reductase (TrxR) with electrons transferred
from NADPH [69]. Prxs are peroxidase enzymes that receive electrons from NADPH by
coupling with Trx and TrxR [70].

2.4. The Nrf2-Keap1 System

Nuclear factor erythroid 2-related factor 2 (Nrf2) is one of the most important transcrip-
tional factors, with a responsibility for regulating hundreds of antioxidant genes involved
in the synthesis, metabolism and conjugation of GSH [71]. Kelch-like ECH-associated
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protein1 (Keap1) has been identified as a factor that negatively regulates Nrf2. Under
normal conditions, Keap1, which forms a ubiquitin E3 ligase complex with Cullin3, binds
to Nrf2, trapping Nrf2 into the cytosol and promoting its ubiquitination and proteasomal
degradation. On the other hand, oxidative stress conditions modify the cysteine residues
of Keap1, facilitating the dissociation of Nrf2 from Keap1, which promotes the nuclear
translocation of Nrf2. In the nucleus, Nrf2 heterodimerizes with small musculo-aponeurotic
fibrosarcoma (sMAF) and interacts with antioxidant response elements (ARE) in the pro-
moter region of target genes, resulting in their transcriptional activation [72]. Krüppel-like
factor 2 (KLF2) is a member of the zinc finger transcription factor family and acts to prime
Nrf2 activation through enhanced nuclear localization [73]. Nrf2 transcriptionally regu-
lates several antioxidant genes, including GCLc, GCLm, GSS, GPx4, GSR, Trx1, TrxR and
catalase, some of which are also up-regulated by KLF2 [74]. Nrf2-knockout mice lose the
ability to induce antioxidative genes such as GPx, SOD, GST, and catalase, with the result
that the GSH system for protection against oxidants is not induced, and the mice are left
vulnerable to oxidative stress [75,76].

3. Uptake System for the Sources of GSH
3.1. Cysteine Uptake System

Although GSH is composed of three amino acids, the determinant substrate for
neuronal GSH synthesis is cysteine [37]. Cysteine uptake in neurons is mostly mediated
by sodium-dependent systems, mainly the excitatory amino acid carrier 1 (EAAC1; also
known as EAAT3 or SLC1A1) (Figure 1) [77]. EAAC1 is one of the five excitatory amino
acid transporters (EAATs) that are collectively known as solute carrier family 1 (SLC1).
EAAC1-deficient mice exhibit an approximately 40% decrease in brain GSH content and
neurodegeneration in advanced age [77]. Further, overexpression of Nrf2 in brain neurons
is sufficient to upregulate both neuronal EAAC1 protein and GSH content, and these effects
were abrogated in mice genetically deficient in either Nrf2 or EAAC1 [78]. EAATs are
responsible for the uptake of glutamate; the known EAATs include glutamate aspartate
transporter (GLAST; also known as EAAT1 or SLC1A3), glutamate transporter-1 (GLT-1;
also known as EAAT2 or SLC1A2), EAAC1, EAAT4 (also known as SLC1A6) and EAAT5
(also known as SLC1A7) [79]. The EAATs are secondary active transporters, translocating
three sodium ions and one proton and counter-transporting one potassium ion for each
substrate, and thereby supplying the energetic driving force to transport glutamate against
its electrochemical gradient [80]. Recent lines of evidence show that cysteine transport
through EAAC1 is facilitated through cysteine deprotonation and that, once inside, the
thiolate is rapidly reprotonated [81,82]. GLAST and GLT-1 are expressed in astrocytes,
whereas EAAC1, EAAT4 and EAAT5 are expressed in neurons [83]. EAAC1 and GLT-1 are
widely distributed throughout the brain, although the distribution of GLAST, EAAT4 and
EAAT5 is restricted.

3.2. Cystine Uptake System

In the extracellular environment, cysteine is mainly present in its oxidized form,
cystine [84]. Cystine is intracellularly reduced to cysteine once imported into the cell, and
turns out to be a building block of the antioxidant GSH [85]. Cystine transport is mediated
via system xc-, which is composed of a heavy chain subunit 4F2hc (encoded by the SLC3A2
gene) and a light chain specific subunit xCT (encoded by the SLC7A11 gene). System xc-
exchanges glutamate for cystine in a 1:1 ratio according to the respective concentration
gradients. Investigation into the localization of system xc- at the cellular level in the brain
using immunohistochemistry in rat brain slices showed that system xc- is localized mainly
in astrocytes, but not in neurons [86]. In addition, the inflammatory stimulation specifically
upregulates system xc- activity in astrocytes but not in microglia and neurons [86–89].
However, another study using immunohistochemistry showed that xCT was localized
in both neurons and astrocytes in the mouse and human brain [90]. Since deficiency of
EAAC1 in mice results in a significant decrease in brain GSH content but not zero brain
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GSH content [77], system xc- may also play a small role in uptake of the sources of GSH in
neurons.

Ferroptosis is a recently described form of non-apoptotic regulated cell death caused
by iron-dependent lipid peroxidation that is distinct in its morphological and genetic
profile from other cell death mechanisms such as apoptosis, necroptosis, or autophagy [91].
GPx4 was identified as a key regulatory factor in ferroptosis, the process of detoxifying
membrane lipid peroxidation by converting lipid peroxides to non-toxic lipids [92,93].
GSH is a cofactor for GPx4 and is required for the detoxification of lipid peroxidation [94].
Inhibition of system xc- caused cysteine depletion, resulting in a lack of GSH synthetic
substrate, leading to impairment of GPx4 function and finally ferroptosis [95,96]. Further,
GPx4 inhibition via Ras-selective lethal small molecule 3 or genetic knockdown of GPx4
could also induce ferroptosis [96].

4. Neuroprotective Function of Non-Coding RNA

Soon after DNA was determined to be the store of genetic information in the eukaryotic
nucleus, and after proteins were shown to be synthesized in the cytoplasm based on this
information, RNA was first recognized in the form of the messenger (mRNA) that passed
genetic information from the DNA to the protein synthetic machinery as explained in the
classical central dogma of molecular biology [97]. Then, the functional RNAs, i.e., transfer
RNA (tRNA) and ribosomal RNA (rRNA), were found to be involved in protein synthesis.
Sometime later, several small non-mRNAs, other than rRNA and tRNA, were detected
and isolated with associating ribonucleoprotein (RNP) complexes. These short non-coding
RNAs play an essential role in the maturation of functional RNAs, which are small nuclear
RNAs (snRNAs) involved in splicing events and small nucleolar RNAs (snoRNAs) guiding
posttranscriptional modifications on rRNAs and snRNAs [97,98].

Recently, several classes of regulatory non-coding RNAs, including microRNAs, long
non-coding RNAs, circular RNAs, and so on, have been discovered to act as key regulators
of gene expression in many different cellular pathways and systems [99]. These different
types of non-coding RNAs are found to confer neuroprotection against oxidative stress by
linking with each other [20].

4.1. MicroRNAs

MicroRNAs (miRNAs), which are a class of short non-coding RNAs approximately
20 nucleotides in length, are among the most well-studied ncRNAs [100]. The function
of miRNAs is mainly to silence target expressions by binding to target gene transcripts
located mainly at the 3′-untranslated regions (3′-UTR). Clustered miRNAs can either
be simultaneously transcribed from single polycistronic transcripts containing multiple
miRNAs or independently transcribed. In most cases, RNA polymerase II transcribes the
primary miRNAs (pri-miRNAs), which are cleaved by a complex called a microprocessor,
which contains the ribonuclease III Drosha and the RNA-binding protein DGCR8/Pasha,
to generate small hairpin-shaped RNAs, called miRNA precursors (pre-miRNAs). Pre-
miRNAs are exported by exportin-5 in complex with RAN-GTP and are processed by a
double-stranded ribonuclease III enzyme termed Dicer, which is complexed with TRBP.
The mature miRNA duplexes are loaded onto an Argonaute protein to form an effector
complex called the RNA-induced silencing complex (RISC). Finally, one strand of the
miRNA is removed from RISC to generate the mature RISC that induces gene silencing.
The post-transcriptional regulation by the RISC complex is mediated by incomplete base-
paring of miRNA-mRNA interactions, likely due to the targeting of multiple transcripts,
which contributes to the complexity or redundancy of miRNA systems.

Numerous miRNAs have been identified as regulators of GSH-regulating factors.
Several reports have shown that GSH or ROS levels are modulated by miRNAs through the
regulation of factors related to GSH synthesis and/or metabolism in the brain or neuronal
cells. Among them, the Nrf2-mediated pathway has been well-studied in relation to the
regulation of neuroprotection and oxidative stress (Figure 2). MiR-23a-3p targets Nrf2 itself,
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and injection of antagomiR into the lateral ventricle results in an increase of GPx4 expression
and an inhibition of ROS accumulation and lipid peroxidation in a rat model of intracerebral
hemorrhage [101]. In addition, hydrogen peroxide-responsive miR-153 directly targets
and inhibits gene expression of Nrf2, which results in ROS accumulation by preventing
transactivation of the downstream antioxidative gene GCLc [102]. On the other hand, miR-7
can activate the Nrf2 pathway by directly targeting the 3′-UTR of Keap1 mRNA to increase
GSH levels by inducing an increase in GCLm expression [103]. Nrf2 activator KLF2 is
targeted by miR-25, and this action results in an inhibition of proliferation while promoting
the apoptosis of hippocampal neurons with a reduction of GSH level and antioxidative
enzyme expression [104]. It has also been reported that the inhibition of miR-592 function
promotes an increase in GSH levels and a decrease of ROS via an Nrf2-signaling pathway
by up-regulating KIAA0319, which is a dyslexia-associated protein [105,106]. An Nrf2-
signaling pathway is also modulated by miR-139 or miR-144, both of which have been
shown to modulate redox states, although the precise mechanisms by which they modulate
the Nrf2-signaling pathway remain unknown [107,108]. The PI3K/Akt pathway plays
key roles in regulating Nrf2-dependent protection against oxidative stress (Figure 2).
Downregulation of miR-200c-3p increases GSH and SOD levels and reduces the damage to
hippocampal neurons by upregulating the reversion-inducing-cysteine-rich protein with
kazal motifs (RECK) and inactivating the Akt signaling [109]. Inhibition of miR-204-5p
alleviated oxidative injuries in hippocampal neuronal cells via a reduction of ROS and
oxidative stress marker malondialdehyde (MDA) levels and an upregulation of SOD and
GSH, possibly by targeting brain-derived neurotrophic factor (BDNF) in the neurotrophic
tyrosine kinase receptor type 2 (TrkB)-mediated pathway [110]. Upregulation of miR-409
expression activates the Akt-regulated glycogen synthase kinase 3β (GSK3β), leading to
an increase in GSH and SOD levels and decrease in ROS levels, which protects against
ROS-induced neurotoxicity [111]. MiR-214 plays a neuroprotective role characterized by an
increase of SOD and GSH levels directly targeting phosphatase and tensin homolog deleted
from chromosome 10 (PTEN), a suppressor of Akt signaling [112]. The mitogen-activated
protein kinase (MAPK) pathway is also important because MAPKs such as ERK, p38MAPK
and JNK are downstream effectors of antioxidant responses and changes in GSH levels
(Figure 2). MiR-410 promotes decreased MDA content but increased SOD activities and
GPx activities in hippocampal neurons by regulating the p38/JNK pathway through the
inhibition of tissue inhibitors of metalloproteinase 2 (TIMP2) [113]. Induction of miR-
486 by ROS generation inhibits NeuroD6 expression in the p38/JNK pathway, resulting
in ROS accumulation via downregulation of antioxidative genes including GPx3 [114].
The upregulation of miR-136 could potentially inhibit inducible nitric oxide synthase
(iNOS) activation as well as the apoptosis of neurons by negatively targeting Kallikrein-
related peptidase 7 (KLK7) through inhibition of the p38 signaling pathway, resulting in
increased content of SOD and GPx, as well as reduced MDA content [115]. Other signaling
pathways are also cross-linked and interact with each other to regulate intracellular GSH
levels. MiR-146a has a protective effect in the brain by repressing the tumor necrosis factor
receptor associated factor (TRAF6)-mediated nuclear factor kappa B (NF-κB) pathway,
leading to inhibition of inflammation and oxidative stress [116]. MiR-98 improves oxidative
stress and mitochondrial dysfunction through activation of the Notch signaling pathway
by binding to Hairy/enhancer-of-split related with YRPW motif protein 2 (HEY2) with
enhancement of viability in hippocampal neurons [117]. Overexpression of miR-129-3p
can alleviate oxidative stress and ROS-mediated apoptosis of hippocampal neurons by
targeting mitochondrial calcium uniporter (MCU) [118]. The suppression of miR-200a
can inhibit apoptosis in striatal neuron cells, increase the levels of GSH and SOD and
decrease the level of MDA in the brain tissue by upregulating dopamine receptor D2,
and thereby, repressing the cAMP/PKA signaling pathway [119]. MiR-320 affects cellular
proliferation, apoptosis, and oxidative stress by inhibiting the NADPH oxidase 2 (Nox2)
pathway [120]. EAAC1 is negatively regulated by miR-96-5p, and blocking of miR-96-5p
by the administration of an inhibitor increased the levels of EAAC1 and GSH and had
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a neuroprotective effect against oxidative stress in the mouse substantia nigra [121]. In
addition, miR-96-5p can indirectly regulates GTRAP3-18, a negative regulator of EAAC1,
through directly targeting RNA-binding protein NOVA1 and modulate the levels of GSH
in the mouse dentate gyrus of hippocampus as well as SH-SY5Y cells [122]. Multidrug
resistance-associated protein 1 (MRP1), which is a direct target of miR-199a-5p, plays a key
role in clearing intracellular GSSG [123]. These reports indicate that up- or down-regulation
of miRNA function can modulate GSH levels and thereby regulate the neuroprotective
effects of GSH (Table 1).
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Figure 2. Signal transduction related to transactivation of antioxidative genes regulated by ncRNAs.
Nrf2 is a transcriptional factor that enters the nucleus in response to oxidative stress, resulting in
increased expression of numerous neuroprotective genes. Nrf2 is regulated through the PI3K/Akt
pathway, which plays key roles in regulating neuroprotection against oxidative stress. BDNF is a
ligand of TrkB, which promotes neuronal survival and protects against apoptosis mediated through
the PI3K/Akt pathway. BDNF can also bind to p75NTR—which was identified as a low-affinity nerve
growth factor receptor—and BDNF can activate the NFκB pathway as well as the p38/JNK pathways.
Boxes indicate miRNAs that target the signal transduction molecule, and the rounded rectangle
indicates lncRNA.

Table 1. List of miRNAs regulated redox states in brain tissue or neuronal cells.

MiRNA Direct Target Related
Pathway

Effect on Redox States
Brain Tissue or
Neuronal Cell Ref

Glutathione Antioxidative
Enzymes

Oxidative
Stress

miR-7 Keap1 Nrf2 pathway GSH ↑ GCLm ↑ CBA *2 ↓ SH-SY5Y cell [103]
miR-23a-3p Nrf2 Nrf2 pathway n.d. n.d. ROS ↑ MDA ↑ brain *1 [101]

miR-25 KLF2 Nrf2 pathway GSH ↓ GST ↓ Trx ↓ n.d. hippocampus [104]
miR-96-5p EAAC1 Cys transport GSH ↓ n.d. ROS ↑ substantia nigra [121]

miR-96-5p NOVA1 Cys transport GSH ↓ n.d. ROS ↑ dentate gyrus of
hippocampus [122]

miR-98 HEY2 Notch
signaling GSH ↑ GPx ↑ SOD ↓ MDA ↓ hippocampus [117]

miR-129-3p MCU MMP2
pathway GSH/GSSG ↓ SOD ↓ ROS ↑

primary
hippocampal

neurons
[118]
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Table 1. Cont.

MiRNA Direct Target Related
Pathway

Effect on Redox States
Brain Tissue or
Neuronal Cell Ref

Glutathione Antioxidative
Enzymes

Oxidative
Stress

miR-139 n.d. Nrf2 pathway GSH ↑ CAT ↑ SOD ↑ MDA ↓ SH-SY5Y cell [107]
miR-144 n.d. Nrf2 pathway GSH ↓ GPx ↓ ROS ↑ SH-SY5Y cell [108]

miR-146a TRAF6 NF-κB
pathway n.d. GPx ↑ SOD ↑ MDA ↓ brain *1 [116]

miR-153 Nrf2 Nrf2 pathway n.d. GCLc ↓ ROS ↑ SH-SY5Y cell [102]

miR-199a-5p MRP1 GSSG
clearlance GSSG ↑ n.d. n.d. primary cortical

neurons [123]

miR-200a n.d. PKA pathway n.d. GPx ↓ SOD ↓ MDA ↑ striatum [119]

miR-200c-3p RECK PI3K/AKT
pathway n.d. GPx ↓ SOD ↓ MDA ↑ hippocampus [109]

miR-204-5p BDNF TrkB pathway GSH ↓ SOD ↓ ROS ↑ MDA ↑ HT-22 cell [110]

miR-214 PTEN PI3K/AKT
pathway GSH ↑ SOD ↑ MDA ↓ SH-SY5Y cell [112]

miR-320 Nox2 Nox2 pathway n.d. GPx ↑ CAT ↑
SOD ↑ ROS ↓ MDA ↓ primary neuron [120]

miR-326 KLK7 p38/JNK
pathway n.d. SOD ↓ GPx ↓ MDA ↑ striatum [115]

miR-409 n.d. PI3K/AKT
pathway GSH ↑ SOD ↑ ROS ↓ PC-12 cell [111]

miR-410 TIMP2 p38/JNK
pathway n.d. GPx ↑ SOD ↑ MDA ↓(serum) hippocampal

neurons [113]

miR-486 NeuroD6 p38/JNK
pathway n.d. GPx ↓ ROS ↑ spinal cord [114]

miR-592 KIAA0319 Nrf2 pathway GSH ↓ CAT ↓ SOD ↓ ROS ↑ MDA ↑ cortical astrocytes [105]

Upward and downward arrows indicate increased and decreased level of redox markers, respectively. *1 Area of brain tissue were not
specified in the article. *2 CBA: Coumarin boronate acid. n.d.; not detected.

4.2. Long Non-Coding RNAs

Long non-coding RNAs (lncRNAs) are long RNA transcripts that are not protein-
coding, and are longer than 200 nucleotides by definition [124]. The transcription for
lncRNAs is transcribed by RNA polymerase II, similar to the transcription for mRNAs, as
they are capped, spliced and polyadenylated, however, lncRNAs lack a translated open
reading frame. LncRNA is a quite heterogenous term, in the sense that it encompasses
several functionally different types of lncRNAs that have different biogenetic mechanisms.
LncRNAs are roughly classified based on their position relative to protein-coding genes:
exon or intron sense-overlapping, intergenic, antisense, bidirectional and enhancer lncR-
NAs [124]. Functionally, lncRNAs can guide transcription factors to specific genomic
locations for the regulation of gene expression, work as a scaffold to facilitate the assembly
of chromatin remodeling complexes, serve as a sponge to titrate miRNAs out from their
mRNA targets, or bind to transcription factors or other proteins as a decoy and sequester
them away from chromatin [124]. Some lncRNAs play a role in neuroprotection mostly by
modulating the expression of miRNAs by acting as their sponge [20] (Figure 3).

Nuclear paraspeckle assembly transcript 1 (NEAT1, an lncRNA) is transcribed from
familial tumor syndrome multiple endocrine neoplasia (MEN) type 1 and encodes two
transcriptional variants. NEAT1 acts as a sponge for miR-1277-5p targeting Rho GTPase
activating protein 26 (ARHGAP26), resulting in oxidative stress with a reduction of GPx
and SOD activities in cells of the neuroblastoma cell line, SK-N-SH [125]. LncRNA plas-
macytoma variant translocation 1 (PVT1) is an intergenic lncRNA with multiple splice
isoforms. PVT1 has been reported to regulate ferroptosis through miR-214-mediated p53,
upregulation of which markedly reduced the expressions of xCT and GPx4 in SK-N-SH
cells [126]. LncRNA AK046177 appears to be transcribed from the loci at the protein
encoding region of poly (ADP-ribose) polymerase family, member 8 (Parp 8). Downreg-
ulations of AK046177 and miR-134, along with increasing intracellular cAMP levels and
activation of the Nrf2 pathway leading to reductions of ROS and increases of SOD and
GPx activities thereby protecting the brain [127]. LncRNA H19 is a maternally expressed
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and paternally imprinted gene located near the telomeric region adjacent to the insulin like
growth factor 2 (IGF2) gene [128]. H19 acts as a sponge for miR-148a-3p, which could target
Rho associated coiled-coil containing protein kinase 2 (ROCK2), such that inhibition of
H19 has a neuroprotective effect to increase SOD and GPx activities while decreasing ROS
level [129]. There is another report about lncRNA H19 which shows that downregulation
of H19 suppresses hippocampal neuron apoptosis by inhibiting IGF2 methylation [130].
When the lncRNA gene is an antisense gene that overlaps the genomic coordinates of a
protein-coding gene on the opposite strand, the lncRNA genes are named as protein-coding
gene symbol with the suffix -AS and sequential number. β-secretase 1 antisense RNA
(BACE1-AS) downregulates its antisense coding protein BACE1 by down-regulation of
miR-34b-5p, and down-regulation of BACE1-AS improves dopamine-dependent oxidative
stress by inhibition of iNOS activation in the substantia nigra [131]. Further, Wilms’ tumor 1
antisense RNA (WT1-AS) suppresses the expression of WT1 by acting as an miR-375 sponge
and plays a neuroprotective role in SH-SY5Y cells [132]. Silencing of lncRNA SRY-Box
transcription factor 21 (SOX21) antisense divergent transcript 1 (SOX21-AS1) could act to
alleviate neuronal oxidative stress and suppress neuronal apoptosis through the upregula-
tion of Frizzled3/5 (FZD3/5) and subsequent activation of the Wnt signaling pathway in
hippocampal neurons [133]. These results suggest that activation or inactivation of lncRNA
contributes to neuroprotection mainly by allowing lncRNA to act as a functional miRNA
sponge (Table 2).
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Table 2. List of lncRNAs regulated redox states in brain tissue or neuronal cell.

LncRNA Direct Target Function

Effect on Redox States Brain Tissue
or Neuronal

Cell
Ref

Glutathione Antioxidative
Enzymes

Oxidative
Stress

AK046177 n.d. Nrf2/CREB regulation
acting with miR-134 n.d. GPx ↓ SOD ↓ ROS ↑ MDA ↑ primary

cortical cell [127]

BACE1-AS miR-34b-5p
BACE1 upregulation

acting as
miR-34b-5p sponge

n.d. GPx ↓ SOD ↓ MDA ↑ substantia
nigra [131]

H19 miR-148a-3p
ROCK2 upregulation

acting as
miR-148a-3p sponge

n.d. GPx ↓ SOD ↓ MDA ↑ Neuro2a cell [129]

H19 IGF2
inhibition of

antioxidative gene
transcription

GSH ↓ GPx ↓ CAT ↓
SOD ↓ n.d. hippocampal

neuron [130]

NEAT1 miR-1277-5p
ARHGAP26

upregulation acting as
miR-1277-5p sponge

n.d. GPx ↓ SOD ↓ MDA ↑ SK-N-SH cell [125]

PVT1 miR-214-3p
TP53 and TFRC

upregulation acting as
miR-1277-5p sponge

GSH ↑ GPx ↑ MDA ↓ SK-N-SH cell [126]

SOX21-AS1 FZD3/5 inactivation of Wnt
signalin pathway n.d. GPx ↓ CAT ↓

SOD ↓
ROS ↑ MDA ↑

4-HNE * ↑
hippocampal

neuron [133]

WT1-AS miR-375
SIX4 upregulation

acting as
miR-375 sponge

n.d. GPx ↑ SOD ↑ ROS ↓ MDA ↓ SH-SY5Y cell [132]

Upward and downward arrows indicate increased and decreased level of redox markers, respectively. * 4-HNE: 4-hydroxy-2-nonenal. n.d.;
not detected.

4.3. Circular RNAs

Circular RNAs (circRNAs) are single-stranded RNAs that form circular molecules in
which the 3′ and 5′ ends are covalently linked [134]. The classic regulatory mechanisms of
circRNAs involve their role as competitive endogenous RNAs (ceRNAs). CircRNAs can
regulate gene expression by influencing transcription, mRNA turnover, and translation
by sponging RNA-binding proteins and miRNAs. A search on PubMed uncovered no
reports of specific circRNAs modulating the levels of GSH or oxidative stress specifically in
the brain or neuronal cells. However, most of the miRNAs that can modulate GSH levels,
which are listed in Table 1, have been reported to be regulated by several circRNAs. For
example, CDR1as (also named ciRS-7 or CDR1NAT), which is formed by reverse splicing of
the antisense strand of the cerebellar degeneration-associated antigen 1 (CDR1) gene [135],
has more than 70 miR-7-binding sites that inhibit its binding to target genes [134]. As
described above, miR-7 targets Keap1 to regulate and modulate the neuroprotective effects
of GSH [103].

There are some reports that have shown that circRNAs modulate protective effects
against cellular damage, although these effects are not related to neurons or the brain
(Figure 4). Knockdown of circRNA_0084043 remarkably reduced oxidative stress as ev-
idenced by the down-regulated MDA content, enhanced activities of SOD and GPx via
sponging of miR-140-3p and regulation of transforming growth factor alpha (TGFA) in
a hyperglycemia-induced human retinal pigment epithelial cell, ARPE-19 [136]. Up-
regulation of circHIPK3 or down-regulation of circHIPK3 targeting miR-221-3p mediated
the promotion of proliferation, inhibition of apoptosis, decrease of MDA level and in-
crease of GPx level in human lymphatic endothelial cells [137]. CircHIPK3 also inhibits
proliferation and induces apoptosis of cardiomyocytes via binding to miRNA-124-3p in
human cardiac myocytes (HCM) [138]. CircRNA_0001445 inhibits oxidized LDL-induced
inflammation, oxidative stress and apoptosis by regulating miRNA-640 in human umbilical
vein endothelial cells (HUVECs) [139]. CircIL4R acts as a miR-541-3p sponge to regulate its
target GPx4, the upregulation of which relieved the miR-541-3p-induced tumor inhibition
and ferroptosis aggravation in hepatocellular carcinoma [140]. CircEPSTI1 attenuates the
effects of ferritin, which are mediated by xCT, which in turn regulates lipid peroxidation
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and GSH levels in cervical cancer [141] (Table 3). Further research will shine light on the
contribution of circRNAs to the neuroprotective effects of GSH.
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Table 3. List of circRNAs regulated redox states in tissue or cell.

CircRNA Direct Target Function

Effect on Redox States

Tissue or Cell Ref
Glutathione Antioxidative

Enzymes Oxidative Stress

circRNA_0084043 miR-140-3p
TGFA upregulation

acting as
miR-221-3p sponge

n.d. GPx ↓ SOD ↓ MDA ↑ ARPE-19 cells [136]

circHIPK miR-221-3p
PI3K/AKT pathway
activation acting as
miR-140-3p sponge

n.d. GPx ↑ MDA ↓ LECs [137]

circHIPK miR-124-3p
apoptosis induction

acting as
miR-124-3p sponge

n.d. GPx ↓ SOD ↓ MDA ↑ LDH *1 ↑ HCM [138]
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Table 3. Cont.

CircRNA Direct Target Function

Effect on Redox States

Tissue or Cell Ref
Glutathione Antioxidative

Enzymes Oxidative Stress

circRNA_0001445 miR-640
protective function

acting as
miR-640 sponge

n.d. GPx ↑ SOD ↑ MDA ↓ HUVECs [139]

circIL4R miR-541-3p
GPx4 upregulation

acting as
miR-541-3p sponge

n.d. n.d. ROS ↓ MDA ↓ hepatocellular
carcinoma [140]

circEPSTI1
miR-375

miR-409-3p
miR-515-5p

SLC7A11
upregulation acting

as sponge of
miR-375, -409-3p

and -515-5p

GSH/GSSG ↑ n.d. Liperfluo *2 ↓ cervical
cancer [141]

Upward and downward arrows indicate increased and decreased level of redox markers, respectively. *1 LDH: lactate dehydrogenase,
*2 Liperfluo: N-(4-Diphenylphosphinophenyl)-N′-(3,6,9,12-tetraoxatridecyl) perylene-3,4,9,10-tetracarboxydiimide. n.d.; not detected.

5. Conclusions

A novel class of non-coding RNAs is increasingly being identified along with the
evolution of RNA technologies. These RNAs appear to regulate gene expression by linking
and interacting with each other. Recently, abnormalities in the expression of these non-
coding RNAs have been reported to be involved in the cause and/or progress of several
diseases, including NDs. As described in this review, several types of non-coding RNAs
have been reported to contribute to the regulation of GSH synthesis and/or metabolism in
various cell lines and tissues. Since GSH depletion has long been observed in patient with
NDs, it may be that the etiology of NDs involves oxidative stress induced by alterations in
the expression of non-coding RNAs. This is a meaningful indication that modulation of
the expression of non-coding RNAs could be a novel therapeutic approach for NDs via an
increase in GSH levels. Recently, some of the miRNA-based therapeutics are actually pro-
cessed in preclinical and clinical trial for various diseases including NDs. Understanding
the interplay of miRNAs and other non-coding RNAs is key for the development of next
generation drugs for the cure of NDs.
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Abbreviations

ROS Reactive oxygen species
GSH Glutathione
CNS Central nervous system
SOD Superoxide dismutase
GPx Glutathione peroxidase
ND Neurodegenerative disease
H2O2 Hydrogen peroxide
NO Nitric oxide
NOS Nitric oxide synthase
GCL Glutamate-cysteine ligase
GSS Glutathione synthetase
γ-GluCys γ-glutamylcysteine
GCLc Catalytic subunit of glutamate-cysteine ligase
GCLm Modulatory subunit of glutamate-cysteine ligase
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GSSG Oxidized glutathione
GSR Glutathione reductase
NADPH Nicotinamide adenine dinucleotide phosphate
GST Glutathione-S-transferase
MRP Multidrug-resistance-associated protein
γ-GT γ-glutamyltranspeptidase
CysGly Cysteinylglycine
Glycys Glycylcysteine
ALS Amyotrophic lateral scleorosis
Grx Glutaredoxin
Trx Thioredoxin
Prx Peroxiredoxin
TrxR Thioredoxin reductase
Nrf2 Nuclear factor erythroid 2-related factor 2
Keap1 Kelch-like ECH-associated protein 1
sMAF Small Musculo-aponeurotic fibrosarcoma
ARE Antioxidant response element
KLF2 Krüppel-like factor 2
EAAC1 Excitatory amino acid carrier 1
EAAT Excitatory amino acid transporter
SLC1 Solute carrier family 1
GLAST Glutamate aspartate transporter
GLT-1 Glutamate transporter-1
mRNA Messenger RNA
tRNA Transfer RNA
rRNA Ribosomal RNA
snRNA Small nuclear RNA
snoRNA Small nucleolar RNA
miRNA MicroRNA
3′-UTR 3′-untranslated region
Pri-miRNA Primary microRNA
Pre-miRNA MicroRNA precursor
RISC RNA -induced silencing complex
RECK Reversion-inducing-cysteine-rich protein with kazal motifs
MDA Malondialdehyde
BDNF Brain-derived neurotrophic factor
TrkB Tyrosine kinase receptor type21
GSK3β Glycogen synthase kinase 3β
PTEN Phosphate and tensin homolog deleted from chromosome 10
MAPK Mitogen-activated protein kinase
ERK Extracellular signal-regulated kinase
JNK c-Jun N-terminal protein kinase
TIMP2 Tissue inhibitors of metalloproteinase 2
iNOS Inducible nitric oxide synthase
KLK7 Kallikrein-related peptidase 7
TRAF6 Tumor necrosis factor receptor associated factor 6
NF-κB Nuclear factor kappa B
HEY2 Hairy/enhancer-of-split related with YRPW motif protein 2
MCU Mitochondrial calcium uniporter
Nox2 Nicotinamide adenine dinucleotide phosphate oxiodase 2
lncRNA Long non-coding RNA
NEAT1 Nuclear paraspeckle assembly transcript 1
MEN Multiple endocrine neoplasia
ARHGAP26 Rho GTPase activating protein 26
Parp8 Poly (ADP-ribose) polymerase family, member 8
IGF2 Insulin like growth factor 2
ROCK2 Rho associated coiled-coil containing protein kinase 2
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BACE1-AS β-secretase 1 antisense RNA
WT1-AS Wilms’ tumor 1 antisense RNA
SOX21 SRY-Box transcription factor 21
FZD3/5 Frizzled3/5
circRNA Circular RNA
ceRNA Competitive endogenous RNA
CDR1 Cerebellar degeneration-associated antigen 1
TGFA Transforming growth factor alpha
ARPE-19 Adult retinal pigment epithelial cell line 19
circHIPK3 Circular RNA homeodomain-interacting protein kinase 3
HCM Human cardiac myocyte
HUVEC Human umbilical vein endothelial cell
circIL4R Circular RNA interleukin-4 receptor
circEPSTI1 Circular RNA epithelial stroma linteraction 1
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