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Introduction: ''C-labeled Pittsburgh compound B (1'C-PiB) PET imaging can provide
information for the diagnosis of Alzheimer’s disease (AD) by quantifying the binding of PiB
to B-amyloid deposition in the brain. Quantification index, such as standardized uptake
value ratio (SUVR) and distribution volume ratio (DVR), has been exploited to effectively
distinguish between healthy and subjects with AD. However, these measures require a
long wait/scan time, as well as the selection of an optimal reference region. In this studly,
we propose an alternate measure named amyloid quantification index (AQ)), which can
be obtained with the first 30-min scan without the selection of the reference region.

Methods: ''C-labeled Pittsburgh compound B PET scan data were obtained from the
public dataset “OASIS-3”. A total of 60 mild subjects with AD and 60 healthy controls
were included, with 50 used for training and 10 used for testing in each group. The
proposed measure AQI combines information of clearance rate and mid-phase PIB
retention in featured brain regions from the first 30-min scan. For each subject in the
training set, AQIl, SUVR, and DVR were calculated and used for classification by the
logistic regression classifier. The receiver operating characteristic (ROC) analysis was
performed to evaluate the performance of these measures. Accuracy, sensitivity, and
specificity were reported. The Kruskal-Wallis test and effect size were also performed
and evaluated for all measures. Then, the performance of three measures was further
validated on the testing set using the same method. The correlations between these
measures and clinical MMSE and CDR-SOB scores were analyzed.

Results: The Kruskal-Wallis test suggested that AQI, SUVR, and DVR can all
differentiate between the healthy and subjects with mild AD (o < 0.001). For the training
set, ROC analysis showed that AQI achieved the best classification performance with an
accuracy rate of 0.93, higher than 0.88 for SUVR and 0.89 for DVR. The effect size of
AQlI, SUVR, and DVR were 2.35, 2.12, and 2.06, respectively, indicating that AQI was the
most effective among these measures. For the testing set, all three measures achieved
less superior performance, while AQI still performed the best with the highest accuracy
of 0.85. Some false-negative cases with below-threshold SUVR and DVR values were
correctly identified using AQI. All three measures showed significant and comparable
correlations with clinical scores (p < 0.01).
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Conclusion: Amyloid quantification index combines early-phase kinetic information
and a certain degree of p-amyloid deposition, and can provide a better differentiating
performance using the data from the first 30-min dynamic scan. Moreover, it was
shown that clinically indistinguishable AD cases regarding PiB retention potentially can

be correctly identified.

Keywords: Alzheimer’s disease, ' C-PiB PET, 8-amyloid, imaging protocol, dynamic imaging

INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neurodegenerative
disease that is characterized by dementia symptoms such
as memory loss and cognitive impairment (Winblad et al.,
2016). Currently, the diagnosis of AD is mainly based on
clinical symptoms, while the presence of pathologically relevant
biomarkers, including amyloid plaques and neurofibrillary
tangles, could help to confirm the results and enable early
detection (Jellinger, 1998). With radiotracers specific to f-
amyloid plaques, PET imaging provides a useful tool for
quantifying p-amyloid deposition in the brain regions. In 2019,
the IDEAS (Imaging Dementia-Evidence for Amyloid Scanning)
study involving 18,295 patients with mild cognitive impairment
(MCI) or dementia and 946 dementia experts proved that
implementing amyloid PET scanning would lead to higher
diagnostic certainty, changing patient management and leading
to improved outcomes (Rabinovici et al., 2019). ''C-labeled
Pittsburgh compound B (PiB) is a radiotracer that performs in
vivo imaging of amyloid deposition (Klunk et al., 2004). Previous
studies suggested that a significant difference in PiB retention
was observed in areas known to contain amyloid deposition,
such as frontal, parietal cortex, and striatum (Klunk et al., 2004;
Forsberg et al., 2010; Tryputsen et al., 2015). PiB PET imaging has
been successfully used in discriminating AD, MCI, and healthy
subjects (Lowe et al., 2009) as well as predicting MCI progression
(Forsberg et al., 2008).

The most widely used quantification measures for ''C-
PiB imaging are standardized uptake value ratio (SUVR) and
distribution volume ratio (DVR). SUVR measures the ratio of
SUV in target and reference regions over a late-scan period. The
value of SUVR reflects the degree of PiB retention and thus
the amyloid deposition in the region of interest (ROI) at the
equilibrium stage of tracer distribution. This semi-quantitative
method works effectively in assisting AD diagnosis, although
it was known to suffer from non-specific tracer binding (Liu
et al,, 2021). DVR is the ratio of distribution volume from
a receptor-containing region (target region) to a non-receptor
region (reference region), which can be obtained by Reference
Logan Graphical analysis (Logan et al., 1996). In PiB imaging,
the DVR value reflects the equilibrium distribution of PiB and
is significantly higher for subjects with AD in regions with p-
amyloid deposition than normal. Apart from DVR and SUVR,
relative tracer flow (R1) has also been reported to provide
information for differentiating subjects with AD and HC (Peretti
et al.,, 2019b; Ponto et al., 2019). It is defined as the ratio of tracer
influx rate in the target region to that in the reference region,

which measures the transport of tracer from plasma to tissue at
the initial scan. Both DVR and R1 can be derived by fitting the
simplified reference tissue model (SRTM) to the dynamic PET
data (Lammertsma and Hume, 1996). Previous studies reported
that R1 generated by the SRTM2 model is highly correlated with
regional cerebral blood flow (Meyer et al., 2011) as well as FDG
SUVR (Peretti et al., 2019¢), and thus can serve as a biomarker of
neuronal activity and neurodegeneration.

Although these measures have been proved useful for AD
diagnosis, there are some issues with the current workflow. For
example, the total scan and wait time for SUVR/DVR would
add up to at least 1h as they measure the tracer uptake at the
late equilibrium state. While R1 can be estimated using early-
stage PET data, it serves as a potential surrogate for FDG SUVR
and is not directly correlated to amyloid quantification (Meyer
et al., 2011; Peretti et al., 2019b). Moreover, all the three methods
involve selecting a reference region without specific binding. The
most frequently used reference region, the cerebellum, however,
has been reported to have higher PiB retention in subjects with
higher cortical B-amyloid deposition, which could in turn blur
the significant results of f-amyloid deposition in target regions
(Price et al., 2005).

In this study, we proposed an alternate measure for AD
identification based on dynamic PiB PET data. The aim is to
achieve comparable or even better discriminative performance
on mild AD identification with a short scan time and not using
the reference region for calculation. The proposed measure,
amyloid quantification index (AQI), requires only the first 30-
min scan which reflects both clearance rate from tissue at the
early stage and PiB retention before equilibrium. Its performance
in differentiating mild AD and HC subjects was assessed and
compared with those of SUVR and DVR. Limitations and future
work were discussed at the end of this paper.

MATERIALS AND METHODS

Participants and Cognitive Assessments

A total of 60 mild AD subjects and 60 healthy controls (HCs)
from the OASIS-3 dataset (LaMontagne et al., 2019) were
included. AD scans were selected as those confirmed by two
clinical diagnoses before and after the scan time. Both the
clinical diagnoses for AD and non-AD dementia were made
based on the National Alzheimer Coordinating Center Uniform
Data Set (UDS) (Morris et al., 2006) assessments. Patients with
non-AD dementia were excluded. Sixty-four PiB scans satisfied
these criteria. Four scans were deserted due to the problem of
missing necessary scan data. Among the remaining 60 scans,
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TABLE 1 | Demographic information of 120 subjects by group.

AD group HC group
No. of subjects 60 60
Age (yr) 762 £7.2 66.5 + 8.1
Sex (M/F) 45/15 22/38
ApoE 4 positive (%) 36/60 19/60
MMSE 25.7+29 29.4+1.0
CDR-SOB 3.2+21 0

MMSE, Mini-Mental State Examination; ApokE, apolipoprotein E; CDR-SOB, Clinical
Dementia Rating Scale Sum of Boxes.

50 were included in the training set and 10 were included
in the testing set. HC scans were selected in the order of
serial number, excluding subjects with AD and those with other
diseases. In this study, AD_001 indicates the 1st AD subject
while HC_001 indicates the 1st HC subject. Demographics of all
subjects can be found in Table 1. Clinical and neuropsychological
assessments were performed on all subjects prior to scans. Each
subject received a clinical dementia rating (CDR) score, with
a CDR of 0 indicating normal cognitive function and 0.5 or 1
indicating cognitive impairment. Confirmed subjects with AD
were clinically diagnosed as “AD dementia”. As participants
reaching CDR = 2 were no longer eligible for the study, here
only mild and very mild AD cases were included (0.5 < CDR
< 1 or 0.5 < CDR-SOB < 9) (LaMontagne et al, 2019).
To obtain more accurate assessment results we use CDR-SOB
(O’Bryant et al., 2008) to evaluate the degree of dementia for
each subject, with the score being 0 for HCs and ranging
from 0.5 to 9.0 for patients with AD (Sendi et al., 2021).
General cognitive status was also evaluated for each subject
through the Mini-Mental State Examination (MMSE), with
scores ranging from 0 (severe impairment) to 30 (no impairment)
(Tombaugh and McIntyre, 1992).

Imaging and Post-processing

11C-labeled Pittsburgh compound B (PiB) PET imaging was
performed on each subject. Subjects were given 6-20 mCi ' C-
labeled PiB intravenously. Dynamic scans (60 mins;12 x 10s, 3
x 60s, 11 x 5min) were conducted on one of the three Siemens
PET scanners: ECAT HR+ 962 PET, Biograph 40 PET/CT, and
BioGraph mMR PET-MR. PET imaging analysis was performed
as follows (LaMontagne et al., 2019). Reconstructed images were
first smoothed to achieve a spatial resolution of 8 mm. Motion
correction was applied to each set of dynamic images with
an extensive frame-by-frame registration procedure. No partial
volume or entropy corrections were applied. Brain parcellation
was performed for each subject by registering PET images to
the corresponding T1-weighted MR images, which had been
segmented using FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.
edu). Reference region-based Logan graphical analysis was
implemented on each segmented region to calculate DVR (Logan
et al., 1996). Regional SUVR was estimated for all the regions.
Both DVR and SUVR used 30-60 min post-injection as the time
window with the cerebellar cortex as the reference region.

is(tmax) =S

activity concentration(Bg/ml)

t1

time(s)

FIGURE 1 | lllustration of how index AQI was calculated. The two oblique
dashed lines represent the two slopes that reflect clearance rate and PiB
retention respectively. Calculation of AQI only requires 30-min scan, as
indicated by the solid red line.

Use Short Scan Data

The first 30-min dynamic data in 100 subjects of the training
set were used to exploit optimal features which can effectively
distinguish between AD and HC subjects. The mean uptake over
time for each brain region was quantified as time-activity curves
(TAC:s). Linear interpolation was performed on TACs to obtain a
fine sampling time for all scans.

According to the kinetics of PiB (Rodell et al., 2013), each
TAC was split into three phases: flow-in phase, peak uptake,
and clearance from tissue. The flow-in phase denotes the initial
clearance of PiB by tissue, the rate of which is determined
by cerebral blood flow and vascular permeability. The peak
uptake phase describes the time when maximal tracer uptake
was reached, generally within 4 min from the start (Gjedde et al,,
2013). The clearance phase denotes the clearance of tracer from
tissue after reaching the peak value, the rate of which can reflect
amyloid load in the ROI. Compared with HCs, the AD group
usually features greater PiB retention together with a lower
clearance rate (Engler et al., 2006; Peretti et al., 2019a). Therefore,
it is assumed that the combination of these two characteristics
would work effectively in discriminating between diseased and
healthy subjects. Based on this assumption, we proposed AQI.
For each ROI, we calculated the descending slope from peak
to a time point t1 afterward as well as the slope between the
start point and a later time point t2 on the corresponding TAC
(Figure 1). The first slope reflects the clearance rate whereas the
second measures the PiB retention in mid-stage scans. Then these
two slopes were linearly combined to yield the index AQI_roi in
each ROI:
AQI_roi =a x SEH =S5O _ (1—-a)x § (fmax) = 5(82) (1)

£ £2 — tmax
Here t is the middle time point of each dynamic frame and tpax
denotes the frame where peak uptake value occurs. S(t) represents
the activity concentration (Bq/ml) of PiB as a function of t. S(0)
is the average activity concentration of the first frame (0-10s).
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FIGURE 2 | Summarized TACs for all 120 subjects in (A) caudal anterior cingulate cortex and (B) cerebellar cortex. The solid lines indicate that the mean value in each
group and the shadowed areas indicate 95% confidence interval.

Normalization was performed using injected dose for each scan.
The optimal values for t1 and t2 and the coefficient “a” were
determined by maximizing the classification accuracy. Then,
a 10-fold cross-validation procedure using logistic regression
classifier was applied to evaluate the performance of AQI_roi on
differentiating subjects in the training set. The parameters that
had the best compromise between accuracy and scan time were

chosen to be the optimal value.

Selection of Optimal Brain Regions

Conventional analysis of quantification methods is based on
single or several regions known to contain amyloid deposition
without investigating optimal regions. In this study, we identified
featured brain regions for AQI using lasso regression analysis
(Tibshirani, 1996). Lasso regression could perform variable
selection as well as generalized linear regression by finding a
set of coeflicients B such that the sum of Mean Squared Error
(MSE), and the regularization term can be minimized. Here the
optimal regularization strength was empirically chosen as the
largest value such that MSE is within one standard error of the
minimum MSE. Predictors with relatively large coefficients were
considered featured brain regions, the AQI_roi of which were
linearly combined to distinguish between the AD and HC groups.

Statistical Analysis

Statistical analysis was performed using MATLAB Statistics
and Machine Learning Toolbox (version R2018b). The
discriminatory performance of index AQI was compared
with those of SUVR and DVR. Here the value of SUVR and
DVR were calculated as the average values in anterior cingulate,
frontal cortex, parietal cortex, and precuneus, which have been
reported to accompany higher amyloid binding in subjects with
AD than in HC (Klunk et al., 2004; Tryputsen et al., 2015). AQI
was calculated linearly by combining the AQI_roi in featured
brain regions, the coeflicients of which were determined by

linear regression. To test the performance of each measure,
a 10-fold cross-validation was implemented by randomly
partitioning the training subjects into 10 subsets, each containing
five AD and five HC subjects. A logistic regression classifier
was trained using nine subsets as training data and validated
on the remaining subset. The process was repeated 10 times.
Then, ROC analysis was performed to compare the classification
results of these 10 iterations with true labels, and the sensitivity,
specificity, accuracy, area under the curve (AUC), and optimal
threshold were reported. To further validate the performance
of the three methods, we used an additional 10 AD and 10
HC scans as the testing set. For each subject., AQI, SUVR, and
DVR were calculated, as previously mentioned, for training
sets. The logistic regression classifier that was trained with the
previous 100 subjects was then applied to the testing set. Results
of the ROC analysis and the above evaluation metrics were
reported and compared. Moreover, the correlations between
the three measures (SUVR/DVR/AQI) and clinical scores
(MMSE/CDR-SOB) were analyzed using linear regression. The
correlation coefficient and p-value were reported for each pair
of variables.

RESULTS

Summarized TACs in Sampled Regions for
all Subjects

Summarized TACs for all 120 subjects in the caudal anterior
cingulate cortex and cerebellar cortex are shown in Figure 2.
Compared with HC, subjects with mild AD feature lower
clearance rate and greater PiB retention in the caudal anterior
cingulate cortex, whereas in the cerebellar cortex TACs for these
two groups are similar due to the lack of specific binding. The
difference in the dynamic uptake of certain brain regions allows
AD and HC subjects to be separated.
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Optimal Parameters for Index AQI

Optimal coeflicients and time points in Eq. (1) were found by
grid search, where the searching intervals were t1 €[0, 3300s],
t2€[300, 3,300s] with a step size of 50s and a€[0, 1] with a
step size of 0.1. AQI_roi in the caudal anterior cingulate cortex
was then calculated for all training subjects with each set of
parameters and used for classifying the AD and HC groups.
Figure 3 shows how the parameter selection was performed. The
optimal parameters were a = 0.5, t1 = t2 = 1,650, resulting in
a maximum classification accuracy of 0.92. With these optimized
parameters, equation (1) became:

S(1650) — S(0) B

AQIL roi = 0.5 x 0.5
1650
S(1650) — S (¢
( ) (tmax) 2
1650 — fmax

where tpyax was different for each subject, ranging from 80 to
240 . Each AQI_roi value was normalized using an injected dose.
As a result, one would only need scan data of the first 1,650s
(<30min). All data after this time point were not necessary for
computing AQI.

Selection of Featured Brain Regions

The contribution of AQI_roi in different brain regions was
evaluated using lasso regression. The selected brain regions were
caudal anterior cingulate cortex (B = 2.5214) and caudate(B
= 0.1976), with the value of coefficient p reflecting their
contribution for differentiating AD and HC subjects. An overall
AQI was calculated for each subject by linearly combining
AQI_roi in the caudal anterior cingulate cortex and caudate:

AQIgyeral = 3.6092 X X1 4 02750 x X2+ 0.5378  (3)

where X1 and X2 denote the z-score normalized value of AQI_roi
in the caudal anterior cingulate cortex and caudate, respectively.
The discriminative accuracy of AQIyyer on the 100 training
subjects was 0.93.

Performance Comparison

Performance Evaluation on Training Set

The discriminating performance of SUVR, DVR, and AQI on
the 100 training subjects were evaluated and compared using
the 10-fold cross-validation. ROC analysis suggested that AQI
performed the best in discriminating AD and HC subjects among
all three methods. Figure 4 shows the ROC curves for the three
methods plotted as the false positive rate against the true positive
rate at different classification thresholds. We conclude that AQI
performed better than SUVR and DVR, as its curve was above
the other two with the highest AUC value of 0.9444. AUC,
sensitivity, specificity, accuracy, and optimal threshold for each
method are reported in Table 2. All three methods performed
well on identifying HC subjects, with the specificity being 0.96
(SUVR), 0.98 (DVR), and 0.96 (AQI) respectively. While SUVR
and DVR had an increased error rate for classifying AD subjects,
AQI achieved superior performance with a sensitivity of 0.90
over 0.80. The overall accuracy for SUVR, DVR, and AQI was
0.88,0.89, and 0.93, respectively.

Figure 5 shows the boxplots of these three measures for the
AD and HC groups. AD subjects had PiB retention in cortical
regions and thus had higher values for SUVR and DVR. The
median and quantiles of AD were higher than those of HCs for
all three measures. AQI measured the difference between PiB
retention and the tracer cleaning rate from the brains, which was
also more significant in the AD group. The Kruskal-Wallis tests
suggested that all three measures could discriminate HC and AD
subjects (p < 0.001), while AQI had the least degree of overlap
on two boxplots. Indeed, Cohen’s effect size for SUVR, DVR,
and AQI were 2.12, 2.06, and 2.35 respectively, which further
proved that AQI was the most effective in discriminating these
two groups.

Performance Validation on Testing Set

The performances of the three measures on the testing set were
evaluated using the threshold derived from the training dataset.
In Figure 6, the ROC curve of AQI was still above those of

Frontiers in Aging Neuroscience | www.frontiersin.org

April 2022 | Volume 14 | Article 785495


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Shen et al.

30-Min PiB Scan

1 T T r T
J J

09 E

0.8 E

o 07F 1
=
o

o 06F 1
2
el

‘n 0.5 E
o
%

o 04F E
=
—

Fos} 1

0.2F i

—DVR(AUC=0.8860)
01 —SUVR(AUC=0.9060)
0 . . —AQI(AUC=0.9444)
0 0.2 0.4 0.6 0.8 1
False positive rate
FIGURE 4 | ROC curves for three methods in the training set.

TABLE 2 | The classification performance of SUVR, DVR, and AQI on training set.

Methods SUVR DVR AQl

AUC 0.9060 0.8860 0.9444
sensitivity 0.8000 0.8000 0.9000
specificity 0.9600 0.9800 0.9600
accuracy 0.8800 0.8900 0.9300
optimal threshold 1.4510 1.2795 0.0114

SUVR and DVR, with the highest value of 0.95. The evaluation
metrics in Table 3 indicated that all three methods achieved
a sensitivity of 0.8, and that AQI performed better than the
other two measures in terms of specificity and overall accuracy.
Compared with the training set, all three measures achieved
less superior performance on the testing set, although AQI still
performed the best among these measures.

SUVR Images of Selected Samples

To further investigate AD subjects that were misclassified as HC
regarding SUVR and DVR, we analyzed SUVR images and TACs
of these cases. SUVR images of AD_038, AD_001, AD_040, and
AD_005 are shown in Figure 7. All four scans were correctly
identified as AD by AQI, while AD_038 and AD_040 were
misclassified as HC subjects according to the SUVR and DVR
value under the classification threshold. TACs showed that these
misclassified AD subjects did not have significant PiB retention
or dynamic uptake at the equilibrium stage (see Figure 8), which
explained why measures of SUVR and DVR failed to separate
them from the HC subjects. This decreased PiB retention is
probably due to the lack of fibrillar f-amyloid deposition, as the

P<0.001 P<0.001 P<0.001
* * *
3r I | r | I )
2}
1 L
B $ @
Al = AD
21
= HC

3t

PO 9O O OO O
PS;\/ P‘O\/ 0“@/ 0\‘@/6 \)\‘?s/g 0\‘@/

FIGURE 5 | Boxplots of DVR, SUVR, and AQI for AD and HC. For each
method, the corresponding data were Z-score normalized to have mean 0 and
standard deviation 1 for visual comparison.
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FIGURE 6 | ROC curves for three methods in the testing set.

clearance rate during the clearance period is still more typical
of AD subjects (Figure 8). Therefore, by measuring AQI, which
considers both retention and clearance rate, these seemingly
asymptomatic scans can still be correctly identified.

Correlation With MMSE and CDR-SOB Scores

Figure 9 shows the correlation between measures and scores of
clinical tests (CDR and MMSE). Pearson’s correlation coeflicients
and the significance level were reported for each pair of
variables (see Figure 9). For all three measures, their values were
proportional to CDR-SOB and inversely proportional to MMSE,
with the absolute value of coefficient r ranging from 0.60 to 0.66.
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TABLE 3 | The classification performance of SUVR, DVR, and AQI on testing set.

Methods SUVR DVR AQl

AUC 0.8600 0.8400 0.9500
sensitivity 0.8000 0.8000 0.9000
specificity 0.8000 0.8000 0.8000
accuracy 0.8000 0.8000 0.8500
optimal threshold 1.4510 1.2795 0.0114

2.4

v 1.8
19
0.6

0.0

FIGURE 7 | SUVR images of example AD subjects (1) upper left: AD_038
(SUVR = 1.1207); (2) upper right: AD_001 (SUVR = 2.0235); (3) lower left:
AD_040 (SUVR = 1.1699); (4) lower right: AD_005 (SUVR = 1.5531). AD_038
and AD_040 were misclassified as HC subjects by SUVR and DVR. AD_001
and AD_005 were correctly classified AD subjects by all three measures.

4
35 x 10 . ) :
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FIGURE 8 | Time-activity curves for (1) typical AD subject (AD_001, blue line)
(2) atypical AD subject (AD_038, red line) (3) typical HC subject (HC_003,
green line). AD_038 was not identified by SUVR (Figure 6) but was correctly

classified by AQI.

All of these associations between measures and clinical scores
attained statistical significance with p<0.01. AQI did not have
a significantly higher correlation with the clinical scores than
SUVR/DVR did.

DISCUSSION

Amyloid quantification index is a semi-quantitative measure for
PiB PET imaging, which is calculated by linearly combining the
information corresponding to clearance rate and mid-phase PiB
retention. In this study, AQI was shown to effectively distinguish
mild AD and HC subjects for 120 scans from a public dataset.
AQI achieved an overall accuracy rate of 0.93, which was higher
than SUVR and DVR, in the 100 subjects in the training set. The
AUC and sensitivity of AQI were also higher than those of SUVR
and DVR, while the specificity was comparable. Moreover, the
effective size of AQI was 2.35, larger than 2.12 and 2.06, for SUVR
and DVR, respectively. Compared with the training set, all three
measures achieved less superior performance on the 20 subjects
in the testing set, while AQI still performed best among these
measures, with the highest accuracy of 0.85.

The AQI can be obtained with the first 30-min scan, which
enables a scan protocol with significantly reduced scan/wait time.
This could, in turn, improve the scan efficiency, hence reducing
the overall cost of a large-scale study. In terms of image quality, a
shorter scan has the further advantage of reducing the possibility
of motion artifacts (Sureshbabu and Mawlawi, 2005; Dinges
et al., 2013). Moreover, the proposed method does not require
the selection of a reference region. Using the cerebellar cortex
as a reference region could introduce errors as it is not fully
devoid of specific binding. A post-mortem study suggested that
the widely used reference regions, the cerebellum and the brain
stem, were involved in B-amyloidosis when AD progressed into
late stages (Thal et al., 2002). Therefore, the SUVR and DVR
in target regions could be offset by the increased binding in the
reference region.

Unlike SUVR and DVR, which focus on the PiB retention
at late scans, AQI accounts for the information of the early-
kinetics and mid-phase retention. The underlying concept is
in line with several previous studies, which aimed at deriving
diagnostic information from early- or mid-stage PiB scans.
Blomquist et al. (2008) reported that some patients with AD
could not be distinguished regarding PiB retention as they
showed equally low PiB uptake ratio in cortical areas as healthy
controls, while they still had decreased K1 (influx rate constant),
typical of other AD subjects. Therefore, early-phase dynamics
can provide extra information when differentiating AD and
HC subjects. Sato et al. (2012) showed that the microkinetic
parameter k3, estimated from a 28-min scan, could differentiate
AD and HC subjects. Jia et al. (2011) reported that the PiB
radioactivity clearance rate differed significantly in patients with
AD and HCs in the cortex, subcortical nucleus, and pons, with
the rate in the AD group being much smaller. Although the
actual quantification methods for utilizing early-phase data were
different, these researches suggested the importance of exploiting
early-phase information.

The AQI combines retention with early kinetics, which
enables correctly identifying indistinguishable AD cases
regarding PiB retention. For AD_038 and AD_040, which are
devoid of enhanced PiB retention in cortical regions, further in
vitro analysis is needed to confirm whether amyloid deposition
is truly absent or is not bound by PiB. One possible explanation
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FIGURE 9 | Scatter plots show the correlation between measures (AQI/SUVR/DVR) and clinical scores (MMSE/CDR-SOB). Pearson correlation coefficient r and the

SUVR

is that these subjects are at an early stage or genetically mutated,
and thus lack the obvious fibrillar B-amyloid deposition.
Previous studies suggested that PiB may be unable to detect
AD variants characterized by diffuse p-amyloid plaques as it
binds specifically to fibrillar f-amyloid deposition (Bacskai et al.,
2007; Ikonomovic et al., 2008). Cairns et al. (2009) reported
an ''C-PiB-negative AD patient with substantial amounts of
diffuse no-fibrillar B-amyloid plaques, as confirmed by the
autopsy. Although the PiB scan was performed 2.5 years before
the autopsy, the scarcity of fibrillar B-amyloid plaques was
unlikely to be identified by PiB-PET imaging even at the time
of the autopsy (Cairns et al, 2009). Tomiyama et al. (2008)
reported that AD patients with an amyloid precursor protein
mutation would have enhanced the formation of B-amyloid
oligomers but no fibrilization and displayed very low signal
on PiB PET imaging. The above findings suggested that PiB
retention was not completely reliable for AD identification as it
may overlook certain AD cases. In our study, the false negative
AD cases still display symbolic pathological changes in terms
of PiB dynamics and thus can be correctly identified using AQI
(Figure 8). Moreover, one HC subject without significant PiB
retention was misclassified as AD by AQI. This subject was
later diagnosed as having uncertain dementia, which suggested
that AQI may have detected early-stage symptoms of AD
based on abnormal PiB kinetics. Another possibility would be
that the ground truth used in this study may be inaccurate
as even clinical AD diagnosis can be inaccurate since AD can
only be definitely diagnosed neuropathologically at autopsy. If
this is true, some of the correctly classified AD subjects, e.g.,
Figure 7, can actually be because of cognitive impairment due to

non-AD causes. Whether this is valid or not is subject to further
neuropathological support.

There are several limitations of this study. One limitation is
that the current results were based on subjects from a single
source of dataset and thus may not apply to others. One
conclusion of this article is that by exploiting both clearance
rate and PiB retention, the performance of differentiating mild
AD and HC subjects is superior to using PiB retention alone,
while the actual performance may vary across datasets acquired
at different centers with various models of scanners. Although, it
can be difficult to obtain full dynamic scans to test the proposed
method, as most of the centers currently execute a late-scan
protocol. A second limitation is that during subject selection
those patients with non-AD dementia were excluded, while the
clinical situation can be more complicated as diseases such as
frontotemporal dementia and Lewy body dementia are likely to
interfere with the diagnosis of AD. Future work is needed to test
whether AQI will be affected by other types of dementia. The
third limitation is that a more appropriate normalization method
requires to be investigated as we found that normalization simply
by dose only achieved comparable results to ones even without
normalization. The last limitation is that the logistic regression
classifier used for classifying subjects in this study is probably
not the best choice. Other machine learning techniques, e.g.,
support vector machines, could be used to further improve the
performance. However, the main goal of this work is to propose
and validate a measure with short scan time and acceptable
accuracy in differentiating mild AD and HC subjects.

In the future, AQI can be tested on differentiating MCI
from AD and HC and predicting MCI progression. AQI can be
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applied in combination with MRI imaging, which may provide
stronger evidence and achieve greater accuracy than using either
of the imaging modality alone (Patel et al, 2020). Another
possibility is to explore whether AQI can be applied to PET
data obtained with other amyloid imaging agents, such as '8F-
Florbetapir. It is expected '®F-Florbetapir and PiB share similar
kinetics, which could enable AQI to simplify the '8F-Florbetapir
scan protocol.
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