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We investigated the origin of two previously reported
general rules of perceptual learning. First, the initial
discrimination thresholds and the amount of learning were
found to be related through a Weber-like law. Second,
increased training length negatively influenced the
observer’s ability to generalize the obtained knowledge to
a new context. Using a five-day training protocol, separate
groups of observers were trained to perform discrimination
around two different reference values of either contrast
(73% and 30%) or orientation (258 and 08). In line with
previous research, we found a Weber-like law between
initial performance and the amount of learning, regardless
of whether the tested attribute was contrast or orientation.
However, we also showed that this relationship directly
reflected observers’ perceptual scaling function relating
physical intensities to perceptual magnitudes, suggesting
that participants learned equally on their internal
perceptual space in all conditions. In addition, we found
that with the typical five-day training period, the extent of
generalization was proportional to the amount of learning,
seemingly contradicting the previously reported
diminishing generalization with practice. This result
suggests that the negative link between generalization and
the length of training found in earlier studies might have
been due to overfitting after longer training and not
directly due to the amount of learning per se.

Introduction

In the last decades, numerous factors were identified
that influence observers’ ability to improve their
performance in low-level perceptual tasks after exten-
sive practice, a process termed perceptual learning.
Among these factors are feedback (Aberg & Herzog,
2012; Herzog & Manfred, 1997; Petrov, Dosher, & Lu,
2006; Seitz & Watanabe, 2003), experimental design
(Adini, Wilkonsky, Haspel, Tsodyks, & Sagi, 2004;
Kuai et al., 2005; Yu, Klein, & Levi, 2004), the nature

of the contextual elements around the target (Adini,
Sagi, & Tsodyks, 2002; Manassi, Sayim, & Herzog,
2012), or more broadly, the structure and the vari-
ability of the stimuli and the task (Y. Cohen, Daikhin,
& Ahissar, 2013; Hussain, Bennett, & Sekuler, 2012;
Kuai et al., 2005). More recently, the generalization of
learning in perceptual tasks also came under investi-
gation, and once again, researchers identified a great
number of factors that determine the extent of
generalization. Among others, task difficulty (Ahissar,
Merav, & Shaul, 1997), precision (Jeter, Dosher,
Petrov, & Lu, 2009), stimulus variability (Hussain et
al., 2012), training length (Ahissar et al., 1997; Jeter,
Dosher, Liu, & Lu, 2010), additional tasks and stimuli
(Hung & Seitz, 2014; Wang, Zhang, Klein, Levi, & Yu,
2014; Xiao et al., 2008; Zhang et al., 2010), and
statistical structure of the task and stimuli (Y. Cohen et
al., 2013) have an effect on the level of generalization.
Although these studies broadened our understanding of
the underlying processes of perceptual learning, only
few of them can provide support for general rules that
could predict perceptual learning performance under
different conditions (e.g., Ahissar et al., 1997; Astle, Li,
Webb, Levi, & McGraw, 2013; Hussain et al., 2012;
Jeter et al., 2010). The present study focuses on two
previously investigated more universal rules that were
suggested to predict performance in perceptual learning
paradigms in general: the link between initial perfor-
mance and the magnitude of perceptual learning (Astle
et al., 2013), and the connection between the amount of
learning and the extent of generalization (Hussain et
al., 2012, Jeter et al., 2010).

Comparing initial performance and the amount
of learning

Several studies reported that the amount of learning
in perceptual tasks (as defined by the improvement in
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performance from the first day to the last one) can be
predicted from the initial performance (Aberg &
Herzog, 2009; Astle et al., 2013; Fahle, 1997; Fahle &
Henke-Fahle, 1996; Polat et al., 2012, Yehezkel,
Sterkin, Lev, Levi, & Polat, 2016). The earlier examples
of these studies used one-interval 2-AFC hyperacuity
tasks (Vernier, curvature, and orientation discrimina-
tion tasks). These studies found that the better
observers’ initial performance was the smaller they
improved on the task (Fahle, 1997; Fahle & Henke-
Fahle, 1996).

However, a more recent study by Astle and
colleagues (2013) investigated this relationship in more
depth and argued for a specific, Weber-like relationship
(Fechner, 1860; Ross & Murray, 1996) between the
initial performance and the magnitude of learning. In
their study, monocular Vernier acuity was measured at
various eccentricities in a one-interval 2-AFC task after
observers were trained at both 58 and 158 off the central
fixation. The authors found that the initial discrimi-
nation thresholds, on average, were higher at 158
eccentricity than at 58. Critically, the amount of
improvement on the Vernier acuity task (measured as a
difference of the first and the final day’s Vernier
discrimination threshold in arcsec) was proportional to
the initial discrimination thresholds (Astle et al., 2013).
In addition, when they equated the observers’ initial
thresholds at the various eccentricities in the acuity task
by spatially scaling the Vernier lines or by visual
crowding, the magnitude of learning became equal at
the different eccentricities. Thus, regardless of what
constraint limited the initial discrimination thresholds
prior to training (retinal location, stimulus size, or
crowding), the amount of absolute learning seemed to
be proportional to the initial threshold level. To further
specify this claim, Astle et al. (2013) expressed the
relative learning as the observers’ ratio of the first and
the final day’s thresholds (measured in Vernier dis-
crimination threshold in arcsec divided by the line
length also in arcsec) and showed that this relative
learning did not correlate with the initial thresholds,
but it was constant across different levels of initial
thresholds. Because this pattern is captured by Weber’s
law, Astle and colleagues posited that ‘‘. . .perceptual
learning also obeys a similar Weber-like law. . .’’ and
that ‘‘. . .the finding that improvements in normal
subjects are tied to their initial threshold in a lawful
way, analogous to Weber’s law, suggests that the same
factors that impose limits on a visual threshold also
constrain the amount an organism can learn on a visual
task.’’ (Astle et al., 2013, pp. 4 and 7). Astle and
colleagues’ results (a Weber-like law for absolute
learning leading to no correlation in terms of relative
learning) are in contrast with those of earlier studies
that used the same measure of relative learning, but did
report a positive correlation between the relative

learning and initial performance in Vernier (Fahle &
Henke-Fahle, 1996) and bisection acuity tasks (Aberg
& Herzog, 2009). The positive correlations found in
those studies means that the amount of absolute
learning measured in those experiments was a pro-
gressively increasing fraction of the initial discrimina-
tion thresholds, implying a power-like law (Stevens,
1957) rather than a Weber-like law.

The discrepancy between the results of the above
studies can be tracked back to the issue of whether the
relationship between learning and initial threshold is
influenced by something else beyond the observers’
perceptual scaling function. In psychophysics, the
observer’s perceptual scaling function represents how
physical stimulus intensities are related to perceived
magnitudes. Assuming that the discrimination thresh-
old is limited by constant and independent Gaussian
noise in accordance with signal-detection theory in its
most basic form (Green & Swets, 1966), the perceptual
scaling function can be estimated by measuring the
observer’s discrimination thresholds at different phys-
ical stimulus intensities. As the discrimination thresh-
olds represent the lowest increment in the stimulus
intensity that the observer can still perceive (at a certain
performance level), the scaling function approximates
how the observer maps the physical stimulus onto her
internal perceptual space (see Figure 1, top). In this
paper, we argue that the proportional Weber-like
relationship between initial discrimination thresholds
and the amount of learning (Figure 1, bottom) emerges
in perceptual learning tasks when (a) observers improve
by the same amount at different region in their internal
perceptual intensity space, and (b) the perceptual
scaling function between the perceptual and physical
spaces does not change during learning. In this case, the
amount of learning will depend only on the same
perceptual scaling function of the observer that also
determines her initial discrimination threshold prior to
learning. Consequently, there will be a proportional
relationship between initial threshold and the amount
of learning. In contrast, power-like law (or any not
proportional functional relationship) between initial
discrimination thresholds and learning would emerge
only when, in addition to the perceptual scaling
function, either a change in the perceptual scaling due
to learning or some other additional learning-specific
factors affect perceptual learning.

Figure 1 shows two simple examples demonstrating
the argument above. In the top plots on the left, the
hypothetical observer has a Weber-like perceptual
scaling function that transforms physical intensity to
perceived magnitude. In the plots on the right, the
hypothetical observer has a power-like perceptual
scaling function. In both cases, the same amounts of
improvement in the perceptual intensity space at
different base-intensities (colored ranges on y axis) will
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Figure 1. The relationship between initial discrimination thresholds and the amount of learning, and how this relationship is related to

observers’ perceptual scaling function linking physical and perceived intensities. Top: Two typical perceptual scaling functions found in

human perception: the Weber’s law (Left) and the Power law (Right). Physical intensities on the x axis show a hypothetical scale of a

visual attribute from 10 to 100, while the perceptual intensities on the y axis scale from the absolute threshold (P0). The scale on the y

axis depends on the function that maps the physical magnitudes onto the perceptual intensities. Two initial discrimination threshold

levels at two base-intensities are shown, at 30, DS30(pre), large black brackets between the red dotted lines and at 59, DS59(pre),
large black brackets between the green dotted lines. These initial discrimination thresholds (i.e., just noticeable differences, JNDs)

reveal the smallest step sizes on the stimulus intensity space (x axis) that have a corresponding one unit change on the observers’

perceptual space (y axis), Dp30(pre) and Dp59(pre) the smallest perceivable changes at the measured base-intensities. Assuming the

same amounts of learning measured by the perceptual sensitivity at the two base-intensities, these unit sizes decrease with the same

amount at the two base-intensities on the perceptual intensity space represented by the colored ranges on the y axis. This equal

amount of improvement in the perceptual space will be transformed through the perceptual scaling function back into changes in the

stimulus intensity (colored changes on the x axis) which therefore, will be proportional to the initial thresholds. Hence, the amounts

of perceptual learning at different base-intensities {DS30 (pre)� DS30 (post)} and {DS59 (pre)� DS59 (post)} will follow the same

perceptual scaling function that determined the initial discrimination thresholds {DS30(pre) and DS59(pre)} prior to learning.

Consequently, proportional relationship between the initial discrimination thresholds and the amount of learning at the two base-

intensities emerges:
DS30 PREð Þ
DS59 PREð Þ ¼

DS30 PREð Þ�DS30 POSTð Þ
DS59 PREð Þ�DS59 POSTð Þ Bottom: The proportional relationship between initial thresholds (IT) and perceptual

learning (PL). Initial discrimination thresholds, DS(pre) are shown on the x axis, while the amount of learning, DS(pre)� DS(post) on
the y axis. The dotted red and green lines represent the corresponding initial discrimination threshold levels and the amount of

learning at 30 and 59 stimulus intensities derived from the top panels. The green and red arrows show the relationship between the

top and the bottom figures for the two stimulus intensities. Regardless of the exact perceptual scaling function (progressively

increasing, power-like or progressively decreasing Weber-like function) the relationship between learning and initial thresholds

remains proportional: PL ¼ k3 IT , with k as a scaling constant.
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lead to different amounts of improvement in the
stimulus intensity space (colored ranges on x axis)
depending only on the shape of the perceptual scaling
function linking physical and perceptual intensities.
Therefore, both the initial thresholds (pre) and the
amounts of learning (pre� post) follow the same
function, the observers’ perceptual scaling function.
This condition will automatically lead to changes in the
amount of learning that is proportional to the initial
thresholds. This theory is only true if (a) the shape of
the perceptual scaling function does not change during
learning, and (b) the same amounts of improvement
occur on the internal perceptual space at the different
base-intensities (such as the red and green shaded areas
on the y axis). However, this linear proportionality
vanishes if either the observers’ functional mapping
from physical to perceptual intensities is modulated
during learning or the amounts of improvement on the
internal perceptual space are different at different base-
intensities.

Using the above observations, the difference between
the findings of Astle et al. (2013) and Aberg and Herzog
(2009) and Fahle and Henke-Fahle (1996) can be
captured as follows. Astle et al.’s result can be
explained by assuming that (a) observers improve by
the same amount at different base-intensities in their
internal perceptual space, and (b) their perceptual
scaling function does not change during perceptual
learning. In this case, the amount of learning depends
only on the observers’ perceptual scaling function,
without assuming any learning-specific extra Weber-
like process they posit in their paper. In contrast,
assuming a change in the scaling function during
learning and/or different amounts of learning at
different base-intensities in the internal perceptual
space would distort the Weber-like proportionality
between initial threshold and learning, confirming
Aberg and Herzog’s and Fahle and Henke-Fahle’s
results. In this case, the amount of learning cannot be
predicted from the observers’ scaling function suggest-
ing that other learning-specific processes are involved
during perceptual learning. The first goal of the present
study was to investigate which of these two scenarios
hold in general during perceptual learning.

The relationship between the amount of
learning and generalization

Traditionally, the specificity of the acquired ability
has been a defining hallmark of perceptual learning
(Crist, Kapadia, Westheimer, & Gilbert, 1997; Fahle,
1997; Karni & Sagi, 1991; Schoups, Vogels, & Orban,
1995). According to this view, whatever improved
ability observers develop after extensive training within
the context of low-level visual discrimination tasks, this

new skill remains available only within the close
context of the original setup including the stimulus
identity and the location of training in the retinal space.
However, recent studies finding substantive transfer of
learning under various conditions strongly challenge
this notion (Ahissar & Hochstein, 2004; Wang et al.,
2014; Zhang et al., 2010).

Investigating the relationship between the amount of
learning and generalization involves an inherent
ambiguity at the conceptual level. Intuitively, general-
ization and learning should go hand in hand: More
learning means more knowledge about the state of the
world and hence, more potential for using the newly
learned competence in different contexts. However, it is
well known in the field of machine learning that too
much repetitive learning can result in a representation
(an internal model) that is overly specific to the trained
features and the circumstances of the training, a
phenomenon called overfitting (Hastie, Tibshirani, &
Friedman, 2009; Murphy, 2012). In perceptual learn-
ing, learning can be defined as the improvement in task
performance in a context-specific manner (in the
trained condition), while generalization is the im-
provement in task performance in a context-free
manner (in an untrained condition). Overfitting is
related to the difference between the two. Excessive
training in perceptual learning could cause overfitting,
which could lead to a little extra learning, but it also
substantially decreases generalization. Indeed, several
behavioral studies in the domain of perceptual learning
confirmed this conjecture (Hussain et al., 2012; Jeter et
al., 2010).

Thus, the relationship between perceptual learning
and generalization can depend intricately on two
separate components: Whereas the specific features of
the learning process, such as the selected task or the
training stimuli, could lead to more specific or more
generalizable knowledge, overtraining itself can shift
performance from flexible to specific. Since overfitting
is a general rule in computational learning theories, we
were interested in exploring the first component,
whether more perceptual learning produces more
generalizable knowledge before the effect of overfitting
emerges. If more training in various perceptual tasks
leads to more learning due to an improved internal
model incorporating the actual experience in the
observer’s world model, proportionally more general-
ization is predicted before overfitting occurs. However,
if more training results in more learning due to focusing
only on specific features of the task/stimuli without
viable integration of this knowledge to other aspects of
the observer’s internal model, learning is expected to be
proportionally more specific to the features of the
training examples even before overtraining happens.
Previous studies modulated the extent of training
(Hussain et al., 2012; Jeter et al., 2010) which, although
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influenced the amount of learning, also increased the
amount of training data from the same kind rather than
providing more new information with the training data
which increases the chance for overfitting (Hastie et al.,
2013; Murphy, 2012). We used a five-day long fixed
length training protocol to control for the effect of
overfitting and measured the individual differences in
the amount of learning and generalization in two
widely used perceptual learning paradigms (contrast
and orientation discrimination tasks). This set up
allowed us to pursue the second goal of the present
study, to determine whether the extent of generalization
is proportional to the amount of learning.

Overview of the present study

In three experiments, we measured contrast and
orientation discrimination thresholds and the amount
of learning at two different stimulus intensities (at 73%
and 30% contrast, and at 258 and 08 orientation in
separate temporal 2-AFC discrimination tasks) and
found that the amount of perceptual learning was
proportional to the initial performance. Furthermore,
we showed that this specific relationship between initial
performance and learning mainly reflected the observ-
ers’ internal perceptual scaling function which trans-
forms physical magnitudes to perceptual intensities.
Our results also revealed a positive link between the
amount of learning and generalization: More learning
led to proportionally more generalization. We inter-
preted the relationship between these results and earlier
reports in the light of differences in methodological and
conceptual characteristics of perceptual learning para-
digms.

Methods

Observers

One hundred and twenty naive observers gave
informed consent prior to participation in the experi-
ment. Nineteen observers took part in Experiment 1,
the within-subject contrast discrimination experiment.
In Experiment 2, 25 observers completed the 30%
reference condition and another 24 observers the 73%
reference contrast condition. In the orientation dis-
crimination experiments (Experiment 3), 15 and 15
observers participated in the 08 and 258 reference
conditions, and another 11 and 11 observers completed
the 158 and the 458 reference orientation conditions,
respectively. None of the observers had any previous
experience with a psychophysical experiment. All
participants had normal or corrected-to-normal vision.

The experimental protocols were approved by the
Ethics Committee for Hungarian Psychological Re-
search.

Apparatus and stimuli

We used MATLAB (MathWorks, Natick, MA)
Psychtoolbox 3 (Brainard, 1997; Pelli, 1997) to generate
the stimuli on a 21-in Samsung Syncmaster 1100 DF
color monitor (1024 3 768, 85 Hz frame rate, 0.2 mm
pixel pitch). The mean luminance was 60 cd/m2. The
monitor was calibrated, and the luminance was
linearized by X-Rite i1Profiler device and software. The
participants viewed the stimuli binocularly at the fovea
in a dimly lit room. In both paradigms, the stimuli were
Gabor patches defined by Gaussian enveloped sinu-
soidal gratings with (spatial frequency of 6 cycles/8 (SD:
0.178), contrast 0.47 in the orientation discrimination
task, orientation 368 in the contrast discrimination
tasks, and phase randomized for every stimulus
presentation in the orientation discrimination task).
The Gabor patches were presented on a background at
mean luminance. The stimuli were viewed from 2 m
through a circular aperture (diameter 178) of a black
piece of cardboard that covered the entire monitor
screen. The whole cardboard and the viewing area in
front of the observer were further covered by a black
curtain with a circular aperture (diameter 178). This
setup was used to prevent observers from using the
edges of the display in the orientation discrimination
task.

Procedure

Investigating initial thresholds and the amount of
learning

We conducted perceptual learning experiments using
two attributes, contrast and orientation, and we
measured discrimination thresholds from a reference
value. To test whether perceptual learning was pro-
portional to the initial performance due to the internal
perceptual scaling of the participants, we used two
experimental conditions in all experiments. In the two
conditions, observers were trained with two different
stimulus intensities that were known to elicit different
initial discrimination threshold levels according to
previous studies measuring the perceptual scaling
functions of the observers between physical and
perceptual magnitudes. In Experiments 1 and 2 the two
conditions were distinguished by the reference contrast
(30% vs. 73%) at which the observers were trained.
Based on previous studies (Burton, 1981; Legge, 1981),
we expected significantly higher initial discrimination
thresholds at 73% contrast. In Experiment 3, observers
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were trained at reference orientation of 08 versus 258.
Again, since earlier studies reported the lowest dis-
crimination threshold at the cardinal orientations
(Mansfield, 1974; Mikellidou, Cicchini, Thompson, &
Burr, 2015; Orban, Vandenbussche, & Vogels, 1984,
Regan & Price, 1986), we expected higher initial
discrimination thresholds at 258. Once the initial
discrimination thresholds from the reference values
were measured, we assessed the amount of perceptual
improvement in each of the conditions and checked
whether they showed proportionally more learning in
the conditions with higher versus lower initial dis-
crimination threshold levels.

There is a trade-off in benefits when using within-
versus between-subject designs in perceptual learning
tasks. On the one hand, a related samples statistical
analysis in a within-subject design is more sensitive, and
therefore, it can reveal a relationship between initial
performance and learning even if the individual
differences in perceptual performances are large. On
the other hand, a within-subject design is potentially
prone to uncontrolled generalization between the
conditions, which can bias the comparison between the
low and high initial performance conditions. To control
for this problem, participants in Experiment 1 trained
with both reference contrast conditions, 30% and 73%
(within-subject design, Figure 2B) similarly to Astle et
al.’s (2013) study, in which participants trained at both
58 and 158 eccentricities. Meanwhile, in Experiments 2
and 3, two separate groups of observers were trained
with either 30% or 73% reference contrasts in the
contrast discrimination task, and with either 08 or 258
in the orientation discrimination tasks (between-subject
designs, Figure 2B).

Investigating generalization and the amount of learning

Generalization was quantified by measuring dis-
crimination thresholds at an untrained reference
contrast or orientation after finishing the training
sessions. In Experiment 1 after training with reference

contrast at 30% and 73%, generalization was assessed
by measuring discrimination threshold at the untrained
47% contrast. In Experiment 2 for the group that
practiced with reference contrast at 30%, generalization
was tested at both 47% and 73% contrast levels; and for
the group that trained with reference contrast 73%, the
transfer of learning was tested at contrast of 30% and
47%. In the orientation discrimination task, general-
ization in the group that trained at 0% reference
orientation was measured at 258, and in the group that
practiced with reference orientation 258 it was assessed
at 08. We tested whether more learning caused
proportionally more generalization by assessing the
within-condition correlation between individual differ-
ences in learning and in generalization. Due to very
small intersubject variability in perceptual perfor-
mances at 08 reference orientation, two additional
groups of participants completed the very same
experiment, but one group trained with reference
orientation 158 and generalization was measured at 458,
and the other group trained with reference orientation
458 and generalization was assessed at 158. In these
groups we had sufficiently large intersubject variability
to test our question about generalization (see Supple-
mentary materials and Supplementary Figure S3).

General procedure

Contrast and orientation discrimination thresholds
were measured with a temporal two-alternative forced
choice (2-AFC), 1-up-3-down staircase procedure. In
each trial, a fixation point was first flashed for 200 ms
and disappeared 200 ms before the onset of the first
stimulus interval. Next, the reference (contrast or
orientation) and test patch were presented after each
other for 91 ms each in a random order. The reference
and the test patch were separated by a 600 ms
interstimulus interval (Figure 2A).

In all experiments, observers trained for five
consecutive days, completing one session per day
(Figure 2B). In each trial, the observer had to judge

Figure 2. (A) Contrast and orientation discrimination tasks. (B) Training protocol.
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whether the stimulus has a more clockwise orientation
(in the orientation discrimination task) or a higher
contrast (in the contrast discrimination task) in the first
or the second stimulus interval. Observers responded
by pressing ‘‘1’’ or ‘‘2’’ keys on the keyboard. In all
tasks, there was an auditory feedback marking
incorrect responses.

The staircase during the experiments followed the 3-
down-1-up rule with a step size of 0.05 log units, which
converged to 79.4% correct responses (Levitt, 1971). The
initial difference values between the reference and the test
for the very first staircase were D8%, D12% for reference
contrasts 30% and 73%, D88 and D148 for reference
orientation 08 and 258, and D88 and D188 for reference
orientation 158 and 458, respectively. The initial differ-
ences were determined based on the mean initial
discrimination thresholds of the observers in our pilot
perceptual learning experiments using the same procedure
to approximate contrast and orientation discrimination
thresholds. After completing the first staircase, the initial
values for the following staircases were adjusted sepa-
rately for each observer by taking the observer’s average
performance in the previous staircase in the same
condition and multiplying it by two. Each staircase
contained four practice and six experimental reversals.
The observer’s threshold was defined as the geometric
mean of the experimental reversals. Observers completed
5-5 staircase blocks in each reference value conditions in
the pre-and posttest sessions and 10 staircase blocks with
the practiced reference value during each training session.
Previous results using simulations suggested that the
adaptive method described above should reveal observers’
thresholds at 79.4% performance level quite accurately
(Garcı́a-Pérez 1998). However, in those simulations
attentional lapse rates were assumed to be zero, and
estimating discrimination thresholds based on the stim-
ulus strengths at reversal points could be confounded by
attentional lapses (Solomon & Tyler, 2017). Although
theoretical work and simulations showed that the 3-
down-1-up staircase is robust to the initial attentional
lapses (Karmali, Chaudhuri, Yi, & Merfeld, 2016), lapses
are not necessarily limited to the initial trials in novice
observers. In order to confirm that the measured decrease
in thresholds after practice using the 3-down-1-up
staircase method was not just due to the decrease in
attentional lapses of our participants, we estimated the
lapse rates and the thresholds for each observer by fitting
psychometric curves to their performance at pre- and
posttests (see the detailed methods in Supplementary
materials). We found that the thresholds decreased
significantly after the training in all experimental
conditions (see Supplementary Figure S1) even when we
controlled for the decrease in lapse rates (see Supple-
mentary Figure S2). Furthermore, the decrease in
thresholds due to learning estimated by the best-fitting
threshold parameter of the participants’ psychometric

curves positively correlated with the estimated decrease in
thresholds using the adaptive staircase method (see
Supplementary Figure S1–S2). This suggests that per-
ceptual learning measured by the thresholds at pre- and
posttests using the staircase method reveals perceptual
and not just attentional improvement.

Analysis

Exclusion criteria

We excluded outlier participants from the analysis if
their performance (in initial thresholds or learning) was
more than 2 SD away from the group average. Using
this criterion, we excluded two subjects from Experi-
ment 1 because one of them had large negative learning
in the reference contrast 30%, and the other one had
large negative learning in the reference contrast 70%
conditions. We excluded one-one subjects from each of
the conditions in Experiment 2 for the same reason:
Both participants showed large negative learning.
There were no outliers in the orientation discrimination
task; thus, we did not exclude anyone from the analysis
in Experiment 3.

Assessing learning

To measure the amount of perceptual learning we
used three types of learning scores.

a. Absolute learning computed as
PLabs ¼ PRE� POST thresholdsð Þ.

b. Relative learning computed as
PLrel ¼ PRE

POST thresholdsð Þ.
c. Predicted learning computed as (see Results and

discussion), PLpredicted ¼ PRE@LowStimIntensity

PRE@HighStimIntensity
3PLabs.

Assessing generalization

The amount of generalization was assessed with two
metrics: by computing absolute generalization as Pre �
Post thresholds at the untrained reference values, and
by computing relative generalization as the absolute
generalization divided by the amount of learning (i.e.,
generalization/learning).

Statistical analyses

Comparing group means: In our analysis, we needed to
evaluate the probability of no difference between two
groups’ scores, and the probability of certain scores not
being different from zero. However, frequentist hy-
pothesis testing cannot confirm the null hypothesis due
to its design (Morey & Rouder, 2011; Streiner,
2003).Therefore, we ran independent or paired samples
t tests and also nonoverlapping hypotheses (NOH)
Bayes factor (BF) analysis for independent or related
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samples (Morey & Rouder, 2011) to compare the
different conditions in the experiments. We computed
the Nonoverlapping hypotheses (NOH) Bayes factors
(BF; Morey & Rouder, 2011; Rouder, Speckman,
Dongchu, Morey, & Geoffrey, 2009) to obtain the level
of confidence in concluding no difference between
certain learning scores (see Results for the specific
comparisons). The NOH BF represents the probability
of ‘‘there is no or negligible difference between the
conditions’’ divided by the probability of ‘‘there is
difference between the conditions.’’ Therefore, BFs
larger than one indicates how many times more
probable the no or negligible difference than the
existence of a difference between the conditions is. In
the NOH BF analysis, the null hypothesis states that
the effect size is within the range of �0.2 and 0.2,
whereas the alternative hypothesis is that the effect size
is outside that range. The range of the null hypothesis
was chosen following the guidelines of J. Cohen (1988)
and Morey & Rouder (2011) that below 0.2 the effect is
negligible. We used a scaling factor equal to one in the
scaled Cauchy prior.
Analyzing the variability within conditions: Intersubject
variability was analyzed with Pearson and partial
correlation. We applied partial correlation between the
amount of learning and the extent of generalization while
controlling for the initial threshold levels. The partial
correlation coefficient reveals the correlation between the
residuals of the linear regressions predicting separately
generalization and learning from initial thresholds. If the
deviations (residuals) from the predicted generalization
and from the predicted learning (using the initial
discrimination thresholds as predictor in both cases)
correlate, it also indicates a relationship between gener-
alization and learning alone without the influence of the
initial thresholds. The partial correlation coefficient
between X (independent variable) and Y (dependent
variable) while controlling for Z (dependent variable) and
the standardized regression coefficients of X in a multiple
linear regression predicting Y with both X and Z as
predictors gives the same amount of information and p
values. Therefore, computing partial correlation between
learning and generalization while controlling for initial
threshold levels is equivalent to using multiple linear
regression to predict the extent of generalization using the
initial threshold levels and the learning scores as
independent variables.

Results and discussion

Initial performance and learning

We confirmed that the chosen reference values,
indeed, led to groups with higher initial discrimination

thresholds at high reference values (73% in the
contrast and 258 in the orientation discrimination
tasks) than at low reference values (30% contrast and
08 orientation). Specifically, we found significant
differences between initial discrimination threshold
levels in all experiments: in Experiment 1 (t16¼ 7.847,
p , 0.001, d¼1.889), in Experiment 2 (t45¼5.852, p ,
0.001, d¼ 1.664) and in Experiment 3 (t28¼ 6.718, p ,
0.001, d ¼ 2.539; Figure 3, subpanels A in all panels).
This finding means that observers had larger discrim-
ination thresholds around 73% contrast than around
30%, which is in line with previous findings showing a
near logarithmic perceptual scaling function from
physical to perceived contrast intensity (Burton, 1981;
Legge, 1981). In case of the orientation discrimination
task, we also found the expected advantage in the
discrimination sensitivity at the cardinal orientation
(Mansfield, 1974; Mikellidou et al., 2015; Regan &
Price, 1986), that is a larger discrimination threshold
around 258 than around 08.

There was significant perceptual learning in all
conditions (ps , 0.005), although not every observer
improved after the training (Figure 3, B and C
subpanels in all panels). Perceptual learning was
stronger in conditions with higher initial threshold
levels (Experiment 1: t16 ¼ 2.567, p ¼ 0.021, d ¼ 0.693;
Experiment 2: t45 ¼ 2.126, p ¼ 0.039, d¼ 0.631;
Experiment 3: t28¼ 4.498, p , 0.001, d¼ 1.700; Figure
3, B subpanels in all panels). The ratio of the initial
threshold levels and the ratio of the amount of learning
in the two conditions were almost the same in all
experiments.

Experiment 1:
ITCon30

ITCon73
¼ 0:56’

PLCon30

PLCon73
¼ 0:51;

Experiment 2:
ITCon30

ITCon73
¼ 0:53’

PLCon30

PLCon73
¼ 0:49;

Experiment 3:
ITOri0

ITOri25
¼ 0:41’

PLOri0

PLOri25
¼ 0:35;

where IT and PL represent initial thresholds and
perceptual learning, respectively.

Whereas these results suggest that the amount of
learning is roughly proportional to the initial thresh-
old levels, in the next section we perform a statistical
test of the exact proportional relationship and show
that it reflects the observers’ perceptual scaling
function which links physical intensity to perceptual
magnitude.

Measuring learning in contrast discrimination by using a
within-subject design

In the first contrast discrimination experiment using
within-subject design, we tested within each observer
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directly whether the amount of observers’ learning was
proportional to their initial thresholds. The propor-
tionality rule states

IT@LowRef

IT@HighRef
¼ PL@LowRef

PL@HighRef
; ð1Þ

where @LowRef and @HighRef refer to initial
thresholds (IT) or perceptual learning (PL) assessed at
the low (contrast [con.] ¼ 30% and orientation [ori.] ¼
08) or high (con.¼ 73% and ori.¼ 258) reference values.

These low and high reference values determined
the low and high stimulus base-intensities in our
experiments by modulating observers’ initial thresh-
olds according to their own perceptual scaling
function.

Following Equation 1, we derived the predicted
amount of learning in the low reference value condition
(PL@LowRef) by multiplying the left side of Equation 1

with the amount of learning in the high-reference-value
condition,

IT@LowRef

IT@HighRef
3PL@HighRef ¼ PL@LowRef: ð2Þ

For each participant, we computed the predicted
amount of learning (left side of Equation 2) at the
higher reference value (high base-intensity) and com-
pared it to the absolute amount of learning (right side of
Equation 2, PRE� POST thresholds) at the low
reference value (low base-intensity) within the same
observer. If the proportional relationship between the
initial thresholds and the amount of learning holds, we
expect no difference between the predicted and the
absolute learning scores. Indeed, we found no difference
between the two learning scores (Figure 4, top panel A)
confirming the proportional relationship between initial
thresholds and learning (t16 ¼ 0.216, p¼ 0.832, d ¼

Figure 3. Initial discrimination thresholds and the amount learning. Top panel: contrast discrimination task, within-subject design

(WS). Middle panel: contrast discrimination task, between-subject design (BS). Bottom panel: orientation discrimination task,

between-subject design. In the contrast experiments red color denotes low (con. 30%) and blue color denotes high reference value

conditions (con. 73%). In the orientation experiments purple color denotes low (ori. 08) and green color denotes high reference value

conditions (ori. 258). In all panels: (A) Initial discrimination thresholds and (B) the amount of absolute learning at the two measured

reference values. Error bars represent 95% CI of the mean. (C) Learning curves for the five-day training protocol for the two measured

reference values. Error bars show one SEM. (D) Learning as a function of initial discrimination thresholds. Error ellipses show one

standard deviation, and black lines show linear regression lines fitted to the points from both conditions.
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0.049, Bayes Factor favoring no difference¼ 10.6). The
error bar in Figure 4, top panel B indicate that most of
the observers (13/17) deviated less than 1% contrast
from the exact proportionality rule as the observers’
amount of learning at the two reference values (base-
intensities) was almost exactly proportional to their
initial threshold levels. This suggests that the individual
perceptual scaling functions dominated quite robustly
the origin of the proportionality relationship between
learning and initial thresholds. The Bayes Factor
indicates directly that the ‘‘no difference between the
learning scores’’ hypothesis is 10.6 times more probable
than ‘‘the existence of a difference between the learning
scores’’ (see Methods, Statistical analyses, comparing
group means). Therefore, we found strong evidence for
the proportional relationship in the data of Experiment

1, and we linked this relationship directly to observers’
perceptual scaling functions.

Measuring learning in contrast and orientation
discrimination by using a between-subject design

A recurring danger with a within-subject design is
the possible confound of cross-training between the
conditions, which would allow an alternative explana-
tion to our results in Experiment 1. This calls for an
independent confirmation of our findings about pro-
portionality by using a between-subject design. Unfor-
tunately, due to the between-subject design of
Experiments 2 and 3 it is not possible to test directly the
proportional relationship between learning and the
initial thresholds within subjects because separate

Figure 4. The relationship between initial discrimination thresholds and the amount of learning primarily reflects the observers’

scaling function. Top panel: contrast discrimination task, within-subject design (WS). Middle panel: contrast discrimination task,

between-subject design (BS). Bottom panel: orientation discrimination task, between-subject design. In all panels: (A) Comparing the

absolute learning in the low-reference-value condition to the predicted learning in the high-reference-value condition. (B) Top panel:

The difference between the absolute and the predicted amounts of learning at the low and high reference values across subjects. (B)

Middle and Bottom panels: Comparing the predicted learning in the low-reference-value condition to the absolute learning in the

high-reference-value condition. (A) and (B) Error bars represent 95% CI of the mean, and the equations above the error bars relate

absolute to predicted learning in the different conditions derived from Equation 1, capturing the proportional relationship between

initial thresholds and learning. (C) Relative learning defined by the ratio of initial discrimination and the posttraining thresholds as a

function of the initial threshold levels. Error ellipses show one standard deviation; black lines indicate linear regression lines fitted to

the points from both conditions.
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groups of observers were trained at the two reference
values. However, since the initial thresholds were
assessed at both reference values in each group, one
could use Equation 1 to calculate the predicted amount
of learning for the untrained reference value condition
for each participant in the same way as in the previous
section in Experiment 1. The only difference is that
when comparing the predicted learning in the untrained
reference value condition to the absolute learning in the
trained reference value condition, one needs to use
between-subject comparison. To perform this test, first,
we computed the predicted amount of learning in the
group trained with the high-reference-values (con. 73%
and ori. 258) using Equation 2 by simply multiplying
the absolute learning scores of the participants at the
high-reference-values with the ratio of their initial
thresholds at the two reference values (ITCon30

ITCon73
in

Experiment 2, and ITOri0

ITOri25
in Experiment 3). We

compared these predicted learning scores to the
absolute learning scores of the observers in the low-
reference-value conditions (con. 30% and ori. 08) and
found no difference between the two groups’ scores
(Experiment 2, contrast discrimination task: t45¼0.314,
p¼ 0.755, d ¼ 0.094, Bayes Factor favoring no
difference¼ 7.5; Experiment 3, orientation discrimina-
tion task: t28¼ 0.596, p¼ 0.556, d¼ 0.225, Bayes Factor
favoring no difference¼ 4.6, Figure 4, subpanel A in all
panels).

Second, we computed the predicted amount of
learning in the group trained with the low-reference-
values (con. 30% and ori. 08) derived from Equation 1
by solving it for PL@HighRef,

PL@HighRef ¼ PL@LowRef=
IT@LowRef

IT@HighRef
: ð3Þ

Using Equation 3, we divided the absolute learning
scores of the participants at the low-reference-values
with the ratio of their initial thresholds at the two

reference values (ITCon30

ITCon73
in Experiment 2, and ITOri0

ITOri25
in

Experiment 3). When comparing these predicted
learning scores to the absolute learning scores of the
observers in the high-reference-value conditions (con.
73% and ori. 258), we found again no difference
between the two groups’ scores (Experiment 2, contrast
discrimination task: t45 ¼ 0.689, p¼ 0.494, d ¼ 0.206,
Bayes Factor favoring no difference¼ 5.7; Experiment
3, orientation discrimination task: t28 ¼ 1.091, p ¼
0.284, d¼ 0.412, Bayes Factor favoring no difference¼
2.9, Figure 4, subpanel B in all panels). In the
Supplementary material, we provide further explana-
tion as to why these between-subject comparison results
support our claim that the amount of learning in these
perceptual learning tasks was modulated only by the
participants’ perceptual scaling function without any
additional processes.

Analyzing individual differences in initial thresholds and
learning

We analyzed the individual differences within
conditions and investigated how much of the inter-
subject variability in learning could be explained by the
initial discrimination threshold levels of the observers
assuming a proportional relationship between initial
performance and learning.

The individual differences in initial performance
levels could explain a large part of the variability in
learning in all experiments (variance explained in
Experiment 1 was 20%, in Experiment 2 was 55%, and
in Experiment 3 was 74%, Figure 3, subpanel D in all
panels). To test whether the relationship between initial
thresholds and the amount of learning was propor-
tional, we computed the relative learning scores of the
observers as the ratio of the initial and the posttraining

discrimination thresholds (initial threshold
final threshold ). If the relation-

ship between the amount of learning and the initial
discrimination threshold levels is strictly proportional,
the relative learning scores should be the same at
different initial threshold levels. Consequently, there
should be no correlation between the relative learning
scores and the initial threshold levels. Specifically,
PRE� POST learningð Þ ¼ c3PRE with a constant c.

Solving this equation for relative learning yields
PRE

POST ¼ 1
1�c, which is a constant again. Following this

analysis, in Experiment 1 we found that the positive
correlation between learning and the initial thresholds
completely disappeared when we used relative learning
instead of the absolute learning scores. This suggests
that the observers’ learning was strictly proportional to
their initial discrimination thresholds (Figure 4, top
panel, C, and Table 1). In contrast to Experiment 1, in
Experiment 2 and 3 a significant positive relationship
between the relative learning and the initial thresholds
remained suggesting that the amount of learning in
these experiments was not strictly proportional to the
initial threshold levels at the intersubject variability
level (Figure 4, middle & bottom panels, subpanel C,
and Table 1). On the one hand, this suggests that the
relationship between learning and initial performance
does not solely reflect the observers’ perceptual scaling
function from physical to perceptual magnitudes, but
there are additional unknown factors strengthening
that relationship beyond proportionality. Intersubject
variability is known to reflect arousal level, attention,
and motivation (Fahle & Henke-Fahle, 1996; Weiss,
Edelman, & Fahle, 1993), each of which can influence
the initial discrimination thresholds and can also be
modulated by the training, causing a positive relation-
ship between learning and initial performance. On the
other hand, the correlations were much smaller
between the initial discrimination thresholds and the
relative learning than between the initial discrimination
thresholds and the absolute learning. In Experiment 2,
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the correlations were, r ¼ 0.74 with absolute learning
and r¼ 0.31 with relative learning, with a significant
difference between them (z¼ 2.911, p ¼ 0.004). In
Experiment 3 the same correlations were r ¼ 0.86 with
absolute learning and r ¼ 0.34 with relative learning
with an even more significant difference between the
two (z¼ 3.625, p , 0.001). This means that even when
looking at intersubject variability, the relationship
between learning and initial performance mainly
reflects the effect of the perceptual scaling function of
the observers. When the influence of the perceptual
mapping is factored out by using the relative learning,
most of the positive relationship disappears, and the
explained variance drastically decreases (approximately
from 70% to 10%, see the exact correlation coefficients
above, and in Table 1).

To sum up our findings, the amount of learning was
proportional to the initial threshold levels reflecting the
effect of the observers’ perceptual scaling function
linking physical and perceptual magnitudes. This effect
fully captured the observed relationship found in the
within- and between-subject analyses when comparing
the group means of the conditions with different
stimulus base-intensities, and it also explained most of
the individual variation between the participants within
conditions.

Learning and generalization

The second goal of our study was to investigate
whether the extent of generalization is proportional to
the amount of learning in our paradigms. To this end,
we analyzed intersubject variability and found positive
correlations between the amount of learning and the
extent of generalization in all of the experiments (see
Supplementary Table S1, and Supplementary Figure
S4).

Because the intersubject variability was much
smaller when the reference orientation was at the
cardinal orientation compared to the variability at 258,
the above correlational analysis could be misleading

due to the large differences in the variances of the
learning and generalization scores (see Supplementary
Figure S4 G and H). Therefore, we included two
additional groups of observers in the orientation
discrimination experiment. The observers underwent
the same experimental protocol except that one group
practiced with reference orientation 158 and the
generalization of learning was assessed at 458, while the
other group practiced with 458 reference value and the
transfer of learning was measured at 158 (see Supple-
mentary materials and Supplementary Figure S3). In
these groups, the intersubject variability was similar at
both reference orientations (458 and 158) and it was also
large enough to study correlation between generaliza-
tion and learning (Supplementary Figure S4 I and J).

Beside the positive relationship between learning and
generalization, we also found positive correlations
between the initial threshold levels and the amount of
generalization in all experiments (see Supplementary
Table S1, and Supplementary Figure S4). Since the
measurement of generalization is also based on the
estimation of the discrimination thresholds, observers’
perceptual scaling function from physical to perceived
magnitudes should influence the amount of general-
ization in the same way as it influences the amount of
learning (see Figure 1 for explanation). This would
automatically imply a positive relationship between
initial threshold levels and the extent of generalization.
However, we were interested in the relationship
between learning and generalization without the
obvious common influence of the initial discrimination
thresholds. Therefore, we computed the partial corre-
lations between learning and generalization while
controlling for the initial threshold levels. Despite
factoring out the effect of the initial thresholds, we
found positive correlations in all experiments (Table 2,
and see Methods, Analysis for more information about
partial correlation). These findings validate our results,
suggesting a positive relationship between the amount
of learning and generalization in all experiments and
confirms that the observed correlations were not due to

Experiment

Correlation

coefficient, r 95% CI p Value

Correlation between initial thresholds and absolute learning (pre � post thresholds)

Experiment 1 con-ws (Figure 3D, top panel) 0.45 0.12–0.69 0.007

Experiment 2 con-bs (Figure 3D, middle panel) 0.74 0.57–0.85 0.001

Experiment 3 ori-bs (Figure 3D, bottom panel) 0.86 0.72–0.93 0.001

Correlation between initial thresholds and relative learning (pre/post thresholds)

Experiment 1 con-ws (Figure 4C, top panel) 0.05 �0.30–0.40 0.760

Experiment 2 con-bs (Figure 4C, middle panel) 0.31 0.01–0.55 0.035

Experiment 3 ori-bs (Figure 4C, bottom panel) 0.34 �0.03–0.63 0.061

Table 1. Analyzing intersubject variability with correlation. Notes: con-ws¼ contrast discrimination with within-subject design; con-bs
¼ contrast discrimination with between-subject design; ori-bs ¼ orientation discrimination with between-subject design.
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the self-evident modulating effect of the initial dis-
crimination thresholds.

We also computed the relative generalization for
each observer by taking the ratio of the extent of
generalization and the amount of learning. If general-
ization is proportional to the amount of learning, this
relative generalization should be constant at different
amounts of learning because the proportionality
relationship claims that generalization ¼ c3 learning;
thus, generalization

learning ¼ c, where c is a constant. Indeed,
using relative generalization the positive correlations,
we found with the absolute generalization scores
vanished and became statistically indistinguishable
from zero (Table 2).

One potential caveat with this analysis is related to
the fact that generalization was assessed by comparing
the performance in the untrained conditions at pre- and
posttest. If there were no learning between day two
(first day of practice) and five (posttest) it would raise
the possibility that the measured generalization scores
mainly reflect the influence of the pretest which cannot
be considered as true generalization because it is
identical for the trained and untrained conditions.
Indeed, looking at the learning curves in Figure 1
subpanels A, it is evident that most learning took place
from Day 1 one to Day 2 in most experiments.

However, our analyses revealed that there was still a
significant improvement in most of the conditions after
the second day of practice (see Supplementary materi-
als and Supplementary Figure S5). This means that the
measurement of generalization used in the present
study truly assesses generalization, even if it most
probably overestimates somewhat its magnitude. Based
on these measurements, our data support the claim that
the extent of the generalization in our experiments was
proportional to the observers’ learning.

General discussion

In three experiments, we investigated (a) how initial
performance, as quantified by discrimination threshold
at pretest, and overall learning performance were
related, and (b) how learning performance and ability
to generalize were linked in customarily used percep-
tual learning tasks. Our goal was to identify general
rules that apply to a wide range of conditions during
perceptual learning. First, we confirmed the Weber-like
law relationship between the initial threshold levels and
the amount of learning reported by Astle et al. (2013)
and showed that it essentially reflects the perceptual

Experiment

Correlation

coefficient, r 95% CI p Value

Partial correlation between learning and absolute generalization while controlling for initial thresholds

Experiment 1 transfer from con. 30% to con. 47% 0.65 0.23–0.87 0.004

Experiment 1 transfer from con. 73% to con. 47% 0.46 0.05–0.77 0.043

Experiment 2 transfer from con. 30% to con. 73% 0.46 0.00–0.76 0.050

Experiment 2 transfer from con. 73% to con. 30% 0.20 �0.30–0.61 0.366

Experiment 2 transfer from con. 30% to con. 47% 0.73 0.40–0.89 0.001

Experiment 2 transfer from con. 73% to con. 47% 0.55 0.11–0.81 0.015

Experiment 3 transfer from ori. 08 to ori. 258 0.59 �0.03–0.88 0.020

Experiment 3 transfer from ori. 258 to ori. 08 0.14 �0.52–0.62 0.622

Experiment 3 transfer from ori. 458 to ori. 158 0.25 �0.43–0.75 0.545

Experiment 3 transfer from ori. 158 to ori. 458 0.89 0.62–0.97 0.001

Partial correlation between learning and relative generalization while controlling for initial thresholds

Experiment 1 transfer from con. 30% to con. 47% �0.24 �0.56–0.29 0.356

Experiment 1 transfer from con. 73% to con. 47% 0.05 �0.45–0.53 0.848

Experiment 2 transfer from con. 30% to con. 73% �0.14 �0.57–0.35 0.521

Experiment 2 transfer from con. 73% to con. 30% �0.25 �0.64–0.25 0.259

Experiment 2 transfer from con. 30% to con. 47% �0.20 �0.61–0.29 0.416

Experiment 2 transfer from con. 73% to con. 47% �0.45 �0.76–0.02 0.053

Experiment 3 transfer from ori. 08 to ori. 258 0.42 �0.26–0.82 0.116

Experiment 3 transfer from ori. 258 to ori. 08 0.33 �0.36–0.78 0.233

Experiment 3 transfer from ori. 458 to ori. 158 �0.05 �0.64–0.58 0.891

Experiment 3 transfer from ori. 158 to ori. 458 �0.10 �0.54–0.67 0.761

Table 2. Top: Partial correlations between learning and absolute generalization. Bottom: Partial correlations between learning and
relative generalization computed as generalization divided by the amount of learning. Notes: Transfer from con. 30% to con. 47%
denotes the condition in which training were at reference value con. 30% and generalization was measured at con. 47%. The
notations for the other conditions follow the same logic.
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scaling function of the observers without any evidence
of additional learning-related processes. Moreover, we
found that this proportionality relationship explained
not only group mean results but also most of the
individual variation across participants. Second, we
found that the extent of generalization was propor-
tional to the amount of observers’ learning. In the
following, we relate our results to the earlier literature
and reflect on the implications of the present findings.

Initial performance and learning

First, we discuss the comparison of the low- and
high-reference-value (i.e., stimulus base-intensity) con-
ditions and how these results relate to the earlier
findings of Astle et al. (2013). Second, we consider the
results coming from the intersubject variability analysis
and discuss its relation to previous studies (Aberg &
Herzog, 2009; Astle et al., 2013; Fahle, 1997; Fahle &
Henke-Fahle, 1996).

The results of Astle et al. (2013) and the current
experiments are in agreement: They both show
proportionally more learning in the conditions with
higher initial thresholds compared to conditions with
lower initial thresholds. Astle and his colleagues (2013)
used a monocular, single-interval Vernier acuity task
with a 10-day long training protocol, and they
modulated the initial discrimination threshold levels by
changing the eccentricity of the stimuli in a within-
subject design. We applied binocular, two-interval
contrast and orientation discrimination tasks with a
five-day long training protocol and the initial discrim-
ination threshold levels were modulated by changing
the reference contrast and orientation values in within-
and between-subject designs. Astle et al. (2013) also
showed that the modulation of the initial performance
level with crowding or with changing the size of the
stimulus elicits the same effect on the amount of
learning. The present study used different reference
values to modulate initial performance, which again
showed very similar effect on the amount of perceptual
learning. Regardless of these differences, in both
studies across six experiments, the amount of learning
was proportional to the initial thresholds. Since these
two studies found consistent results across three
different paradigms under two different training
protocols, by using different factors for modulating
initial performance levels, together they point towards
a general rule in perceptual learning that can predict
the amount of learning from the initial discrimination
threshold levels. Specifically, regardless of what mech-
anism constrains the visual discrimination thresholds
the amount of learning will be proportional to the
initial thresholds (Astle et al., 2013).

Regarding the origin of this proportionality rule,
Astle and his colleagues’ interpretation is quite
different from ours. They proposed that the same
cortical factors that put a limit on visual perception
determining the discrimination thresholds constrain the
amount of learning resulting in a Weber-like law during
perceptual learning. We found that there was no extra
constraint by any cortical factor that modulated
learning in addition to the known perceptual processes.
Rather, when perceptual scaling was considered at the
individual level, the Weber-like law between initial
thresholds and learning naturally emerged without any
further assumptions. This result implies that, after the
transformation of the input from the stimulus space to
perceptual space takes place, the same amount of
perceptual learning occurs at all stimulus intensity
levels for all lower level visual attributes. Furthermore,
the proportional relationship between initial thresholds
and learning also implies that there was no change in
the shape of the observer’s perceptual scaling function
due to the training; only the resolution got higher at the
practiced stimulus intensities (i.e., the perceptual
discrimination threshold decreased).

In principle, the proportional relationship between
initial threshold and amount of learning could also be
explained as a result of a particular combination of
change in the shape of the perceptual scaling function
and/or additional learning effects beyond the simple
perceptual scaling that we suggest here. However,
based on parsimony, we find such a complex explana-
tion unlikely.

Considering intersubject variability, the amount of
learning in our first experiment using a within-subject
design was strictly proportional to the individual initial
threshold levels in accordance with the results of Astle
et al. (2013). However, in our other two experiments
using a between-subject design, the amounts of learning
increased more rapidly as a function of the initial
threshold levels surpassing proportionality in line with
the previous findings of Aberg and Herzog (2009) and
Fahle and Henke-Fahle (1996). Exploring this dis-
crepancy, we found that most of the variance in the
relationship between initial discrimination threshold
levels and learning was captured by the proportionality
rule in all of our experiments. Therefore, while other
(unknown) factors could also influence the relationship
between initial threshold and learning, those represent
only secondary effects. We attribute the origins of those
secondary, unknown factors to arousal level, attention,
and to motivation (Fahle & Henke-Fahle, 1996; Weiss
et al., 1993), which can influence the initial discrimi-
nation thresholds and can also change due to practice,
hence causing a deviation from the strict proportion-
ality rule. Thus, intersubject variability can also be well
explained by the proportional relationship between
initial thresholds and learning.
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Learning and generalization

Considering the link between the amount of learning
and the extent of generalization, our results suggest
that more learning predicts proportionally more
generalization in the standard perceptual learning
paradigms with five-day training. This proportionality
relationship was supported by (a) the significant
positive partial correlations between the amount of
learning and the extent of absolute generalization while
controlling for different initial threshold levels, and (b)
by the nonsignificant partial correlations between the
amount of learning and the extent of relative general-
ization (while controlling for initial threshold levels).

We can reconcile the contradiction between this
conclusion and earlier reports showing more learning
but less generalization after longer training (Hussain et
al., 2012) by considering the two components of learning
mentioned in the introduction: the specific characteris-
tics of the training data and overfitting. Depending on
whether or not the training data represents the space of
the task well, acquiring more knowledge about this
training set can help with generalization or hinder it.
However, adjusting the internal model of the learner
excessively to a training set regardless of how well it
represents the space of the task (i.e., overfitting the data)
will necessarily lead to less generalization. The interplay
between these two components in the specific setup of
Hussain et al. (2012) and Jeter et al. (2010) led to a lack
of generalization. This effect might have been due to the
increased training length applied in the tasks of Jeter and
colleagues’ study (2010) since encountering more train-
ing trials from the same kind increases the chances of
overfitting (observers adjust their internal model more
tightly according to the frequently observed trials). In
contrast, the training length (in number of trials) in our
experiments was fixed at about half of that used in the
longest session of Jeter et al. (2010), implying less
overfitting and more generalization. Therefore, our
training protocol might have created a condition that
did not overrepresent particular aspects of the space of
the task as much as in previous studies (Hussain et al.,
2012; Jeter et al., 2010), leading to the observation that
the more observers learned, the more they generalized.
Since a number of factors related to the task and the
stimuli can influence when overfitting begins, the nature
of specificity or transfer of learning might not be related
to the amount of learning directly, but rather to the
balance between the extent of learning, stimulus
variability, and the given task with its specific features
(Hussain et al., 2012; Jeter et al., 2010).

Clearly, this hypothesis of ours, suggesting that it is
the stronger overfitting and not the larger amount of
learning per se that is responsible for specificity in
standard perceptual learning tasks, remains to be tested
in future studies.

Conclusion

The present study investigated two simple, but
general rules that can predict performance in percep-
tual learning paradigms. First, we confirmed that initial
performance and learning are related through a Weber-
like relationship regardless of the learning task and
showed that this link is a direct consequence of the
observers’ perceptual scaling function relating physical
intensities to perceived magnitudes. Second, we found
that the more people learn under the typical five-day
training protocol, the more they generalize. This
implies that enhanced specificity reported in some
previous studies were not an inherent consequence of
the paradigm of perceptual learning with repetitive
training but rather of overfitting the training set which
is determined by a number of additional factors of the
experimental design.

Keywords: perceptual learning, initial performance,
generalization of learning, contrast discrimination,
orientation discrimination, Weber’s law, perceptual
scaling function, individual differences, overfitting
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