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Background: Pancreatic adenocarcinoma (PAAD) is a treatment-refractory cancer with
poor prognosis. Accumulating evidence suggests that squalene epoxidase (SQLE) plays a
pivotal role in the development and progression of several cancer types in humans.
However, the function and underlying mechanism of SQLE in PAAD remain unclear.

Methods: SQLE expression data were downloaded from The Cancer Genome Atlas and
the Genotype-Tissue Expression database. SQLE alterations were demonstrated based
on the cBioPortal database. The upstream miRNAs regulating SQLE expression were
predicted using starBase. The function of miRNA was validated by Western blotting and
cell proliferation assay. The relationship between SQLE expression and biomarkers of the
tumor immune microenvironment (TME) was analyzed using the TIMER and TISIDB
databases. The correlation between SQLE and immunotherapy outcomes was assessed
using Tumor Immune Dysfunction and Exclusion. The log-rank test was performed to
compare prognosis between the high and low SQLE groups.

Results: We demonstrated a potential oncogenic role of SQLE. SQLE expression was
upregulated in PAAD, and it predicted poor disease-free survival (DFS) and overall survival
(OS) in patients with PAAD. “Amplification” was the dominant type of SQLE alteration. In
addition, this alteration was closely associated with the OS, disease-specific survival, DFS,
and progression-free survival of patients with PAAD. Subsequently, hsa-miR-363-3p was
recognized as a critical microRNA regulating SQLE expression and thereby influencing
PAAD patient outcome. In vitro experiments suggested that miR-363-3p could knock
down the expression of SQLE and inhibit the proliferation of PANC-1. SQLE was
significantly associated with tumor immune cell infiltration, immune checkpoints
(including PD-1 and CTLA-4), and biomarkers of the TME. KEGG and GO analyses
indicated that cholesterol metabolism-associated RNA functions are implicated in the
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mechanisms of SQLE. SQLE was inversely associated with cytotoxic lymphocytes and
predicted immunotherapy outcomes.

Conclusions: Collectively, our results indicate that cholesterol metabolism-related
overexpression of SQLE is strongly correlated with tumor immune infiltration and
immunotherapy outcomes in patients with PAAD.
Keywords: pancreatic adenocarcinoma, SQLE, prognosis, miRNA, tumor immune infiltration, immunotherapy
INTRODUCTION

Pancreatic adenocarcinoma (PAAD) is currently one of the most
aggressive and malignant tumors with a 5-year survival rate of only
10% (1, 2). It is the seventh leading cause of cancer-related death
worldwide (3). Given the long asymptomatic disease progression
and poor early detection, 80% of patients with PAAD have an
advanced or metastatic stage at diagnosis, rendering a grim
prognosis (4–6). In recent years, despite improvements in
perioperative chemotherapy, radiotherapy techniques, immune
checkpoint inhibitors, and comprehensive treatments, the number
of deaths due to PAAD has been steadily increasing (7, 8).
Immunotherapy has shown favorable prospects for the treatment
of solid tumors, especially when combined with other targeted drugs
(9). Although tumor mutational burden (TMB), microsatellite
status, and programmed cell death-ligand 1 (PD-L1) expression
have been used to predict the effect of immunotherapy (10, 11), the
efficiency was limited in PAAD. Therefore, there is an urgent need
to identify more effective therapeutic targets and develop new
promising strategies for PAAD.

Cholesterol is the major sterol in mammalian cell
membranes, maintaining cell integrity and fluidity and forming
intracellular homeostasis (12). The biosynthetic pathway from
acetyl-CoA to cholesterol involves nearly 30 enzymatic reactions,
including the initial mevalonate (MVA) pathway, subsequent
squalene biosynthesis, and ultimate sterol conversion (13–15).
Squalene epoxidase (SQLE) is the second rate-limiting enzyme in
cholesterol biosynthesis that catalyzes the conversion of squalene
to 2,3-epoxysqualene (16, 17). SQLE promotes the initiation and
progression of non-alcoholic steatohepatitis by regulating
cholesterol metabolism (18). Notably, an increasing number of
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studies have shown that SQLE expression is closely correlated
with the progression, invasion, and metastasis of multiple
tumors, such as breast cancer (19), hepatocellular carcinoma
(20), esophageal cancer (21), prostate cancer (22), colorectal
cancer (23), and lung cancer (24). In addition, the inhibitor
terbinafine, which targets SQLE, showed efficient tumor
suppression and represents a new strategy for solid tumor
treatment (25). Recent research has emphasized that the
glycolysis-cholesterol synthesis axis affects the outcome and
prognosis of PAAD (26). However, a comprehensive analysis,
including the expression, prognosis, and mechanism of SQLE in
PAAD, has not yet been conducted. Additionally, the
relationship between SQLE and the tumor immune
microenvironment in PAAD remains unclear.

In this study, we first analyzed the expression level of SQLE and
its prognostic value in various types of human cancers, illustrating
its potential oncogenic role. Subsequently, microRNAs (miRNAs)
were determined to be vital regulators of SQLE and to influence the
outcome of patients with PAAD. Our results confirmed that SQLE
is significantly associated with tumor immune cell infiltration,
immune checkpoints, and biomarkers of the tumor immune
microenvironment. RNA functions associated with cholesterol
metabolism were found to be implicated in the mechanisms of
SQLE. Finally, a high SQLE level was indicative of a poor
immunotherapy effect in melanoma and PAAD. Together,
cholesterol metabolism-related overexpression of SQLE is strongly
correlated with poor prognosis, tumor immune infiltration, and
immunotherapy outcomes in PAAD.
MATERIALS AND METHODS

Cell Culture
The human PDAC cell line PANC-1 was obtained from the
American Type Culture Collection (ATCC) and cultured in
DMEM medium (Gibco, Carlsbad, CA) supplemented with
10% FBS (Gibco, Carlsbad, CA) and 1% penicil lin/
streptomycin (Gibco, Carlsbad, CA) in 5% CO2 at 37°C.

Western Blotting
Total proteins were extracted in RIPA buffer, and the protein
concentration was measured by BCA Protein Assay Kit (Thermo
Fisher Scientific, Waltham, MA). Protein was resolved in 10% Tris-
SDS-PAGE gels and transferred to PVDF membranes (Millipore,
Darmstadt, Germany). The membranes were incubated with anti-
human SQLE antibody (Proteintech, Chicago, IL) at a dilution of
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1:1000 and then probed with HRP-conjugated secondary antibody
(Proteintech, Chicago, IL).

Cell Transfection
The miR-363-3p mimics (Genepharma, Shanghai, China) or
negative control (NC) was transfected into PANC-1 cells using
Lipofectamine 3000 Transfection Reagent (Invitrogen, Karlsruhe,
Germany) according to the manufacturer’s instructions.

Cell Viability
Cells were plated in 96-well plates at a density of 2000 cells per
well. Cell viability was assessed using CCK-8 (Gaithersburg,
MD). OD450 values were determined on Day 0, 1, 2, 3, and 4.

Correlation Between SQLE Expression and
Immune Cell Infiltration
TIMER (27) and TIMER2.0 (28) were used as servers for the
comprehensive analysis of SQLE expression in 33 types of
human cancer, infiltration of tumor immune cells, and the
expression of immune checkpoints in PAAD. EPIC (29) and
McP-Counter (30) were used to validate the immune cell
infiltration from SQLE expression profiles. One-way ANOVA
was used to test the significant differences. Statistical significance
was set at p < 0.05.

GEPIA Database Analysis
GEPIA (31) is a web tool for gene expression analyses based on
The Cancer Genome Atlas (TCGA) and Genotype-Tissue
Expression databases. We used GEPIA to analyze SQLE
expression in 10 types of human cancers, namely, ACC, DLBC,
LAML, LGG, OV, PAAD, SKCM, TGCT, THYM, and UCS.
Statistical significance was set at p < 0.05. We also conducted
survival analyses for SQLE, including overall survival (OS) and
disease-free survival (DFS). The correlation of SQLE with
ACAT2, HMGCR, HMGCS1, IDI1, and LDLR in PAAD and
pan-cancer was analyzed, and the top 100 SQLE-correlated genes
were identified using GEPIA.

StarBase Database Analysis
The Starbase database (32) was first used to predict the miRNAs
upstream of SQLE. PITA, RNA22, miRmap, microT, miRanda,
PicTar, and TargetScan were used to identify miRNAs binding to
SQLE, and miRNAs that were present in more than two
programs were included in further analyses. We also used
starBase to perform miRNA expression and correlation
analyses for miRNA and SQLE in PAAD.

Kaplan-Meier Plotter Analysis
Kaplan-Meier plotter (33), a database evaluating the genes or
miRNAs that are associated with survival in human cancer types,
including PAAD, was used to perform survival analysis for
miRNAs in PAAD. A log-rank p < 0.05 was defined as
statistically significant.

Genetic Alteration Analysis
cBioPortal web (34, 35) was used to analyze the alteration
frequency, mutation type, and copy number alteration of SQLE
Frontiers in Immunology | www.frontiersin.org 3
in human cancers. The mutated site information of SQLE is
displayed in a schematic diagram of the protein structure. The
prognostic value of SQLE alterations, including OS, disease-
specific survival (DSS), DFS, and progression-free survival
(PFS), was determined using survival analysis. In addition,
immunohistochemical images of SQLE in tumor and normal
tissues were obtained. Log-rank p-values were also generated.

TISIDB Database Analysis
TISIDB is a web portal for tumor and immune system interaction
(36). The relationship between SQLE expression and tumor
immune biomarkers in PAAD, including lymphocytes, MHC
molecules, immune inhibitors, and immunostimulators, was
analyzed using TISIDB. The p-value and Spearman’s correlation
coefficients (rho) were calculated automatically.

Gene Enrichment Analysis
STRING website (37) was used to determine the SQLE-binding
proteins network. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was performed by “hiplot”
(unpublished, https://hiplot.com.cn), which is a free and
comprehensive cloud platform for scientific computation and
visualization. Gene ontology (GO) analyses, including biological
process (BP), cellular component (CC), and molecular function
(MF), were obtained from the DAVID database (https://david.nci
fcrf.gov). A two-tailed p < 0.05 was considered statistically
significant.

Statistical Analysis
Data are shown as the mean ± standard deviation of at least three
independent experiments. Kaplan-Meier survival analysis was
used to compare survival times with the log-rank test.
Spearman’s correlation coefficient was used to determine the
relationship between the two variables. Statistical significance
was set at p < 0.05.
RESULTS

SQLE Expression in the
Pan-Cancer Analysis
We first explored SQLE expression levels in 33 types of human
cancers based on TCGA dataset. As shown in Figure 1A, SQLE
expression was significantly higher in tumors than in normal
tissues in BLCA, BRCA, CESC, COAD, ESCA, HNSC, LIHC,
LUSC, READ, STAD, and UCEC. SQLE expression was
distinctly downregulated in KIRC, KIRP, PRAD, and THCA
cells. Owing to an insufficient number of normal tissues as
controls for several cancer types in the TCGA dataset, we
verified the difference in SQLE expression between normal and
tumor tissues in 10 types of human cancers by including normal
tissue from the GTEx consortium of the GEPIA database. SQLE
expression level was prominently increased in ACC, DLBC, OV,
PAAD, THYM, and UCS and was dramatically downregulated in
LAML. However, no significant differences were observed in
LGG, SKCM, and TGCT (Figures 1B–K). Notably, SQLE
May 2022 | Volume 13 | Article 864244
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FIGURE 1 | SQLE expression level in human cancers. (A) SQLE expression in 33 types of human cancer based on TCGA dataset. (B–K) SQLE expression in ACC
(B), DLBC (C), LAML (D), LGG (E), OV (F), PAAD (G), SKCM (H), TGCT (I), THYM (J), and UCS (K) compared with corresponding TCGA and GTEx normal tissues.
*p < 0.05; **p < 0.01; ***p < 0.001.
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expression in PAAD was markedly upregulated when an
adequate number of normal tissues were used as controls. In
summary, aberrant SQLE expression was observed in 22 types of
human cancers, implying that SQLE has a tumorigenic function.

SQLE Is Associated With the Prognosis of
Multiple Human Cancer
To further reveal the significance of SQLE in tumors, we
performed survival analyses, including OS and DFS, in 33 types
of human cancers. As shown in Figure 2, high SQLE expression
predicted unfavorable OS in the following 11 cancer types: ACC
(p = 0.02), BRCA (p = 0.041), CESC (p = 0.018), HNSC (p <
0.001), KIRP (p = 0.021), LUAD (p < 0.001), MESO (p = 0.016),
PAAD (p = 0.0031), SARC (p < 0.001), THCA (p < 0.001), and
UVM (p = 0.0026). Moreover, overexpression of SQLE was linked
to poor DFS in ACC, BLCA, HNSC, LUSC, PAAD, SARC, and
UVM (Supplementary Figure S1, p < 0.05). In other types of
human cancers, there was no significant difference observed in
SQLE expression between the high and low groups. Taken
together, our results reveal that SQLE overexpression correlates
with poor prognosis in patients with PAAD.

Analysis of SQLE Alterations in PAAD
To investigate the frequency and category of SQLE mutations in
human cancers, we conducted a gene alteration analysis. The
highest alteration frequency of SQLE (> 25%) was observed in
patients with ovarian epithelial tumors, with “amplification” as
the dominant type (Figure 3A). Significantly, more than 10% of
SQLE alterations (including “amplification” and “mutation”)
were detected in PAAD patients (Figure 3A). Furthermore, we
explored the location and number of SQLE alterations and found
that the P85Lfs*25/E86* domain was detected in 4 cases, which
was the most mutated location (Figure 3B). Additionally, the
relationship between SQLE alterations and PAAD prognosis was
demonstrated. Our results indicate that PAAD patients with
SQLE alterations had worse OS (p = 2.603e-4), DSS (p = 0.0347),
DFS (p = 1.021e-3), and PFS (p = 1.425e-3) than patients without
SLQE alterations (Figures 3C–F). Together, SQLE alterations
were frequently probed in PAAD and found associated with an
unfavorable prognosis in patients with PAAD.

Analysis of Upstream miRNAs Regulating
SQLE in PAAD
MicroRNAs (miRNAs) can bind to and regulate the expression
of target genes. To identify the miRNAs that regulate SQLE
expression, we analyzed the upstream miRNAs that could
potentially target SQLE. We found 21 miRNAs that could be
responsible for regulating SQLE expression in the pan-cancer
analysis (Table 1). Next, we focused on these miRNAs in PAAD.
As shown in Figures 4A–C, the expression of hsa-miR-194-5p,
hsa-miR-363-3p, and hsa-miR-429 was different in the tumor
and normal tissues, and therefore these miRNAs were confirmed
as vital regulatory molecules (p < 0.05). High expression of these
three miRNAs predicted favorable OS in PAAD (Figures 4D–F,
p < 0.05). This phenomenon was not observed for the other 18
miRNAs in PAAD. It is well known that miRNAs negatively
Frontiers in Immunology | www.frontiersin.org 5
regulate their target genes (38). As presented in Table 1, SQLE
expression showed a negative correlation with hsa-miR-363-3p
but a positive correlation with hsa-miR-194-5p and hsa-miR-429
in PAAD. Thus, we hypothesized that hsa-miR-363-3p is an
upstream miRNA of SQLE.

To explore the function of hsa-miR-363-3p in PAAD, we
performed in vitro experiments using miR-363-3p mimic.
Western blot results confirmed that both 50 nM and 100 nM
mimics could effectively knock down the expression of SQLE in
PANC-1 (Figure 4G). Subsequently, CCK8 results showed that
the mimic could inhibit the proliferation ability of PANC-1
(Figure 4H). These results indicated that miR-363-3p could
regulate the expression of SQLE and then inhibit cell
proliferation in PAAD.

SQLE Expression Was Closely Related to
Immune Cell Infiltration in PAAD
SQLE is a key enzyme in cholesterol metabolism and is involved
in important lymphocyte functions (39, 40). Therefore, we
explored the relationship between SQLE expression and
immune cell infiltration in PAAD patients. The copy number
of SQLE could affect the infiltration of B cells, CD8+ T cells, and
CD4+ T cells (Figure 5A). In addition, SQLE expression was
negatively correlated with CD4+ T cells (Figure 5B). In contrast,
SQLE expression positively correlated with the infiltration of
CD8+ T cells (Figure 5C) and neutrophils (Figure 5D). Our
results also demonstrated that SQLE expression did not affect the
infiltration of the other three types of immune cells: B cells,
dendritic cells (DCs), and macrophages (Figures 5E–G).

Furthermore, these results were validated in 178 patients with
PAAD from the TCGA cohort. Patients were divided into two
groups according to the median expression level of SQLE. McP-
Counter and EPIC methods were performed to validate the
immune cell infiltration in 2 groups. The McP-Counter results
showed that there were significant differences in T cell, CD8+ T
cell, B cell, NK cell, DC, and endothelial cell (Figure 5H), which
was consistent with EPIC results (Figure 5I). In conclusion,
SQLE expression has a complex regulatory effect on immune cell
infiltration in PAAD.

Correlation of SQLE With Biomarkers of
Tumor Immune Microenvironment
To further investigate the relationship between SQLE and tumor
immune biomarkers, we used the GEPIA and TISIDB databases.
Our results showed that SQLE expression was significantly
negatively correlated with PDCD1 (Figure 6A), LAG3
(Figure 6C), cytotoxic T-lymphocyte associated protein 4
(CTLA4, Figure 6E), and CD160 (Figure 6G)-all checkpoint
inhibitors in the GEPIA database analysis. Our TISIDB database
analysis confirmed these findings. SQLE expression was related to
PDCD1 (Figure 6B, rho = -0.347, p < 0.01), LAG3 (Figure 6D, rho
= -0.334, p < 0.01), CTLA4 (Figure 6F, rho = -0.241, p < 0.01), and
CD160 (Figure 6H, rho = -0.447, p < 0.01). We performed further
analyses to reveal the correlation among SQLE expression, copy
number, methylation, and tumor immune features in PAAD,
May 2022 | Volume 13 | Article 864244
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FIGURE 2 | Overall survival (OS) analysis for SQLE in multiple human cancers. (A–K) The OS curves of SQLE in ACC (A), BRCA (B), CESC (C), HNSC (D), KIRP
(E), LUAD (F), MESO (G), PAAD (H), SARC (I), THCA (J), and UVM (K).
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including lymphocytes (Supplementary Figure S2-A), immuno-
inhibitors (Supplementary Figure S2-B), MHC molecules
(Supplementary Figure S2-C), and immunostimulators
(Supplementary Figure S2-D). Remarkably, the relationship
between SQLE expression and tumor immune features was
always contrary to the results of SQLE methylation
(Supplementary Figure S2). Our results indicate that SQLE
might function as a regulator of the immune microenvironment
in PAAD.
Frontiers in Immunology | www.frontiersin.org 7
Enrichment Analysis of SQLE
SQLE is a pivotal gene regulating cholesterol biosynthesis.
Therefore, we performed an enrichment analysis of SQLE-
related partners. A list of 50 SQLE-binding proteins was
obtained from the STRING database. We constructed a
network of 20 proteins that were most strongly associated
(Figure 7A), and most of these proteins were involved in
cholesterol metabolism. The top 100 genes related to SQLE
expression pan-cancer were selected from the GEPIA2
A

B

D E FC

FIGURE 3 | Mutation characteristics of SQLE determined using the cBioPortal database. (A) The alteration frequency with mutational types of SQLE. (B) The mutational
sites of SQLE. (C–F) The correlation between SQLE and OS (C), DSS (D), DFS (E), and PFS (F) in PAAD.
May 2022 | Volume 13 | Article 864244
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database analysis. As presented in Figures 7B–F, SQLE
expression level was positively correlated with ACAT2 (R =
0.53), HMGCR (R = 0.5), HMGCS1 (R = 0.56), IDI1 (R = 0.51),
and LDLR (R = 0.49) genes (all p < 0.001). We obtained similar
results for PAAD (Figures 7G–K, all p < 0.001). A combined
analysis of the two datasets suggested three common molecules,
namely, DHCR7, NSDHL, and MSMO1 (Figure 7L).
Subsequently, we conducted KEGG and GO enrichment
analyses. The results of the former showed that “metabolic
pathways” and “steroid biosynthesis” were involved in the
function of SQLE in carcinogenesis (Figure 7M). The results
of the latter implied that these genes were related to oxidation-
reduction, cholesterol biosynthesis, iron ion binding, and
oxidoreductase activity, among other reactions (Figure 7N).
The annotations of the X-axis in Figure 7N are presented in
Supplementary Table S1.

SQLE Is Associated With Immunotherapy
Outcome of Cancer
TMB is a favorable predictor of immunotherapy. Our results
suggest that SQLE alteration correlated with high TMB pan-
cancer and in PAAD (Figure 8A, p < 0.001). We also analyzed
the results of two clinical trials of anti-PD1 treatment in
melanoma and found that SQLE expression was inversely
associated with cytotoxic lymphocyte levels (CTLs), OS, and
PFS in melanoma patients (Figure 8B, p < 0.05). Subsequently,
we analyzed SQLE expression and its association with
biomarkers of MHC (B2M, HLA-B, HLA-C, TAP1, and
TAP2), dendritic cells (BATF3), macrophages (CD68 and
IL1A), type-I anti-tumor responses (CD8A and GZMB), and
cell proliferation (MKI67) in 178 PAAD tissues (Figure 8C).
SQLE was positively associated with MHC molecules (B2M, r =
0.221; HLA-B, r = 0.146; HLA-C, r = 0.143; TAP1, r = 0.187; and
Frontiers in Immunology | www.frontiersin.org 8
TAP2, r = 0.240), macrophages (CD68, r = 0.196 and IL1A, r =
0.275), and cell proliferation (MKI67, r = 0.380) but negatively
associated with dendritic cells (BATF3, r = -0.181) and type-I
anti-tumor responses (CD8A, r = -0.173 and GZMB, r = -0.171).
Furthermore, our results showed that high SQLE expression
indicated low CTL infiltration and poor OS in PAAD patients
(Figure 8D, p < 0.05). These results suggest that high SQLE
expression predicted depletion of cytotoxic lymphocytes and loss
of anti-tumor ability, leading to unfavorable responses
to immunotherapy.
DISCUSSION

Presently, the prognosis of PAAD remains poor despite radical
resection, mainly because of the lack of effective adjuvant
therapy; therefore, the development of effective target
biomarkers or promising drugs is urgently needed. Previous
studies have demonstrated that SQLE promotes oncogenesis
and metastasis in multiple human cancers by regulating
cholesterol metabolism. However, a comprehensive
understanding of SQLE in PAAD remained to be achieved.

In this study, we first performed pan-cancer analysis of SQLE
expression and demonstrated that SQLE is highly expressed in
PAAD. Survival and gene alteration analyses suggested that high
expression and alteration of SQLE predicted the grim prognosis
of PAAD, including OS, DFS, DSS, and PFS. miRNAs can
modulate target gene expression through complex regulatory
networks (41, 42). Therefore, it is essential to identify upstream
miRNAs that participate in regulating SQLE expression. Twenty-
one miRNAs were identified as pivotal regulators of SQLE.
Among them, miR-194-5p was considered to potentiate the
survival of tumor-repopulating cells, leading to radiotherapy
failure in PAAD (43). Interestingly, microRNA-205, as a tumor
suppressor, could re-sensitize gemcitabine-resistant pancreatic
cancer cells and reduce the proliferation of cancer stem cells and
tumor growth in mouse models (44). In addition, miR-92a-3p
promotes EMT progression and metastasis by inhibiting PTEN
and activating Akt/Snail signaling in hepatocellular carcinoma
(45). miR-429 can be inhibited by an X-inactive specific
transcript and upregulate the expression of ZEB1 to promote
migration and invasion in PAAD (46).

After a comprehensive analysis of these 21 miRNAs in PAAD,
including expression and survival analyses, miR-363-3p was
recognized as the most potential upstream regulator of SQLE.
Reportedly, miR-363-3p may play a crucial role in the
progression of ovarian cancer (47). However, the role and
function of miR-363-3p in PAAD have not been previously
reported. We therefore speculate that miR-363-3p is involved
in the pathological processes of PAAD by regulating
SQLE function.

Immune cell infiltration into the tumor microenvironment is
closely related to the therapeutic efficiency and prognosis of
multiple human cancers, including gastric cancer (48) and
colorectal cancer (49–51). Different immune cell-infiltrating
subsets in the PAAD microenvironment were considered as
TABLE 1 | The expression correlation between predicted miRNAs and SQLE in
PAAD analyzed by starBase database.

Gene miRNA R-value P-value

SQLE hsa-miR-584-5p 0.187 1.24E-02*
SQLE hsa-miR-194-5p 0.216 3.77E-03*
SQLE hsa-miR-579-3p -0.011 8.84E-01
SQLE hsa-miR-664b-3p -0.040 5.95E-01
SQLE hsa-miR-205-5p 0.049 5.17E-01
SQLE hsa-miR-367-3p -0.040 5.98E-01
SQLE hsa-miR-363-3p -0.189 1.17E-02*
SQLE hsa-miR-25-3p 0.068 3.67E-01
SQLE hsa-miR-92a-3p 0.123 1.02E-01
SQLE hsa-miR-32-5p -0.012 8.76E-01
SQLE hsa-miR-92b-3p 0.048 5.24E-01
SQLE hsa-miR-429 0.190 1.10E-02*
SQLE hsa-miR-371a-5p -0.093 2.19E-01
SQLE hsa-miR-200c-3p 0.072 3.37E-01
SQLE hsa-miR-200b-3p 0.230 1.97E-03*
SQLE hsa-miR-495-3p 0.012 8.76E-01
SQLE hsa-miR-133b -0.143 5.69E-02
SQLE hsa-miR-381-3p -0.011 8.80E-01
SQLE hsa-miR-495-3p 0.012 8.76E-01
SQLE hsa-miR-133a-3p -0.179 1.67E-02*
SQLE hsa-miR-1298-5p 0.167 2.54E-02*
*p value < 0.05.
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independent prognostic characteristic factors (52). Furthermore,
single-cell transcriptomics of PAAD indicated substantial
immunological heterogeneities and T cell infiltration
differences in the microenvironment. (53, 54). Our results
emphasized that SQLE expression is negatively correlated with
the infiltration of CD4+ T cells and NK cells, whereas it is
positively correlated with the infiltration of CD8+ T cells and
neutrophils in PAAD. Our findings suggest that SQLE may
regulate the immune microenvironment in PAAD.

Immune checkpoint inhibitors comprise the most promising
strategy for treating solid tumors (55), especially targeting PD-1
and CTLA4. However, the PD-1/PD-L1 blockade has proven to
have limited effectiveness in PAAD (56). Therefore, we evaluated
Frontiers in Immunology | www.frontiersin.org 9
the relationship between SQLE expression and tumor immune
biomarkers to identify new therapeutic strategies. Our results
showed that SQLE expression was negatively correlated with
PDCD1, LAG3, CTLA4, and CD160 expression, suggesting that
the combined application of the SQLE inhibitor terbinafine and
immune checkpoint blockade may improve the efficacy of
PAAD. Moreover, the relation between SQLE expression and
tumor immune feature was always consistent with the copy
number of SQLE, whereas contrary to the results of SQLE
methylation. We hypothesized that the methylation may
inhibit the expression of SQLE, and thus caused these results.

We hypothesized that SQLE regulates the immune
microenvironment through metabolic pathways. Enrichment
A B

D E F

G H

C

FIGURE 4 | Identification of miRNAs as potential upstream regulators of SQLE in PAAD. (A–C) Expression of miR-194-5p (A), miR-363-3p (B), and miR-429
(C) in PAAD and control normal tissues. (D–F) The prognostic values of miR-194-5p (D), miR-363-3p (E), and miR-429 (F) in PAAD obtained using the Kaplan-
Meier plotter. (G) The SQLE knockdown efficiency of 50 nM and 100 nM of miR-363-3p mimics on Day 2. (H) The effects of 50 nM and 100 nM of miR-363-3p
mimics on in vitro proliferation in PANC-1. Two-way ANOVA test (n=3). **p value < 0.01; ***p value < 0.001; NS, no significance.
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FIGURE 5 | Relationship of immune cell infiltration with SQLE expression in PAAD. (A) Infiltration of immune cells under different alterations of SQLE in PAAD.
(B–G) Correlation of SQLE with CD4+ T cells (B), CD8+ T cells (C), neutrophils (D), B cells (E), dendritic cells (F), and macrophages (G). (H, I) Differences of
immune-infiltrating cells between SQLE high (n = 89) and low (n = 89) groups performed by McP-Counter (H) and EPIC (I). *p < 0.05, **p < 0.01, ***p < 0.001,
and ****p < 0.0001. NS, no significance.
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FIGURE 6 | SQLE expression is closely related to PDCD1, LAG3, CTLA4, and CD160 expression in PAAD. (A, B) Spearman correlation of SQLE expression with
PDCD1 expression in PAAD adjusted by purity in TIMER (A) and TISIDB (B). (C, D) Spearman correlation of SQLE expression with LAG3 expression in PAAD adjusted
by purity in TIMER (C) and TISIDB (D). (E, F) Spearman correlation of SQLE expression with CTLA4 expression in PAAD adjusted by purity in TIMER (E) and TISIDB (F).
(G, H) Spearman correlation of SQLE expression with CD160 expression in PAAD adjusted by purity in TIMER (G) and TISIDB (H).
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FIGURE 7 | SQLE-related gene enrichment analysis. (A) The top 20 SQLE-binding proteins using the STRING tool. (B–F) T
HMGCR (C), HMGCS1 (D), IDI1 (E), and LDLR (F) in human cancers. (G–K) The expression correlation between SQLE and
in PAAD. (L) Interaction analysis of the SQLE-binding and related genes. (M) KEGG pathway analysis of the SQLE-binding
binding and interacting genes.
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analysis showed that SQLE-related partners are involved in
cholesterol and lipid metabolism. KEGG and GO analyses
suggested that “metabolic pathways” and “steroid biosynthesis” are
associated with the function of SQLE in carcinogenesis. Yang et al.
reported that cholesterol metabolism affects CD8+ T lymphocyte
function (39). Cholesterol homeostasis is regulated by SCAP-
SREBP2 and is essential for macrophage function (57). Moreover,
statin use, by inhibiting cholesterol biosynthesis, could reduce
mortality risk and improve survival of patients with PAAD (58).
Finally, SQLE alteration was associated with high TMB, and its
expression is negatively correlated with the infiltration of CTLs in
melanoma and PAAD, leading to poor outcome of immunotherapy.
Although the correlation between TMB and outcome of
immunotherapy for PAAD has not been adequately elucidated, the
lack of CTLs appears to underlie the ineffectiveness of
immunotherapy in PAAD (59–61). Preclinical mouse models have
suggested that increasing the infiltration of CTLs could improve the
efficiency of checkpoint blockade in PAAD (62). In summary, our
results indicate that SQLE influences the immunemicroenvironment
and immunotherapy outcomes in patients with PAAD.
Immunotherapy based on metabolic intervention may be a novel
Frontiers in Immunology | www.frontiersin.org 13
approach in treating PAAD, and interdisciplinary combination
therapy may help overcome the bottleneck of cancer treatment.

Taken together, we demonstrate that SQLE expression is
upregulated in multiple types of human cancer (including PAAD)
and negatively correlated with the prognosis of PAAD. We also
report an upstream miRNA, miR-363-3p, as a key regulator of
SQLE expression in PAAD. SQLE could regulate the infiltration of
tumor immune cells and the expression of immune checkpoints.
SQLE plays a crucial role in cholesterol metabolism, and high SQLE
expression is associated with poor immunotherapy outcomes. SQLE
blockade may improve the efficiency of PAAD immunotherapy.
Nevertheless, these results should be validated through additional
wet experiments and clinical trials in the future.
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(BATF3), macrophages (CD68 and IL1A), type-I anti-tumor responses (CD8A and GZMB), and cell proliferation (MKI67) in 178 tumor tissues of PAAD. (D) SQLE
correlates with the outcome of immunotherapy in PAAD.
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