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Travertine crystal growth ripples 
record the hydraulic history 
of ancient Rome’s Anio Novus 
aqueduct
Duncan Keenan‑Jones1*, Davide Motta2*, Marcelo H. Garcia3, Mayandi Sivaguru4, 
Mauricio Perillo5, Ryan K. Shosted6 & Bruce W. Fouke3,7,8,9,10

Travertine crystal growth ripples are used to reconstruct the early hydraulic history of the Anio Novus 
aqueduct of ancient Rome. These crystalline morphologies deposited within the aqueduct channel 
record the hydraulic history of gravity‑driven turbulent flow at the time of Roman operation. The 
wavelength, amplitude, and steepness of these travertine crystal growth ripples indicate that large‑
scale sustained aqueduct flows scaled directly with the thickness of the aqueous viscous sublayer. 
Resulting critical shear Reynolds numbers are comparable with those reconstructed from heat/
mass transfer crystalline ripples formed in other natural and engineered environments. This includes 
sediment transport in rivers, lakes, and oceans, chemical precipitation and dissolution in caves, 
and melting and freezing in ice. Where flow depth and perimeter could be reconstructed from the 
distribution and stratigraphy of the travertine within the Anio Novus aqueduct, flow velocity and 
rate have been quantified by deriving roughness‑flow relationships that are independent of water 
temperature. More generally, under conditions of near‑constant water temperature and kinematic 
viscosity within the Anio Novus aqueduct channel, the travertine crystal growth ripple wavelengths 
increased with decreasing flow velocity, indicating that systematic changes took place in flow rate 
during travertine deposition. This study establishes that travertine crystal growth ripples such as 
those preserved in the Anio Novus provide a sensitive record of past hydraulic conditions, which can 
be similarly reconstructed from travertine deposited in other ancient water conveyance and storage 
systems around the world.

A reliable supply of fresh drinking water, coupled with an effective water delivery management system, are two 
of the essential elements required to build and maintain human civilization. Fulfilment of these basic require-
ments has carried power and prestige in virtually every culture throughout human  history1. Where water has 
sufficiently high supersaturated concentrations of dissolved minerals (hard water), it precipitates deposits com-
posed of calcium carbonate  (CaCO3) limestone called travertine2,3 within water transport and storage systems. 
In the process, these travertine deposits preserve a record of the complexly intertwined physical, chemical, 
and biological processes that have influenced their  deposition2–5. Travertine deposited during the operation 
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of historical aqueducts has recorded changes in human activity and climate in Europe and the Middle  East6–15, 
Pre-Columbian North  America16, Central  Asia17 and  Australia18. While dominated by  CaCO3 crystals that pre-
cipitate directly from the flowing aqueduct water, aqueduct travertine also contains varying but relatively minor 
amounts of downstream-transported sediments and plant  debris19. This combination of travertine crystallization 
and sedimentation processes posed a significant ongoing problem for the maintenance of ancient  aqueducts20. 
Travertine had to be regularly removed  manually19,21,22 to prevent it from becoming too heavy for the aqueduct 
structural supports, while also increasing wall roughness, narrowing channel cross-sectional area, and reducing 
the flow  capacity23. As a result of these relationships between aqueduct flow and travertine formation, aqueduct 
travertine has recently been used to reconstruct flow rates based on their spatial and temporal distribution within 
the archaeologically significant and protected ruins of the Anio Novus aqueduct at Roma Vecchia,  Italy23,24.

In many natural submarine and subaerial environmental systems, downstream transport of sedimentary par-
ticles creates sediment transport morphologies called ripples and dunes that have been extensively  studied25–32. 
In addition, other types of deposits called “heat/mass transfer” crystalline deposits have also been described 
that form ripples as a result of either heat transfer during melting and freezing in ice (e.g. ice ripples)33–38, or 
mass transfer during mineral precipitation and dissolution in caves (e.g. solution  ripples36–42; Supplementary 
Information S1). Another common example of heat/mass transfer crystalline deposits are travertine microter-
racettes formed in terrestrial spring, river, lake, and cave hydraulic systems. In these environments, travertine 
microterracettes (repeated pond and dam stair-steps) form as a result of complex interactions between crystal 
precipitation from supersaturated aqueous solutions, changing gravity-dependent low-flow hydraulic regimes, the 
presence and metabolic activity of microorganisms, and a small amount of downstream sediment  transport2,43–48.

The present study evaluates an unexpected new class of well-preserved heat/mass transfer crystalline deposits 
that formed during travertine precipitation on the floors, walls, and roofs of the main channel of the Anio Novus 
aqueduct of ancient  Rome19,23,24 These deposits were initially reported as “ripples” in the Anio Novus  travertine19 
and later called “ripple-like” morphologies in geographically widespread aqueducts in  France13, Istanbul and 
 Jordan9,  Germany15, and  Turkey14. To be consistent with previous literature, the term “ripple” in the present study 
will be used as a descriptive morphological term, to which modifiers are added to indicate specific compositions 
and genetic processes of formation and deposition. Examples include “sediment transport ripples”28,32, “solution 
ripples”42, and even “ice ripples”37. Depositional morphologies observed in the present study of Anio Novus 
aqueduct travertine deposits will therefore be consistently described as “travertine crystal growth ripples”. This 
terminology confirms that the travertine ripple morphologies form from a process of constructional crystal 
growth directly from the flowing aqueduct water. Furthermore, this terminology reflects the distinctly different 
typology of travertine crystallized from complex physical, chemical, and biological  mechanisms2–5, which is a 
fundamentally different process from the fluid mechanics controlling sedimentary transport ripple  formation28. 
At the same time, the nomenclature “travertine crystal growth ripples” recognizes that gravity-driven, open-
channel turbulent flow is also influential in convective diffusion during travertine  CaCO3 crystal  precipitation33. 
As a result, the present study combines analyses of travertine crystal growth ripple morphology, 3D floor and 
wall distributions within the aqueduct channel, and hydraulic modeling to reconstruct the operating conditions 
of the ancient Anio Novus aqueduct.

Materials and methods
Archeological setting. The largest and most important addition to the water supply system of ancient 
Rome was the unprecedented simultaneous building of the Aqua Claudia and the Anio Novus aqueducts between 
38 and 52  CE49. The 11 aqueducts built in Rome between 312 BCE and 226 CE constituted a larger and more 
complex urban water supply system than any before it. Collectively, these aqueducts, 500 km in total  length50, 
enabled the population density to reach unprecedented levels that rival those of modern-day  urbanization51. 
Considerable municipal funds were expended in their maintenance and in some cases the aqueducts continued 
to be used for over a thousand  years52.

The Anio  Novus23,24 was the farthest-reaching aqueduct ever built by Imperial Rome, carrying water from the 
Aniene (Latin: Anio) River and one of its tributaries, the rivus Herculaneus, some 87 km into the Eternal  City21 
(Fig. 1A). The Anio Novus aqueduct was fed from the Middle and Upper Basins of the Aniene  River21, which 
flows through and dissolves Mesozoic (Upper Triassic to Upper Cretaceous)  CaCO3 marine limestones compris-
ing the Simbruini  Mountains53. Around 98 CE, the water supply system of Rome was thoroughly described in 
the De Aquis compendium by Sextus Julius Frontinus, Rome’s water commissioner (curator aquarum). Because 
of the high carbonate supersaturation of the water, travertine reached more than 1 m in thickness at some sites 
along the aqueduct  system49. The Anio Novus was the highest-elevation aqueduct along most of the Aniene 
valley and the second highest in elevation within the city of Rome  itself54. Aqueduct elevation was important 
(Supplementary Information S2) since Roman water supply was predominantly gravity-driven and only areas 
below an aqueduct could be supplied with any significant volume of  water50. Maintenance of the Anio Novus 
apparently ceased sometime between the fifth and eighth centuries  CE52,55.

Sample collection for the present study was conducted under research permits granted by the Soprintendenza 
Speciale per il Colosseo, il Museo Nazionale Romano e l’Area Archeologica di Roma and the Soprintendenza 
Archeologia, Belle Arti e Paesaggio per l’Area Metropolitana di Roma, la Provincia di Viterbo e l’Etruria Meridi-
onale. Aqueduct travertine samples were collected from three sites: (1) the underground Galleria Egidio section 
of the Tivoli  Loop23 (Fig. 1A); (2) the Empiglione Bridge section on the Tivoli Bypass (Figs. 1A and 2); and (3) 
three locations within the site of Roma  Vecchia24 (Fig. 1B). Travertine deposited at each of these three locations 
lined the channel floor, walls and sometimes roof of the Anio Novus aqueduct, exhibiting depositional char-
acteristics that are generally consistent with previous descriptions from other Roman aqueduct  systems6,7,9,15.
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The distribution and depositional characteristics of the travertine crystal growth ripples at the Galleria Egidio 
and Roma Vecchia sites were used to justify the assumption of uniform flow within the Anio Novus aqueduct 
at these locations, which have been previously presented in  detail23,24 (Supplementary Table S2, Supplementary 
Information S5.1). Similarly, the Empiglione Bridge site, which begins at the Anio Novus’ channel bifurcation 
around Tivoli (Fig. 1A), contains a 625 m-long  bridge55 that also provides strong evidence for uniform flow. This 
is because it crossed the valley of the Empiglione River by means of a straight arcade that maintained essentially 
constant gradients and cross-sectional  geometries49,54. The Empiglione Bridge sample sites in the present study 

Figure 1.  (A) Route of the Anio Novus aqueduct from Subiaco in the Apennines into Rome. Geographic 
location of the Galleria Egidio, Empiglione Bridge and Roma Vecchia sites are indicated. (B) Enlargement 
of the Anio Novus aqueduct channel at Roma Vecchia showing relative locations of the upstream (RF 0 m), 
intermediate (RF 9 m), and downstream (RF 140 m) sample collection locations. Modified from Keenan-Jones 
et al.24.

Figure 2.  Field photographs of the Anio Novus aqueduct at Empiglione Bridge on the Tivoli Bypass (location 
shown in Fig. 1A). (A) Empilgione Bridge looking upstream. (B) Closeup of arcade at upstream end (top left) of 
(A), now looking downstream. (C). Travertine crystal growth ripples (white arrow) on the downstream vertical 
side wall of the arcade shown in (B) (looking upstream). This opening is visible in the top left of (A).
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were located ~ 200 m downstream of the bifurcation and 400 m upstream of the end of the bridge (Fig. 2). The 
only known aqueduct junction on the bridge is an offtake to a cistern located 230 m downstream of the meas-
ured cross section, which is not expected to have affected the uniform flow profile significantly. The stone piers 
and arches comprising the bridge date to the original construction of the Anio  Novus49,55. The three arches of 
the bridge portion from which the Empiglione Bridge samples were collected, have been attributed to repairs 
conducted under the Roman emperor  Hadrian49,55.

At Roma Vecchia, the Anio Novus aqueduct emerges from the ground and was built directly upon the 
Aqua Claudia aqueduct, which was itself supported by an arcade up to 10 m in height (Fig. 2A, B)21,24. Three 
age-equivalent upstream-to-downstream samples of travertine at Roma Vecchia were collected from the floor 
of a 140 m-long continuous section of the Anio Novus  aqueduct12. These included an upstream 0 m location 
(sample number RNRV3-2A), an intermediate 9 m location (sample number RNRV3-3A) and a downstream 
140 m location (sample number RNRV1-2A; Fig. 1B).

Aqueduct travertine field sample collection. Travertine samples collected from all sites at Galleria 
Egidio, Empiglione Bridge and Roma Vecchia (Figs.  1, 2) were systematically photographed, measured, and 
described before careful removal using a hammer and small, clean, well-sharpened chisels composed of hard-
ened steel. Each travertine sample was labelled (e.g., sample number, upstream–downstream context and flow 
direction determined by contextual orientation the sample within the aqueduct channel), bagged, and shipped 
in a padded container to the Microscopy and Imaging Core Facility of the Carl R. Woese Institute for Genomic 
Biology (IGB) at the University of Illinois Urbana-Champaign (Illinois). Samples were cut on a clean water-
cooled diamond embedded tile saw in an orientation parallel to the upstream–downstream flow direction of 
the channel. Samples were then thoroughly washed with deionized water, polished, dried in a clean room, and 
photographed with a Nikon SLR D7000 digital camera (Nikon, Japan).

Petrographic thin‑section preparation and optical microscopy. Billets cut from the three travertine 
samples collected at Roma Vecchia (Fig. 1B) were prepared by Wagner Petrographic (Linden, Utah) as Petropoxy 
impregnated, doubly polished, uncovered, 25 µm-thick sections mounted on standard-sized petrographic glass 
slides. Optical microscopy of these thin sections was completed on a Hamamatsu Nanozoomer digital slide scan-
ner using a 20 × 0.75 NA UPlansApo objective at a pixel resolution of 0.23 µm under a brightfield (transmitted 
light) modality. Further detailed descriptions of the light, laser, electron, and x-ray microscopy techniques used 
to analyze the Anio Novus aqueduct travertine samples are presented in Sivaguru et al. (2022).

Hydraulic measurements. Each of the Anio Novus travertine crystal growth ripple morphology samples 
analyzed in the present study were carefully photographed, measured and marked to record their precise posi-
tion, three-dimensional (3D) distribution, and upstream to downstream orientation within the aqueduct chan-
nel. This included measurement of the wetted perimeter and cross-sectional flow area of the aqueduct channel at 
each  site23, techniques presented  in24. Reconstruction of the flow rate of the ancient Anio Novus aqueduct water 
was done by assuming uniform flow, which is justified and accurate if: (1) the channel cross-section, gradient 
and direction are roughly constant; and (2) the sample site is away from hydraulic control points, such as sluice 
gates, junctions, or branches. Many of ancient Rome’s aqueduct channels cannot be studied because they have 
been destroyed, or are inaccessible due their height above ground, depth underground, or because the channel 
is filled with sediment and soil. Although these factors make the widespread regional mapping and analysis of 
aqueduct travertine ripples challenging, three sites were identified within the Anio Novus aqueduct (Fig. 1) that 
meet these criteria and exhibit mm- to cm-scale travertine crystal growth ripples (Figs. 3 and 4).

The slope of the Anio Novus aqueduct channel floor at Roma Vecchia was calculated using previously reported 
topographic  elevation54, while distances between each elevation point were calculated using  ArcGIS23,24. In addi-
tion, previously determined channel and travertine geometry data were used for both Galleria Egidio and Roma 
 Vecchia23,24. The channel at Empiglione Bridge could not be accessed due to its height above ground level. A Leica 
total station (Leica Camera AG, Wetzlar, Germany) was used to measure the geometry of the channel and the 
travertine crystal growth ripple morphologies (Supplementary Fig. S5) and then processed in the SolidWorks 
2015 Premium × 64 SP5.0 program (Dassault Systèmes SE, Vélizy-Villacoublay, France).

Characterization of travertine crystal growth ripples. Variations in the morphological characteris-
tics of the Anio Novus travertine crystal growth ripples through time (i.e., along vertical stratigraphic cross-sec-
tions at each geographic location) and space (i.e., at different sample locations along the channel flow path) were 
qualitatively and quantitatively investigated. Bottom-to-top analyses of the travertine crystal growth ripple layers 
through the entirety of the 8 cm-thick stratigraphy, which records changes through time at three locations at 
Roma Vecchia, was evaluated using digital image analysis of individual stratigraphic horizons (described below). 
These were further evaluated with direct hand-sample and thin-section images analyses and measurement using 
open-source NIH ImageJ software. A total of 21 specific travertine crystal growth ripple layers (stratigraphic 
horizons), each representing the travertine-water growth interface at any given specific point in time, were eval-
uated. These were consistently identified within digital scans of Roma Vecchia hand-sample cross-sections by 
tracking individual dark laminae. The shape of each layer of travertine crystal growth ripples was then deter-
mined using the Livewire function in the MIPAV program (National Institutes of Health, USA, https:// mipav. 
cit. nih. gov/). Finally, each horizon was analysed in MATLAB (MathWorks, Natick, MA, USA) with the results 
collated and compared with direct sample measurement performed in MIPAV, Adobe Photoshop and Microsoft 
Excel (Microsoft, Redmond, WA, USA).

https://mipav.cit.nih.gov/
https://mipav.cit.nih.gov/
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Three primary geometric characteristics of the travertine crystal growth ripples were analysed including 
wavelength ( � ), amplitude (a = 0.5 × ripple height [Δ]), and steepness (= Δ/� ). Ripple wavelengths were analysed 
by Fourier transform. The Lomb-Scargle algorithm was implemented with Welch-Overlapped Segment Averag-
ing (WOSA, 50% overlapping periodograms) to produce Fourier transforms of each stratigraphic horizon. Peak 
identifications from the resulting power spectrum were tested for significance against either: (1) a white-noise 
(random) null hypothesis; or (2) an autoregressive red-noise null hypothesis where each point depends on the 
point before it. The red noise character is defined as decreasing spectral power with increasing wavenumber. 
Confidence limits (= (1 − (1/n), where n is the number of points sampled by Mipav along the ripples)56 were 
calculated using 1000 Monte Carlo simulations.

Four different proxies (described in Supplementary Information S5.3) for amplitude were then calculated 
from the ripple horizons for RF 140 m (Fig. 1B). Ground truthing (measurement of amplitude of ripples in NIH 
software ImageJ) showed that the most accurate proxy was the mean of the displacement of the background-
subtracted horizon (Supplementary Fig. S6) and this proxy was also calculated for the other samples.

The aim of investigating variations in travertine crystal growth ripples at the three sites along the Anio Novus 
aqueduct channel flow path (Fig. 1B) was to evaluate the relation between the flow properties and the ripple 
wavelength in the flow direction. A single stratigraphic horizon composed of travertine crystal growth ripples 
was investigated at each of the three sites. These were: (1) the “latest flow” at Empiglione Bridge (the rippled 
surface visible in Fig. 2C); (2) the “early flow” at Galleria Egidio; and (3) the “latest flow” at Roma Vecchia. The 
“latest flow” at Roma Vecchia is 19 cm above (and hence deposited later than) the top of the Unit 2 (Fig. 4), 
and located 1 m upstream (Fig. 3D). At each stratigraphic position, representative depositional surfaces and a 

Figure 3.  Comparison of different types of travertine crystal growth ripple morphologies deposited in the 
Anio Novus aqueduct with travertine microterracette morphologies deposited in hot-spring drainage systems. 
(A–C) Anio Novus travertine crystal growth ripple morphologies formed at the three Roma Vecchia sample 
sites (Fig. 1B). (A) Linguoid travertine crystal growth ripples at RF 0 m; (B) sinuous ripples at RF 9 m. (C) 
Hummocky travertine crystal growth ripples at RF 140 m. (D) Pleistocene-age Distal-Slope Facies travertine 
microterracette morphologies deposited in the quarries of Gardiner, Montana (modified  from2).
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two-dimensional (2D) vertical cross-section of the travertine samples, each from different locations on the wetted 
perimeter, was analysed to estimate a boundary-averaged wavelength. More than 30 wavelength measurements 
for each site were made and the Sauter mean wavelength ( �32 ) estimated, following accepted  practice58.

Travertine samples chosen for analysis were deposited directly onto the uppermost surface of the mortar 
lining of the Anio Novus aqueduct channel and exhibited complete and continuous stratigraphic sequences 
(i.e., no evidence of significant disruption, erosion, or dissolution during deposition). At Empiglione Bridge, 
measurements of ripple wavelengths of the travertine surface were made at the vault (1.9 m above the floor) and 
two locations (at 1.3 m and 0.9 m above the floor) on the left-hand wall (when facing downstream, Fig. 2C), 
using the Leica total station as described above. At Galleria Egidio (Supplementary Fig. S7) and Roma Vecchia 
(Supplementary Fig. S8), ripple wavelengths in the centre of the channel floor were measured from photographs 
taken perpendicular to the travertine surface. Wavelengths and ripple height were measured on scans of polished 
cross-sections of travertine crystal growth ripple stratigraphy from the “latest flow” at Empiglione Bridge (where 
samples were collected immediately downstream of the measured section, Supplementary Fig. S9), from the wall 
of the “early flow” at Galleria Egidio (Supplementary Fig. S10) and the floor of the “latest flow” at Roma Vecchia 
(Supplementary Fig. S11). These samples were all less than 3 wavelengths in length in the downstream direction, 
therefore ripples were measured directly in ImageJ rather than by Fourier transform.

Results
Travertine stratigraphy and crystal growth ripple morphology. Detailed analyses of the crystalline 
structure, sedimentology, stratigraphy, and diagenetic alteration of the three travertine samples within the Anio 
Novus aqueduct channel at Roma Vecchia (Fig. 1B) are presented in Sivaguru et al.12. The following summary 
provides a fundamentally important depositional and diagenetic context for characterization of the Anio Novus 
travertine crystal growth ripple morphology in the present study. The Anio Novus aqueduct travertine deposited 
at each of the three Roma Vecchia sites (Fig. 1B) is composed of: (1) the top of the underlying Roman mortar on 
the floor of the aqueduct; (2) the time-zero  (t0) surface comprising the contact between the underlying mortar 
and the overlying travertine; and (3) an 8 cm-thick deposit of aqueduct travertine composed of an underlying 
5 cm-thick Unit 1 and an overlying 3 cm-thick Unit  212. Travertine crystal growth ripples observed in three-
dimensions (3D) on in situ bedding surfaces and hand samples (Fig. 3), as well as throughout all vertical slices 
of collected samples (Fig. 4), are described in the following. Age-equivalency of the three Roma Vecchia trav-
ertine samples (Fig. 1B) was established via correlation of the  t0 surface, their compositional and stratigraphic 
consistency in crystalline texture, color, thickness and layering, and the lack of evidence for any later alteration, 
disturbance, or dissolution during possible Roman maintenance (Fig. 4)12.

The Unit 1 and 2 travertine deposits (Fig. 4A, B) are composed of two types of calcium carbonate  (CaCO3) 
morphologies, which include: (1) original 50 to 100 µm-tall dendritically branching aggregates of small 
(1–3 µm-diameter) euhedral calcite crystals (Fig. 4C; called shrubs); and (2) variably sized (100’s µm to 10’s mm) 
diagenetic replacement radiaxial calcite crystals that form upward radiating bundles that crosscut the alternating 
dark–light laminae stratigraphy but do not influence the original travertine crystal growth ripple morphologies 
(Fig. 4D, E)12. Both types contain stratigraphic sequences of interlayered dark brown and light beige laminae (< 10 
to 100 µm-thick), formed by organic matter entrapped during original crystallization and deposition (Fig. 4)12. 
Unit 1 travertine is composed of high-frequency interlayering of 0.1 to 1 mm-thick dark brown laminae and 
light beige laminae that are generally planar, yet sometimes exhibit low angle angular unconformities (Fig. 4A, 
B). While the thickness of the dark brown laminae remains relatively consistent in Unit 1 and 2 (100’s µm-thick 
to ~ 1 mm-thick), the light beige laminae are significantly thicker in Unit 2 (~ 1–3 mm-thick; Fig. 4A, B).

Unit 1 exhibits travertine crystal growth ripples with stoss, crest, lee and trough geomorphologies (Figs. 4 and 
5; Supplementary Videos S1 and S2)12,28,30,31. On bedding surfaces observed in the field, in hand sample and in 
thin section (Figs. 3, 4, and 5B, C), these travertine crystal growth ripples exhibit wavelengths generally increas-
ing from mm scale near the bottom to cm scale near the top and are morphologically consistent with linguoid, 

Figure 4.  Dark–light laminae stratigraphy of travertine hand-sample cross-sections deposited within the 
Anio Novus aqueduct. Samples were collected from the upstream RF 0 m (Sample Number: RNRV3-2A; 
A) and downstream RF 140 m (Sample Number: RNRV1-2A; B) sites at Roma Vecchia (Fig. 1B). Travertine 
depositional Units 1 and 2 and downstream flow direction (white arrows) are indicated. Modified  from12. 
(A) and (B). Standard reflected light hand-sample photographs of the face of vertical cross-sections oriented 
parallel to the downstream flow direction. Depositional age was determined via correlation of the  t0 contact 
surface between the underlying mortar and overlying travertine. Lee sands were deposited on the lee side of 
each travertine crystal growth ripple morphology (white arrows in A and B). (C) Nanozoomer brightfield 
(transmitted plane light) thin-section photomicrograph (white box C in B) showing travertine shrubs (TS). 
Tracings of three representative linguoid travertine crystal growth ripple morphology cross-sections are shown 
(red lines). (D) Polarized light high-resolution widefield photomicrograph (enlargement of white box in C) of 
dendritically branching aggregates (shrubs) of 1 to 3 µm-diameter euhedral calcite crystals. (E) Nanozoomer 
brightfield thin-section photomicrograph (Box E in A). Tracings of three representative linguoid travertine 
crystal growth ripple morphology cross-sections are shown (red lines). (F) Nanozoomer brightfield thin-section 
photomicrograph (white box in F). Tracings of three representative linguoid travertine crystal growth ripple 
morphology cross-sections are shown (red lines). Labels indicate regions of lee sands (LS) with coated grains 
(CG) that were partially removed during cutting and thin-section preparation. (G) Enlargement of white box 
in (F). Diagenetic replacement radiaxial calcite (RC) crystals form upward radiating bundles that crosscut the 
original travertine shrubs (TS) and alternating dark–light laminae stratigraphy.

◂
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sinuous and hummocky ripples observed in sedimentary transport  ripples12,28,30,31. As these layers of travertine 
crystal growth ripples accumulated vertically, the position of the crests and troughs intermittently preferentially 
accumulated in a downstream direction (prograded) and at other times in an upstream direction (retrograded), 
forming zig-zag stratigraphic patterns in 2D vertical sections (Figs. 3 and 4)12 (Supplementary Videos S1 and 
S2, described in more detail in Supplementary Information S3.1). In Unit 2, the travertine crystal growth ripple 
wavelengths are generally on the cm scale and larger than those in Unit 1,forming sinuous and hummocky sedi-
mentary transport ripples (Figs. 4 and 5)12,28,30,31. As in Unit 1, the ripple sets in Unit 2 prograde and retrograde 
up-section, which again form zig-zag stratigraphic patterns in 2D vertical sections (Figs. 3, 4; Supplementary 
Videos S1 and S2). A common feature of the Unit 1 and 2 travertine, which further accentuates the travertine 
crystal growth ripple morphology, is the deposition of siliciclastic sand grains within eddies on the lee slope of 
ripple sets (Figs. 4A, B, D, 5A), called lee sands12 (Fig. 3A–C). These lag deposits contain a minor component of 
an assortment of fine- to coarse-grained and angular to rounded siliciclastic  sands12. MicroCT imaging prior 
to hand-sample cutting indicates that these sands were originally densely packed on the lee side of each ripple 
prior to being washed out and plucked during sample preparation, leaving behind void spaces (Fig. 4A, B)12.

Quantitative characterization of travertine crystal‑growth ripples. Our approach to quantifying 
up-section stratigraphic variation in travertine crystal growth ripple geomorphology for the 0, 9 and 140 m sam-
ples collected at Roma Vecchia (Fig. 1B) are shown in Fig. 6. The digital horizons analysed by Fourier transform 

Figure 5.  Comparison between Anio Novus travertine crystal growth ripple morphologies and Gardiner 
Quarry travertine microterracette morphologies. (A) Terminology used to describe the geomorphology of 
asymmetric ripples formed by downstream hydraulic transport of sedimentary  grains28,30,31. (B) Enlargement 
of Anio Novus Unit 1 travertine linguoid travertine crystal growth ripple morphologies shown in Fig. 3A. X–X’ 
is the line of section shown for the morphology cross-section tracing shown in Fig. 4E. (C) Enlargement of 
Pleistocene Gardiner Quarry Distal-Slope Facies travertine microterracette morphology shown in Fig. 3D. Y–Y’ 
is the line of section shown in the morphology cross-section tracing.
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are shown by red line tracings overlaid on the hand-sample images (Fig. 6). There is generally good agreement 
between the shortest significant wavelengths identified by the Fourier transform (shown as black triangles) and 
ground-truthed wavelengths (shown by crosses). After initial establishment of the travertine crystal growth rip-
ples at the base of Unit 1 (Fig. 4A, B), a cyclic stratigraphic succession of ripple wavelength and amplitude occurs 
from increasing, to decreasing and increasing again.

The calculation of Re∗c from mean travertine crystal growth ripple morphology wavelength, water temperature 
and kinematic viscosity and shear velocity has been completed at the three different sites along the flow path of 
the Anio Novus (Fig. 1A). Full measurements of travertine crystal growth ripple characteristics and results are 
provided in the Supplementary Information (S3.2).

Calculation of critical shear reynolds number from aqueduct travertine crystal‑growth rip‑
ples. Shear velocity, u∗, and Re∗c (Supplementary Table S2) were computed using Eqs. (1) and (3), respectively. 
In fluid-sediment systems, the boundary-averaged shear velocity ( u∗ ) is a means of expressing the boundary-
averaged shear stress in units of velocity. u∗ can be determined from estimates of aqueduct longitudinal slope ( S ) 
and hydraulic radius ( Rh ) by assuming uniform flow conditions,  where59:

where τb is the boundary-averaged shear stress, ρ is the mass density of water, g is the acceleration of gravity, 
and S is the aqueduct floor slope (gradient). Equation (1) for shear velocity u∗ is based on the assumption of 
uniform flow and accounts, through the use of the hydraulic radius, for the irregular (associated with travertine 
deposition) and taller-than-wide shape of the wetted boundaries. Furthermore, it provides a value averaged over 
the whole wetted boundary. The present study has therefore adopted the assumption of uniform flow and based 
hydraulic computations on the geometric property of aqueduct channel hydraulic radius, defined as the ratio of 
flow area to wetted perimeter. The hydraulic radius Rh is given by

where A is the flow area and P is the wetted perimeter, which were estimated based on the travertine deposits 
on the floor and side walls of the cross section (e.g. Supplementary Fig. S12).

Investigations on a wide variety of mature convective heat/mass transfer crystalline morphologies have 
consistently found that ripple wavelength scales with the ratio between the water kinematic viscosity and the 
shear velocity (i.e., the thickness of the viscous sublayer). Furthermore, the shear-velocity based (or friction-
based) Reynolds number Re∗ has a constant critical value for the formation of different types of mass transfer 
 morphologies41,60–62. This critical shear velocity-based Reynolds number Re∗c is calculated as:

where � is the boundary-averaged ripple wavelength and ν is the kinematic viscosity of water, which is a function 
of water temperature.  Curl57 derived the following relationship between u∗ , the mean (cross-sectionally-averaged) 
flow velocity ( u ) and the Sauter mean of the measured ripple wavelengths ( �32 ) for dissolution morphologies 
formed in a circular conduit:

(1)u∗ =

√

τb

ρ
=

√

gRhS

(2)Rh =
A

P

(3)Re∗c =
u∗�

ν

Figure 6.  Travertine crystal growth ripple morphology cross-section measurements and characterization 
within stratigraphic cross sections of the Anio Novus aqueduct deposits at Roma Vecchia (Fig. 1B). The 
thickness of vertical travertine accumulation from the time-zero surface  (t0) is plotted on the y-axis. Aqueduct 
water low direction is from left to right in all three images. Travertine wavelength (λ) is shown on the x-axis, 
as well as uncertainty bars corresponding to two standard deviations. Left: Sample RF 0 m (number of 
samples analysed (n) = 21). Center: Sample RF 9 m (n = 20). Right: RF 140 m (n = 21). Data is presented in 
Supplementary Data Files 1–3.
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where D is the diameter of the conduit and BL is Prandtl’s bed-roughness constant. BL is a constant for dissolu-
tion morphologies of a particular shape and Re∗c  , once they have reached equilibrium with an imposed mean 
velocity u 57,60.

Derivation of morphology roughness‑flow relationships. We have modified Eq. (4) for use in the 
taller-than-wide, rectangular aqueduct channel through inclusion of the hydraulic radius (defined in Eq. 2), 
knowing that, for a circular conduit, Rh = D/4:

Substituting u* from Eq. (1) into Eq. (5) gives,

Temperature determines the density and kinematic viscosity of water  flows63, which in turn affects the flow 
depth and Rh . Through its incorporation of Rh , Eq. (6) thus negates the need to estimate the temperature of the 
flow that formed the travertine crystal growth ripples to estimate u . If the wetted perimeter P and flow area A 
can be measured or estimated from the surviving travertine stratigraphy, then Rh can be estimated from Eq. (2) 
and substituted into Eq. (6) to calculate u . Then an estimation of flow rate, Q, can made using the following 
continuity equation:

Discussion
Travertine crystal growth ripples. The stoss, crest, lee, and trough geomorphology of the Anio Novus 
travertine crystal growth ripples are consistently observed in 3D bedding surfaces (Figs. 2C, 3A–C, 5B, C) and 
in vertical 2D sections of hand samples and in 2D thin section (Fig. 4). While the complex physical, chemi-
cal, and biological processes controlling the travertine crystal growth ripples are distinctly different from those 
controlling sediment transport  ripples28,32 and solution  ripples42, the basic ripple nomenclature established in 
these previous studies provides an important comparative context for describing the travertine crystal growth 
ripple  moprhologies28,30,31 (Figs. 3A–C, 4, 5). Of particular importance is that, in addition to their formation on 
the channel floor, the travertine crystal growth ripple morphologies of the Anio Novus also formed horizontally 
on the vertical surfaces of the aqueduct channel walls, such as those observed at Empiglione Bridge (Fig. 2C). 
This evidence indicates that the Anio Novus travertine crystal growth ripple morphologies are independent of 
gravitational forces (Fig. 5B, C). Similarly, non-gravity dependent flute, scallop, and ripple morphologies have 
been observed to form on the vertical walls and ceilings of ice and dissolving cave  systems34,35,37,38,42. Conversely, 
all ripples formed from the downstream transport of suspended sediments are gravity  dependent28–31,40, drawing 
another fundamental distinction with the Anio Novus aqueduct travertine crystal growth ripples.

Another previously well-studied class of gravity dependent heat/mass transport morphologies in travertine, 
called microterracettes, form in many different earth surface (i.e., lakes, rivers, cold- and hot-springs) and subsur-
face (e.g., caves, fractures)  environments2,3,42. Each microterracette is structurally composed of a terraced pond 
and a lip, which create a gravity-driven cascading downstream  sequence2,3,64 (Fig. 4D). Travertine microterracette 
morphologies are therefore geomorphologically distinct from the Anio Novus travertine crystal growth ripples 
(Fig. 5A–D) and are representative of deposition in fundamentally different gravity-independent regimes with 
respect to overall hydraulics, geochemistry, and biological  activity2,28,43,44,65,66.

Valuable insights are provided via direct comparison of the Anio Novus travertine crystal growth ripple 
morphology with both modern and ancient Distal-Slope Facies travertine microterracettes deposited at Mam-
moth Hot Springs in Yellowstone National Park and in nearby Gardiner,  Montana2,64,67,68. The Anio Novus 
travertine crystal growth ripples, which are slightly younger than the 38–52 CE age of the aqueduct  itself12, 
were precipitated from the following gravity-independent aqueous conditions: (1) temperature = 6°–13.5 °C, 
pH = 7.8–8.4, and saturated with respect to carbonate mineral  precipipation53,69,70; and (2) water depth = 1–2 m, 
flow velocity = 0.8–1.8 m/s, and highly turbulent confined channel  flow12,23,24 (Fig. 5, Supplementary Table S3, 
Supplementary Figures S5, S13). In contrast, the Mammoth-Gardiner Distal-Slope Facies travertine microter-
racettes, which are modern to recent (0–8000 years old) at Mammoth and Pleistocene (19,500–38,700 years old) 
in the Gardiner  quarries2, were precipitated under the following gravity-dependent, unconfined, nearly laminar 
sheet-flow aqueous conditions: (1) temperature = 28–44 °C; (2) pH = 7.3–8.1; (3) supersaturation (Omega) = 2–5; 
(4) water depth = 1–3 cm; and (6) flow velocity =  < 0.01–0.1 m/s2,44,64,68,71.

These comparisons reveal that the aqueous temperatures and chemistries are comparable between the for-
mation of the Anio Novus travertine crystal growth ripples and the Mammoth-Gardiner travertine microter-
racettes, respectively. Furthermore, the mineralogy and crystalline structure of travertine crystal growth ripples 
and microterracettes are generally comparable. The Anio Novus travertine crystal growth ripples are composed 
of small 1–3 µm-diameter euhedral calcite crystals that form larger 100–500 µm-tall shrub-like  aggregates12 
(Fig. 4C, D). The Distal-Slope Facies microterracettes are composed of 1–3 µm-diameter euhedral calcite crystals 

(4)ū = u∗
(

2.5

⌈

ln

{

D

2�̄32

}

−
3

2

⌉

+ BL

)
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that form 100 µm-tall shrub-like crystalline  aggregates2,64,68. However, in stark contrast, there are orders-of-
magnitude differences in the contextual flow regimes from which the Anio Novus travertine crystal growth 
ripples and Mammoth-Gardiner microterracettes were deposited, respectively.

Hydraulic reconstructions from travertine crystal growth ripples. As described in the previous 
section, the travertine crystal growth ripples formed within the channel of the Anio Novus aqueduct are gener-
ally similar in 2D vertical section morphology to well-studied ripples formed during the downstream hydraulic 
transport of sedimentary grains (Fig. 5)28. This is despite having been formed under very different physical, 
chemical, and biological environmental  conditions2,3,28,31, which is reflected in the morphology observed on 3D 
surfaces (Fig. 5). Importantly,  Hanratty33 formulated a fluid mechanical theoretical framework for the develop-
ment of instabilities on surfaces that are eroding, dissolving, or being precipitated. Results indicate that wave-
induced turbulent flow is equally influential during convective diffusion controlling travertine  CaCO3 crys-
tal precipitation, as well as downstream sediment transport. Therefore, the hydraulic history of open-channel 
turbulent flow can be equally reliably reconstructed from both travertine crystal growth ripples and sediment 
transport ripple  morphologies33.

To compare aqueduct travertine crystal growth ripples characteristics with those of other heat/mass transfer 
crystalline morphologies (Supplementary Information S4.1), Supplementary Table S1 summarizes estimates of 
the ripple wavelengths at Empiglione Bridge (“latest flow”), Galleria Egidio (“early flow”), and Roma Vecchia 
(“latest flow”). Supplementary Table S2 establishes the shear velocity, Reynolds number and other flow properties 
from the data in Supplementary Table S1. The aim is to evaluate a possible relation between ripple wavelength 
along the flow direction and other flow properties. This was completed on the travertine crystal growth ripples 
observed in 2D channel sections from the three sites along the Anio Novus. Requirements included having 
enough travertine preserved to determine the hydraulic radius ( Rh ), given by the ratio of flow area A and wetted 
perimeter P (Eq. 2), could be reconstructed and where the assumption of uniform flow is  valid23,24.

Figure 7 plots ν/u∗ versus �32 for the three sample sites along the Anio Novus flow path (Fig. 1A), all the 
sites available due to the limited survival and accessibility of archaeological remains. The wavelength for each 
of these 3 points is averaged from the wavelengths of 39–50 individual travertine crystal growth ripples at that 
location (Supplementary Information S5.3, Supplementary Figures S7-S11). Uncertainties and approximations 
also resulted from data collection challenges related to the evaluation of: (1) channel slope (Galleria Egidio) and 
wetted perimeter (Roma Vecchia); (2) the shear velocity estimate (carried out using a uniform-flow assumption 
and a boundary-averaged expression for the shear stress) and (3) the fluid viscosity (computed for constant 
water temperature, which is a reasonable approximation in the aqueduct based on the water temperature data at 
the source, Supplementary Information S5.4). Nevertheless, the critical shear Reynolds numbers for travertine 
crystal growth ripple formation for each site (Supplementary Table S2) and for the Anio Novus overall (c. 2565, 
obtained by linear regression between the sites, Fig. 7A) consistently fall within the range of previously measured 
dissolution and precipitation morphologies, such as 750 � Re∗c �  300041,61,72,73. The linear relationship suggested 
by the data shown in Fig. 7A. is in close agreement with past work on a large variety of morphologies (such as 
scallops and ripples, formed both by sediment grain  deposition32 and crystalline precipitation/dissolution42), 
which found a linear relationship between these same properties of ν/u∗ and � (Fig. 7B). This suggests that, as in 
dissolution  morphologies42,72, the ripple wavelength scales with the thickness of the viscous sublayer (δ), which 
is commonly estimated as 11.6 ν/u∗59. In other words, if the thickness of the viscous sublayer increases, so does 
the ripple wavelength. More precise data are clearly needed, and additional sites within the Anio Novus deposits 

Figure 7.  Covariation between u∗ and �32 (see Supplementary Table S2). (A) Data from this study falling within 
dashed lines representing Meakin and Jamtveit (2010)’s range for Re* of scallop formation. “n” refers to number 
of measurements from which �32 was calculated. Dotted line is a linear regression with details shown on the 
chart. Uncertainty bars correspond to two standard deviations. (B) The same Anio Novus travertine crystal 
growth ripple data (from A) now plotted over  Thomas61’ log–log plot of data from sediment transport ripples, 
solution ripples (scallops eroded on metal, limestone, bitumen and plaster surfaces) and ice ripples. Anio Novus 
travertine data plot amongst these other ripple and scallop data (used with permission).
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exhibiting travertine crystal growth ripples will be sought in future studies where uniform flow can be assumed 
and where slope, wetted perimeter, flow area and ripple wavelength can be measured. Nevertheless, for the first 
time in aqueduct travertine deposits, this shows that travertine crystal growth ripple wavelength varies due to 
changes in shear velocity and fluid viscosity (i.e., water  temperature63) alone, in accord with Eq. (3).

Unlike dissolution morphologies such as  scallops42, which dissolve in earlier formed bedrock, travertine 
crystal growth ripples deposit new layers on top of previous ripple sets, thus recording their history of formation. 
Therefore, changes in flow conditions and/or temperature over time can be traced upwards through changing 
travertine crystal growth ripple characteristics (illustrated by the red and green lines in Fig. 4, which provide 2D 
upward tracing of troughs in vertical section). It is shown above (Fig. 7) that the Anio Novus travertine crystal 
growth ripples are within the range of critical Re* for dissolution morphologies, suggesting that Curl’s Eq. (4), 
and hence our Eq. (6), are valid for estimating flow velocity from travertine crystal growth ripple wavelengths. 
Using Eqs. (6) and (7), flow velocity and rate for the three Anio Novus sites were calculated from travertine crystal 
growth ripple wavelength and other data in Supplementary Table S2. These results, shown in Supplementary 
Table S3, illustrate that the mean velocity u estimated from travertine crystal growth ripple wavelength is within 
12–16% of that obtained using the uniform-flow Manning’s equation with an estimated Manning’s roughness 
coefficient (n) typical of a material with similar roughness to the aqueduct travertine. This confirms that Eqs. (4) 
and (6) are at least broadly valid for interpreting travertine crystal growth ripples. Further confirmation is pro-
vided by the travertine crystal growth ripples-flow relationships developed for sediment ripples by Van  Rijn74 
from the resistance equation, which make use of the ripple morphology height, �, as well as the ripple wavelength 
(Supplementary Information, Section S4.3). Moreover, our modified Eq. (6) has the advantage of accounting 
for changes in travertine crystal growth ripple characteristics over time at a particular site, as well as at different 
sites along the flow path, permitting the reconstruction of the histories of flow velocities and rates throughout a 
Roman aqueduct network and in similar networks.

Travertine 2D cross-sections such as those of Units 1 and 2 from the aqueduct floor at Roma Vecchia (Fig. 4A, 
B) are ideal for such reconstructions, since the up-section changes in ripple wavelength can be traced over 
time through the stratigraphy. However, the travertine on the walls was too poorly preserved at this location to 
measure or estimate wetted perimeter, P, and flow area, A, for Units 1 and 2. This meant that hydraulic radius 
could not be estimated, which precluded the use of Eq. (6). Nevertheless, qualitative changes in flow velocity and 
rate during Units 1 and 2 can be interpreted. From Eq. (3), increases in travertine crystal growth ripple wave-
length only result from decreases in shear velocity and/or increases in kinematic viscosity. Kinematic viscosity 
will vary with  temperature63, but, as detailed in Supplementary Information S4.4, the limited possible range of 
temperatures means variation in viscosity would have been significantly smaller (+ 13/ − 10% of the representa-
tive 10 °C value, Supplementary Information S5.4) than the observed variation in wavelength at Roma Vecchia 
(+ /-70–150% of the mean). This means that the majority of observed changes in travertine crystal growth ripple 
wavelength in depositional Units 1 and 2 of Roma Vecchia travertine were due to changes in shear velocity (i.e., 
flow discharge) at the site rather than changes in temperature. Whereas changes in shear velocity would have been 
primarily due to changes in flow velocity rather than other factors (Supplementary Information S4.5). Hence, 
under near-constant kinematic viscosity, the mean wavelength increases observed in Anio Novus travertine are 
evidence of decreases in flow velocity and rate in the aqueduct, and vice versa. This is confirmed, theoretically 
and experimentally, for heat/mass transfer morphologies by many previous  studies75–80.

As a result, qualitative changes in flow velocity and rate were reconstructed for the earliest periods of flow 
that formed the 8-cm basal of the deposit within the Anio Novus aqueduct channel at Roma Vecchia (Fig. 4A, 
B). This was completed using 2D stratigraphic up-section changes in the wavelength of the travertine crystal 
growth ripples (Fig. 6) deposited on the previously flat  t0 channel mortar surface or on bed defects. After a 
period of travertine crystal growth ripple initiation (bottom half of Unit 1), flow rate then decreased markedly 
(third quarter of Unit 1), as suggested by the increase in ripple wavelength at RF 9 m and 140 m (Figs. 4A, B, 
6). Flow rate then increased (top quarter of Unit 1), reducing ripple wavelengths, reaching a maximum at the 
Unit 1/Unit 2 interface. A second reduction in flow rate occurred in the bottom half of Unit 2, after which flow 
rate remained relatively constant (according to RF140 m). These reductions likely occurred during the first few 
centuries of the operation of the Anio Novus, i.e. 52 – c.250 CE, when water demand at Rome was near its  peak81. 
This interpretation is discussed in more detail in Supplementary Information S4.6.

Implications for reconstructions of climate and human activity. Possible drivers of these changes 
in flow rate in the Anio Novus include climate variability and human action or inaction. However, neither of 
these could have pushed the flow rate above the limit of 2  m3/s imposed by the hydraulic constraints and bot-
tlenecks presented  above23. Climate may have affected the flow in Anio Novus by changing the flow rate input at 
its source, the Aniene River, through changing rainfall amounts in the upstream catchment. This seems unlikely 
to have been significant, however, since the Aniene River could probably have always supplied more water to the 
aqueduct than it could carry (Supplementary Information, S4.7). Therefore, human manipulation of aqueduct 
flow was likely the major control of changes in flow within the Anio Novus rather than climatic variations.

There would have been two predominant forms of human  action21: (1) intentional removal of water from 
the aqueduct, either legally sanctioned or fraudulent; and (2) maintenance (or lack thereof). It seems likely that 
Roman managers would have worked to maintain flow rate in the upstream reaches of the Anio Novus aqueduct 
as close to the carrying capacity of the channel as possible.  Frontinus21 regards high flow rates in aqueducts as 
positive, given the ongoing high demand for water in the city, and laments the loss of water en route. Even if 
there were sluice gates at the aqueduct intake (a contested  point49,55) it seems unlikely that these gates were used 
to reduce inflows significantly below the capacity of the channel. Diversionary channels to lower aqueducts, 
properties, and towns such as Tivoli, may have exerted some control on flow via the use of sluice gates or other 
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 means21,49. Closing of the sluice gates might also have been used as a means to temporarily impound water within 
the channel  itself82. Lack of  maintenance20, would have allowed travertine deposition to constrict the channel 
flow, while its weight may have caused leakage from structural cracks. Such cracks could also have resulted 
from weathering or earthquakes. Constriction and cracking would both have reduced flow within the aqueduct. 
Travertine deposits 10 s of cm-thick on the floors, walls and ceiling of the aqueduct channel internal perimeter 
in many areas of the Anio  Novus49, at sites such as Osteriola, indicate that regular maintenance was neglected, 
at least towards the operational demise of the Anio Novus aqueduct.

Conclusions
Travertine crystal growth ripples have been utilized in this study to reconstruct the early hydraulic history of 
the Anio Novus, the largest and farthest reaching of ancient Rome’s 11 aqueducts. Travertine crystallizes from 
complexly physical, chemical, and biological processes that operate fundamentally differently from those con-
trolling sandstone ripple mark formation. Yet despite these mechanistic distinctions, the hydraulic history of 
gravity-driven turbulent flow can be reliably reconstructed from travertine crystal growth ripples as they are from 
sediment transport ripples. As a result, the hydraulic significance of the amplitude and wavelength of travertine 
crystal growth ripples preserved within aqueduct travertine have been used to reconstruct the hydraulic history 
of the Anio Novus. This included petrographic characterization and measurement of travertine crystal growth 
ripples deposited on the channel floor, walls, and roof of the Anio Novus aqueduct, arguably the most significant 
of the 11 aqueducts that supplied water to Imperial Rome. Of particular importance is that the critical shear 
Reynolds number of the travertine crystal growth ripples are within the range of hydraulic parameters previously 
observed to form ripples in multiple other analogous natural and manmade environments. These similarities 
have been used to further improve upon our previous uniform flow estimates of velocity and discharge for the 
Anio Novus aqueduct. These relationships establish travertine crystal growth ripple wavelength, defined as the 
characteristic length of the shear Reynolds number, as a fundamental parameter required to confidently recon-
struct maintenance and management of the Anio Novus aqueduct.

Data availability
Raw unprocessed data and images for Main Figures and SI Figures will be made available in the original source 
format on the University of Illinois cloud data base.
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