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Abstract

Natural selection imposes a complex filter on which variants persist in a population resulting in evolutionary patterns that
vary greatly along the genome. Some sites evolve close to neutrally, while others are highly conserved, allow only specific
states, or only change in concert with other sites. On one hand, such constraints on sequence evolution can be to infer bio-
logical function, one the other hand they need to be accounted for in phylogenetic reconstruction. Phylogenetic models of-
ten account for this complexity by partitioning sites into a small number of discrete classes with different rates and/or state
preferences. Appropriate model complexity is typically determined by model selection procedures. Here, we present an effi-
cient algorithm to estimate more complex models that allow for different preferences at every site and explore the accuracy
at which such models can be estimated from simulated data. Our iterative approximate maximum likelihood scheme uses
information in the data efficiently and accurately estimates site-specific preferences from large data sets with moderately
diverged sequences and known topology. However, the joint estimation of site-specific rates, and site-specific preferences,
and phylogenetic branch length can suffer from identifiability problems, while ignoring variation in preferences across sites
results in branch length underestimates. Site-specific preferences estimated from large HIV pol alignments show qualitative
concordance with intra-host estimates of fitness costs. Analysis of these substitution models suggests near saturation of di-
vergence after a few hundred years. Such saturation can explain the inability to infer deep divergence times of HIV and SIVs
using molecular clock approaches and time-dependent rate estimates.
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1. Introduction

Over time, genome sequences change through mutations and
are reshuffled by recombination. Modifications to the genomes
are filtered by selection for survival such that beneficial variants
spread preferentially and those that impair function are purged.
As a result, some parts of genomes change rapidly, while other
are strongly conserved. In addition to variation of the evolution-
ary rate, different sites in a genome explore different subsets of
the available states. Some positions in a protein, for example,
might only allow for hydrophobic amino acids, while others

require acidic side chains. Patterns of conservation and varia-
tion, possibly involving more than one site, are therefore
shaped by functional constraints which in turn allows inference
of biological function from genetic variation.

Similarly, phylogenetics aims at reconstructing the relation-
ships and history of homologous sequences from the substitu-
tions that occurred in the past. Modern phylogenetic methods
describe this stochastic evolutionary process with probabilistic
models of sequence evolution and aim to find phylogenies that
either maximize the likelihood of observing the alignment or
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sample phylogenies from a posterior probability distribution
(Felsenstein 2004).

Inferring phylogenies is a computationally challenging prob-
lem since the number of phylogenies grows super-
exponentially with the number of taxa and because the calcula-
tion of the likelihood is computationally costly (though linear in
the number of taxa). Due to this computational complexity, the
most commonly used substitution models are simple carica-
tures of biological complexity. The simplest substitution models
assume that all sites and sequence states are equivalent and
evolve at the same rate, that is, they assume an unconstrained
non-functional sequence that mutates at random between the
different sequence states. Such simple models are clearly inade-
quate and ignoring rate heterogeneity tends to result in biased
estimates of divergence times or otherwise erroneous results
(Yang 1996). Most commonly used models account for variation
in substitution rates among sites and average properties of the
substitution process such as transition/transversion bias or
more frequent substitution between similar amino acids (Yang
1994; Price, Dehal, and Arkin 2010; Stamatakis 2014; Nguyen
et al. 2015). To avoid over-fitting, these methods typically do not
estimate a rate for each site, but treat site-specific rates as ran-
dom effects that are integrated out (often using discrete approx-
imations of a Gamma distribution (Yang 1996), mixture of
multiple unimodal distributions (Mayrose, Friedman, and
Pupko 2005), or a small number of fixed rates).

In addition to rate variation different sites in a protein differ
in the amino acids they allow, different positions in codons ex-
perience different constraints, and secondary structure or pro-
tein binding to DNA or RNA imposes additional levels of
selection. Such variation can again be accounted for by model-
ing multiple categories with different preferences for amino
acids or nucleotides to which sites can be assigned or which can
be integrated out during phylogenetic inference (Lartillot and
Philippe 2004; Shapiro, Rambaut, and Drummond 2006; Kainer
and Lanfear 2015).

Recent deep mutational scanning experiments have shown
that site-specific preferences are mostly conserved between
moderately diverged proteins (Doud, Ashenberg, and Bloom
2015). Using such experimentally inferred site-specific models
in phylogenetic inference greatly increases the likelihood of the
data Bloom (2014). More than two decades ago, Halpern and
Bruno (1998) pointed out that ignoring that equilibrium frequen-
cies vary from one position to another will result in underesti-
mation of branch lengths of a phylogeny—possibly dramatically
when frequencies are heavily skewed. Hilton and Bloom (2018)
recently showed that experimentally measured preference not
only improve the phylogenetic fit, but also results in longer
branch length estimates. Models with site-specific preferences
are also known as mutation–selection balance models (Bruno
1996; Yang and Nielsen 2008) reflecting the intuition that equi-
librium frequencies are determined by competition of diversify-
ing processes (like mutation) and selection for an optimal
function.

Instead of partitioning the sequence into a small number of
categories, we ask under what circumstances it is possible to es-
timate models that allow different state frequencies at every
site in the alignment and what implications such variation has
for phylogenetic inference. While biologically plausible, esti-
mating such models from data exacerbates the over-fitting
problem and it rarely attempted in practice. In the context of
the site-specific models this issue has become known as exten-
sive parametrization or even infinitely many parameters problem
Rodrigue (2013) and Spielman and Wilke (2016). With sufficient

data, however, site-specific parameters can be accurately esti-
mated (Tamuri, dos Reis, and Goldstein 2012; Scheffler, Murrell,
and Pond 2014; Spielman and Wilke 2016). Here, we implement
an EM-style algorithm inspired by (Bruno 1996) to infer site-
specific rates and preferences from simulated data, quantify its
accuracy and the different sources of bias and noise, and show
how divergence time estimates depend on the fidelity with
which site-specific model parameters are known. We apply this
algorithm to large HIV-1 alignments and explore the conse-
quences for phylogenetic inference.

2. Results
2.1 Efficient inference of site-specific substitution
models

Following work by Halpern and Bruno (1998), we parameterize a
site-specific general time-reversible (GTR) substitution model at
site a from state j to i as:

Qa
ij ¼ lapa

i Wijfori 6¼ j;

Qa
ii ¼ �

X
k

Qa
ki :

(1)

Here, la is the substitution rate at site a, pa
i is the equilibrium

frequency of state i at site a, and Wij is a symmetric substitution
matrix that we assume to be the same for all sites (in what fol-
lows, superscript a will always refer to the position in the se-
quence, while subscript i; j;n;m refers to the state). The second
equation ensures conservation of probability. In addition, we re-
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approximately maximize the likelihood of the data. Here, sa
j is

the time site a spends in state j across the tree, na
ij is the number

of transitions from state j to state i at site a, c is a pseudocount
analogous to a Dirichlet prior that in the absence of data will
drive the pa

i to a flat distribution and the substitution rates to c
divided by the total tree length. To make the behavior of these
update rules more explicit, we have multiplied numerator and
denominator with the parameter that is being updated. This 1,
shows that the update rules are multiplicative and therefore en-
sure positivity, and 2, illustrates that each of these rules are the
ratio of the observed number of transitions between states na

ij

and the expected number pa
i Wijs

a
j —each appropriately summed

over sites or states. These update rules are an example of non-
negative factorization algorithms (Lee and Seung 2001).

2.2 Accuracy of model inferences

The accuracy of this iterative solution will depend 1, on the va-
lidity of the linear approximation, 2, the accuracy to which na

ij

and sa
j can be estimated, and 3, the accuracy of the tree recon-

struction. Furthermore, the estimation of this extensive number
of parameters requires large data sets in which most positions

2 | Virus Evolution, 2020, Vol. 6, No. 2



mutate multiple times on the tree—otherwise the model will
overfit the data and result in inaccurate estimates.

To assess these sources of error and effect of data set sizes
independently, we simulated sequences evolving along trees
and explicitly recorded the number of transitions between
states at every site (na

ij) and the time spent in each state (sa
j ) for a

range of sample sizes, levels of divergence, and models with dif-
ferent degrees of variation between sites, see Section 3. From
these simulated data sets, we inferred the site-specific models
using different aspects of the simulated data: 1, full knowledge
of all transitions and ancestral states, 2, the tree and the tip
sequences, or 3, only the tip sequences from which a tree was
reconstructed. We quantified the accuracy of the inferences as
the squared estimation error v2 ¼ L�1P

a;iðp̂
a
i � pa

i Þ
2, where p̂a

i

and pa
i are the inferred and true equilibrium probabilities, re-

spectively. Lower v2 corresponds to more accurate estimates.
In our first analysis summarized in Fig. 1 we quantified the

accuracy at which pa
i and la can be estimated if ancestral

sequences are known. As expected, the average squared error v2

decreases with the substitution rate and the size of the data set.
The error is well predicted by the average number of substitu-
tions per site, which increases with both data set size and the
substitution rate. The data in Fig. 1A are shown on double loga-
rithmic scales, such that the approximately straight decrease in
v2 with slope �1 implies that the squared deviation is inversely
proportional to the expected number of substitutions. This scal-
ing suggests that accuracy is limited by the inherent stochastic-
ity of the evolutionary process and that the inference uses all
available information efficiently.

The simulation data were generated by drawing site-specific
rates from a Gamma distribution with a ¼ 1:5 (blue lines) and a

¼ 3 (orange lines). The scaling behavior v2 � ðtree lengthÞ�1 is
more evident for a ¼ 3 than for a ¼ 1:5. In the latter case of
strong rate variation, the average squared error v2 is dominated
by a small number of sites with low rates at which frequencies
are estimated poorly and the average tree length does not cap-
ture behavior at these sites.

At the largest substitution rates, branch lengths are on the
order of 0.5 and the linear approximation underlying the

iterative equations is not longer accurate. Nevertheless, the ac-
curacy of the p̂a

i continues to increase. While equilibrium fre-
quencies are insensitive, the substitution rate estimates are
affected by linearization and Equation (2) will consistently un-
derestimate la. This is expected as the linearization ignores
cases where the same site changes twice along a branch in very
much the same way as Hamming distance will underestimate
branch length. The relative substitution rates, however, are ac-
curately estimated (with Pearson correlation coefficients >0.9
as soon as the majority of sites experience several mutations
across the tree), see Fig. 1B. Regularization by pseudo-counts c
reduces the overfitting problem when the number of substitu-
tions per site is small.

Above, we investigated the accuracy of model inferences
when the ancestral states and the tree are known. In practice,
however, ancestral sequences are unknown and need to be in-
ferred or summed over (marginalized) which will introduce ad-
ditional uncertainty. This problem was recently described as
the ‘Darwinian uncertainty principle’ by Gascuel and Steel
(2020) showing that there are fundamental limits to the accu-
racy at which model and ancestral states can be estimated
jointly.

To test the influence of tree and ancestral state reconstruc-
tion, we reconstructed phylogenetic trees using IQ-tree (Nguyen
et al. 2015) with a GTRþR10 model (simulated nucleotide
sequences) or FastTree (Price, Dehal, and Arkin 2009) using the
default settings (simulated amino-acid sequences). Figure 2
compares different schemes to reconstruct ancestral sequences,
infer substitution models, and optimize the tree. The simplest
approach is to take the inferred tree as given, reconstruct the
ancestral states using a simple evolutionary model (e.g. Jukes–
Cantor model) and calculate na

ij and sa
i from this reconstruction.

This naive approach works well up to root-to-tip distances of
about 0.3, beyond which estimates deteriorate, see Fig 2
(‘Reconstructed ancestral sequences’, red line).

Instead of reconstructing the most likely ancestral sequen-
ces, we can instead average over all possible ancestral states,
which results in a modest reduction of the error (‘Marginalized
ancestral sequences’, purple line in Fig. 2). More significant

A B

Figure 1. Accuracy of iterative estimation of site-specific GTR models as a function of the expected number of state changes along the tree. (A) Mean squared error of

the inferred p̂a
i scales inversely with the tree length (indicated by the black line), suggesting the accuracy is limited by the Poisson statistics of observable mutations.

This scaling holds for different number of sequences per tree (n 2 ½100;300;1;000;3;000�) and different degrees of rate variation. (B) The relative substitution rates are

accurately inferred as soon as the typical site experiences several substitutions across the tree as quantified here as Pearson correlation coefficient between true

and inferred rates. Regularization via pseudo-counts reduces over-fitting at low divergence. Analogous results for alphabets of size q¼20 are shown in Supplementary

Fig. S1.
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gains are made when iterating model inference and ancestral
reconstruction using the inferred site-specific model (‘Iterative
model estimation’, brown line). The error now continues to de-
crease up to root-to-tip distances of about one. At this level of
divergence, tree reconstruction starts becoming problematic
and branch lengths deviate substantially from their true values.
Using the true tree instead of the reconstructed tree leads to
continuous improvements of accuracy with increasing levels of
divergence (yellow line). Similar improvements are achieved by
optimizing tree branch lengths along with the model. These
improvements are consistent with Gascuel and Steel (2020) in
that joint estimation of ancestral states and model is possible
for Yule trees in which tree length grows linearly with the num-
ber of tips while tree depth increases only logarithmically. In
contrast, using the frequencies of different sequence states in
the alignment as estimates for pa

i is much less accurate due to
the correlation induced by shared ancestry (orange lines in
Fig. 1A).

We found qualitatively similar patterns for four-letter and
twenty-letter alphabets in the overall accuracy of the estimated
model and its dependence on the different approximations,
compare Fig. 2A and B. For larger alphabets, the breakdown at
large root-to-tip distances is less dramatic and sets in at larger
values. Overall, we conclude that site-specific frequencies can
be estimated accurately when the overall tree length comfort-
ably exceeds ten such that most sites experienced multiple
mutations.

2.3. Implications for branch length estimates in
phylogenies

As previously observed by various authors (Halpern and Bruno
1998; Hilton and Bloom 2018), sites with heavily skewed prefer-
ences for specific states result in underestimation of branch
lengths if these skews are not modeled appropriately. This is a
straightforward consequence of the fact that the probability of
observing the same state at random is

P
iðpa

i Þ
2, which is increas-

ing sharply with more peaked preferences. Models that do not
account for site-specific frequencies will take a large number of
sites that agree between two sequences as evidence for their

close evolutionary relationship, while it is simply a conse-
quence of resampling the same states with high probability. In
other words, this underestimation is the result of incorrect
models of saturation and is closely related to the observation
that incomplete purifying selection can result in erroneous and
apparently time-dependent evolutionary rates Wertheim and
Kosakovsky Pond (2011).

Figure 3 shows the average branch length (panel A) and the
average root-to-tip distance of mid-point rooted trees (panel B)
with branch lengths optimized using 1, the true model, 2, using
the GTRþR10 model of IQ-tree, and 3, inferred models using dif-
ferent degrees of regularization. While branch lengths are accu-
rately estimated when using the true model, they are
systematically underestimated by the GTRþR10 model without
site-specific preferences. This problem is particularly severe for
the average root-to-tip distance which is dominated by long
branches deep in the phylogenies that are prone to underesti-
mation. When ignoring site-specific preferences, the inferred
root-to-tip distance is essentially flat for distances greater than
1 (Fig. 3B). This effect is entirely due to skewed equilibrium fre-
quencies, as branch length inference by IQ-tree is accurate if the
simulated data had flat pa

i ¼ q�1 with the same rate variation.
The underestimation of branch lengths is less severe for larger
alphabets or if frequencies are not heavily skewed, see
Supplementary Fig. S2.

Surprisingly, using the inferred site-specific models only
partially rectified the problem of branch length underestima-
tion, despite the fact that these models are close to the true
model in terms of low v2. The principle contributor to this devi-
ation is inaccuracies in the rate estimates. Combining the true
rates with inferred preferences reduces the error in branch
length estimation (see Fig. 3, lines labeled (‘true rates’)).

2.4 The effect of model misspecification on divergence
estimates

In the previous section, we have observed that model
deviations, for example the error made during model inference,
can result in substantial errors in branch length estimates. To
investigate this effect more systematically, we constructed

A B

Figure 2. Quantification of errors stemming from tree inference and ancestral reconstruction. Panels A and B show the mean-squared deviation v2 of inferred p̂a
i from

the true pa
i for four-letter and twenty-letter alphabets, respectively. Alignment frequencies are poor estimates of the pa

i even in very diverse samples, while the differ-

ent phylogeny aware methods initially improve rapidly with root-to-tip distance. At large root-to-tip distances, ancestral reconstruction becomes less and less certain

and estimation of pa
i fails (red lines). These errors are gradually eliminated by first summing over ancestral uncertainty (violet), iteratively redoing ancestral reconstruc-

tion using the inferred model (brown), and re-optimizing branch lengths using the updated models (or using the true tree, yellow/pink). Data in this figure uses were

generated assuming Gamma distributed rate variation with a ¼ 1:5.
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mixtures of the true model and a model with flat pa
i and/or la as

follows: For a mixing fraction c, we constructed a model with
rates

la ¼ chlai þ ð1� cÞla
true; (3)

where hlai is the average of the rate. Mixtures of site-specific
frequencies are constructed analogously.

Figure 4A shows how deviation from the true model affect
relative branch length estimates. Deviation in rate estimates re-
sult immediately in underestimated branch length, while sub-
stantial effects of too flat site-specific preferences only manifest
themselves once deviations are of order c ¼ 0:3. If the same
preferences are used for every site (c¼ 1), however, deviations

are substantial. Deviations in rate and preferences are approxi-
mately additive. These observations are consistent with the
finding above that using inferred preferences and true substitu-
tion rates result in more accurate branch length estimates than
inferring both rates and preferences.

Figure 4B shows the degree of mis-estimation when using
flat preferences, flat rates, or both as a function of the degree of
divergence. The relative error increases approximately linearly
with the average evolutionary rate.

2.5 Applications to large HIV alignments

Since its zoonosis, HIV-1 has diversified into several different
subtypes that differ from each other at about 20 per cent of sites

A B

Figure 3. Skewed equilibrium concentration results in branch length underestimates. Panel A shows the inferred average branch length as estimated by IQ-tree and

TreeTime as a function of the true average branch length. Panel B shows the results of the same optimization for the average root-to-tip distance which is dominated

by deep long branches that are more strongly affected. While using the true model results in unbiased branch lengths, inferred site-specific models only partially ame-

liorate underestimation, in particular with high pseudo-counts c (see main text). Parameters: n¼1,000, a ¼ 1:5.

A B

Figure 4. Sensitivity of branch length estimates on model misspecification. Panels A and B show the relative error in total tree length when using a mixture model as

defined in Equation (3) for branch length inference. Panel A shows this error as a function of the mixing fraction c for hli ¼ 0:2. Panel B shows the error as a function of

the evolutionary rate hli for c ¼ 1. The mixing is applied to the equilibrium frequencies pa
i , the rates la, or both. The models assume an alphabet size q¼ 4

(nucleotides).
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in their genome. For each subtype, thousands of sequences are
available, which typically differ by about 10 per cent (Los
Alamos HIV Sequence Database 2017). This large sample of
moderately diverged sequences should be suited to estimate
site-specific preference using the iterative inference frame work
and quantify how selection shaped the evolution of HIV.

Simple population genetic models predict that the fixation
probability f a

ij of a mutation from state j to state i at site a should
depend on the fitness difference sa

ij and the effective population
size N as (Kimura 1964)

f a
ij ¼

1� e�2sa
ij

1� e�2Nsa
ij
�

2sa
ij sa

ij > 0

2sa
ije

2Nsa
ij sa

ij < 0
:

(
(4)

On longer time scales, the fixation rates f a
ij correspond to

transitions rates of the site-specific GTR model Qa
ij . The effective

population size N plays the role of a coalescent time scale Tc

and in general has little to do with census population sizes, in
particular in rapidly adapting populations (Neher 2013).
Nevertheless, the logarithm of the ratio log f a

ij =f a
ji � 2Nsa

ij is an in-
terpretable quantity related to the average fitness difference be-
tween states on time scales longer than the population genetic
scale N � Tc. We generalize this notion to multiple states and
define a fitness score of state i at position a as the ratio of rates
into and out of state i

e2Nsa
i ¼ Cin

Cout
¼
P

jp
a
i WijP

jWijpa
j

: (5)

The logarithm of this ratio is expected to be proportional to
the fitness difference between state i and the average alterna-
tive state at site a, while the common multiplicative factor 2 N is
unknown.

We downloaded alignments of HIV-1 pol sequences from the
LANL data base, constructed phylogenetic trees, and inferred
site-specific GTR models at the nucleotide and amino acid level,
see Section 3. We compared 2Nsa

i ¼ log ðCin=CoutÞ to fitness costs
measured using mutation–selection balance models and with-
in host diversity data of HIV (Zanini et al. 2017). However, in-
stead of a linear relationship between sa

i and with-in host

estimates of fitness costs, we observed a linear relationship be-
tween the logarithm of fitness effects measured with-in host
and sa

i (see Figs 5 and 6) This relationship explains about half
the variance of nucleotide effects and about one-third of amino
acid effects. Interestingly, this correlation between the intra-
host estimates and cross-sectional estimates decreased as soon
as regularization increased above 0.05 and we therefore used a
weak regularization of c ¼ 0:01.

The fact that the relationship of fitness proxies deviates
from the expectation

cross� sectional � with� in host

and instead is approximately

cross� sectional � log ðwith� in hostÞ

points toward different process that drive cross-sectional and
with-in host diversification. While the order of fitness effects
with-in host and cross-sectionally seem to be mostly concor-
dant, with-in host variation is much greater than cross-
sectional variation. With-in host fitness effects are masked and
damped at the population level, possibly due to fluctuating se-
lection by diverse host immune systems or epistasis (Shekhar
et al. 2013; Zanini et al. 2015). The ratio of in/out rates e2Nsa

i is a
very good correlate of alignment diversity (see Supplementary
Fig. S4).

Next, we quantified the effect of ignoring site-specific prefer-
ences on branch length estimates. We generated sequence pairs
that evolved for a specific time t under the site-specific model
inferred from the HIV-1 pol alignment and then estimated a
maximum likelihood branch length between these two sequen-
ces. This estimate was done using a model with homogeneous
equilibrium frequencies set to the average frequencies across
sites while maintaining site-specific rate variation. As soon as
the length of the simulated branch approaches 0.2, the length
inferred by a model without site-specific preferences deviates
substantially from the true value and saturates around 0.5 for
larger and larger t. As expected, these deviations are even more
severe when estimating branch length as simple sequence

A B

Figure 5. Intra-host vs cross-sectional mutation–selection balance. Panels A and B show the ratio of in/out rates for consensus nucleotides/amino acids along the pol of

HIV-1 subtype B vs of fitness costs of non-consensus states estimated from with-inhost mutation–selection balance. The logarithm of the rate ratio is roughly linear in

the logarithm of the fitness cost. Analogous results for the genes gag and nef are shown in Supplementary Fig. S3.
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divergence (p-distance), while using the generating model
reproduces the correct branch length.

Assuming a typical evolutionary rate of HIV of 0.002 changes
per site and year, this analysis suggests that length estimates of
branches longer than 100 years start to become inaccurate.
Furthermore, this analysis suggests very little signal to estimate
the length of branches that are longer than 300 years.

3. Discussion

Different positions in a genome sequence or a protein change at
different rates and explore different subsets of the available
states. These site-specific properties are evolutionary conserved
and are the basis of common homology search tools. Which
states are permissible at which position can be measured with
high-throughput using deep mutational scanning techniques
(Fowler and Fields 2014) or can be estimated from large align-
ments of homologous sequences. Both approaches can reveal
biological function and organization of the entity coded for by
the sequence. Bruno (1996) pointed out that the frequencies of
states in columns of an alignment are distorted by phylogenetic
correlations and how these phylogenetic correlations can be
accounted for. However, estimating these frequencies accu-
rately requires large data sets that have only recently become
available.

While accurate estimates of site-specific frequencies require
correction of phylogenetic correlations, accurate phylogenetic
inference requires sufficiently realistic models of sequence evo-
lution while being computationally tractable and easy to pa-
rameterize. A common compromise is to model rate
heterogeneity as random effects, while assuming identical site
preferences across the sequence. More complex models allow
for a small number of data partitions with different preferences
(Lartillot and Philippe 2004; Kainer and Lanfear 2015).

Here, we presented method to estimate site-specific prefer-
ences using an iterative EM-type approach inspired by Bruno
(1996). We showed that site-specific models can be inferred
with an accuracy limited by the Poisson statistics of the substi-
tution process using an efficient iterative scheme. For short

branch lengths a parsimonious ancestral reconstruction is suffi-
cient, while for more diverged samples iterative inference of the
model, the ancestral states, and the branch lengths is neces-
sary. The computational complexity of the inference is domi-
nated by ancestral reconstruction and branch length
optimization, which is quadratic in the alphabet size and linear
in sample size and sequence length (Felsenstein 2004). We have
implemented the algorithm for site-specific model inference
and branch length optimization in TreeTime (Sagulenko, Puller,
and Neher 2018).

We further explored how model choice affects the maximum
likelihood estimates of branch lengths. As has been reported be-
fore, branch lengths are underestimated when variation in rate
or preferences are not fully accounted for (Halpern and Bruno
1998; Hilton and Bloom 2018). While such underestimation of-
ten has a moderate effect on the total length of a tree, it can re-
sult in substantial underestimation of root-to-tip distance that
are dominated by a few long branches close to the root. While
using the correct model results in correct branch length esti-
mates, joint inference of site-specific models and branch
lengths is typically unable to recover the true branch lengths
and substantial underestimation remains. These points to pa-
rameter identifiability problems rooted in the similar effects
that skewed equilibrium frequencies, low rates, and shorter
branch length have on the likelihood of the data. These prob-
lems are related to the inability to jointly infer ancestral states
and rate parameters of evolving discrete states (Gascuel and
Steel 2020). Model and tree inference alone, however, does not
require acurate reconstruction of ancestral states as these can
be marginalized.

Branch length estimates using models constructed by mix-
ing the true model and flat Jukes–Cantor type models showed
that misspecified equilibrium frequencies result in substantial
errors as soon as the model deviates from the true model by 30
per cent or more. This mirrors observations by Hilton and
Bloom (2018), who found that preferences measured for influ-
enza HA proteins of type H1 or H3 affect branch length of in the
vicinity of the focal sequence, but not globally on the tree. Using
site-specific models inferred from HIV alignments, we

A B

Figure 6. Underestimation of divergence in HIV. Panel A shows the estimated ML branch length for the model used to generate the sequences and a model with con-

stant equilibrium frequencies as a function of true branch length. For comparison, the p-distance between the two simulated sequences is also shown. The top axis

shows branch length in units of years assuming a substitution rate of 0.002/year and site. Error bars denote one standard deviation. Panel B shows the distribution of

rates across sites for both models. About 20 per cent of sites are essentially invariable, while the rates of the remainder vary by at least ten-fold. The distributions differ

slightly in the overall scale since rates have been rescaled such that the average substitution rate in both models is identical.
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quantified the error made when ignoring site-specific preferen-
ces. While the true models are unknown in this case, this analy-
sis nevertheless suggests that errors are substantial as soon as
branch length exceed t¼ 0.2 (�100 years) and sequence diver-
gence saturates at levels around 0.3. This result is consistent
with the discrepancy between molecular clock-based and
biogeography-based estimates of the divergence times of differ-
ent SIV lineages (Worobey et al. 2010): Beyond a few hundred
years, there is very little signal to estimate branch length—in
particular when the underlying site-specific model parameters
need to be estimated themselves. This lack of information is
further underscored by the average nucleotide distances be-
tween pol sequences of different HIV and SIV strains: HIV-1 sub-
types differ at about 10 per cent of sites, distances between pol
and HIV-1 and SIVcpz are on the order of 25 per cent and distan-
ces between sequences in the HIV-1/HIV-2/SIV compendium
alignment are about 35 per cent (all distances ignore sites with
>20% gaps). These observations are compatible with evidence
for frequent reversion of HIV to a preferred sequence state fol-
lowing immune escape (Leslie et al. 2004; Carlson et al. 2014;
Zanini et al. 2015).

This potentially large error in branch length estimates can
seriously affect deep divergence time estimates. Typically, short
branches close to the tips of the tree are used to calibrate molec-
ular clock models. The deep branches, however, tend to be
much longer and rate estimation and variation of site-specific
preferences will result in saturation effects not accounted for by
the model (Hilton and Bloom 2018). This effective variation in
rate is related to the effect of transient deleterious mutations
that inflate the rate on short time scales (Ho et al. 2005;
Wertheim and Kosakovsky Pond 2011): the time it takes purify-
ing selection to prune deleterious mutations is related to the re-
laxation time scales of GTR models with site-specific
preferences. Instead of the q�1 degenerate eigenvalues of a
Jukes–Cantor model, each site has a spectrum of eigenvalues
and different eigenmodes relax at different speeds, generating
apparently time-dependent rates.

Estimating site-specific models from sequence alignments
faces one fundamental problem: Reliable estimates require ob-
servation of many changes at each site which requires many
sufficiently diverged sequences. At the same time, preferences
at individual sites are expected to change due to epistatic inter-
actions with other sites in the sequence, as for example wit-
nessed by the gradual divergence of experimentally determined
preferences (Doud, Ashenberg, and Bloom 2015; Haddox et al.
2018). Hence the approach described in this work is largely re-
stricted to cases like HIV where many moderately diverged
sequences (�10%) are available. Outside of this limit there either
is not enough data to reliably estimate the large number of coef-
ficients, or epistatic interactions need to be taken into ac-
count—probably at the expense of ignoring phylogenetic signals
(Morcos et al. 2011).

4. Materials and methods
4.1. Model and notation

Most models of sequence evolution express the probability that
sequence~s evolved from sequence~r in time t as

Pð~s  ~r; t;QÞ ¼
YL

a¼1

ðeQatÞsa ;ra ; (6)

where Qa is the substitution matrix governing evolution at site

a, and sa and ra are the sequence states at position a. The prod-
uct runs over all L sites a and amounts to assuming that differ-
ent sites of the sequence evolve independently.

In absence of recombination, homologous sequences are re-
lated by a tree and the likelihood of observing an alignment A ¼
f~sk ; k ¼ 1 . . .ng conditional on the tree T and the substitution
model Qa can be written in terms of propagators defined in
Equation (6). It is helpful to express this likelihood as product of
sequence propagators defined in Equation (6) between sequen-
ces at the ends of each branch in the tree (implicitly assuming
that evolution on different branches is independent and follows
the same time reversible model). Unknown sequences of inter-
nal nodes f~s 0g need to be summed over and the likelihood can
be expressed as

‘ðAjT;QÞ ¼
X
f~s 0g

YL

a¼1

pa
sa

0

Y
k2T

Pð~sc  ~sp; t;QÞ ¼
X
f~sg

e‘ðf~sgjT;QÞ ; (7)

where~sc and~sp are the child and parent sequences of branch k,
respectively, and the factor

Q
a pa

sa
0

is the product of the probabil-
ities of the root sequence sa

0 over all positions a. The probabili-
ties ~pa are the equilibrium probabilities of the substitution
model at position a. The latter ensures that the likelihood is in-
sensitive to a particular choice of the tree root. This equation
defines the log-likelihood ‘ of a particular internal node assign-
ment f~s 0gwhich is given by

‘ðA; f~s 0gjT;QÞ ¼
X

a

½log ðpa
sa

0
Þ þ

X
k2T

log ðeQatk Þsa
c ;s

a
p
�; (8)

where sa
c and sa

p are indices corresponding to the child and par-
ent sequence of branch k.

The sum over unknown ancestral sequences can be com-
puted efficiently using standard dynamic programming techni-
ques. Nevertheless, it requires Oðn� L� q2Þ operations (where q
is the size of the alphabet A) and optimizing it with respect to a
large number of parameters is costly. Our goal here is to infer
site-specific substitution models using a computationally effi-
cient iterative procedure.

Instead of inferring completely independent models for ev-
ery site in the genome, we follow Halpern and Bruno (1998) and
only allow for site-specific rates and equilibrium frequencies
while using the same transition matrix for every site. Such a
site-specific GTR model, can be parameterized as:

Qa
ij ¼ lapa

i Wijfori 6¼ j;

Qa
ii ¼ �

X
k

Qa
ki

(9)

where Wij is a symmetric matrix with Wii ¼ 0 and the second
equation ensures conservation of probability. In addition, we re-
quire

P
ip

a
i ¼ 1 and

PL
a¼1

P
i6¼jWijpa

i pa
j ¼ L to ensure that the aver-

age rate per site is la.

4.2 Iterative optimization algorithm

The derivatives of ‘ with respect to la, pa
i , and Wij need to vanish

at the values that maximize ‘.

@‘ðAjT;QÞ
@X

¼
X
f~sg

e‘ðf~sgjT;QÞ
@‘ðf~sgjT;QÞ

@X
¼ 0; (10)

where X is one of the parameters we vary.

8 | Virus Evolution, 2020, Vol. 6, No. 2



These conditions can be solved iteratively. Here, we derive
the update for la and refer to the supplement for the other up-
date rules. The derivative of the log-likelihood for a specific se-
quence assignment is given by

@‘ðf~sgjT;QÞ
@la ¼

X
b2T

tb
la

P
iQ

a
sa

c ;i
ðeQatb Þi;sa

p

ðeQatb Þsa
c ;s

a
p

; (11)

where sa
p and sa

c are the states at site a at the parent and child
end of branch b. The individual terms in this sum behave very
differently for cases where sa

c ¼ sa
p (no change at site a on branch

b) and sa
c 6¼ ka

p (at least one mutation). In the limit of short
branches latb � 1, we can expand the matrix exponential eQt ¼
dij þ Qtþ � � � to obtain approximate but solvable conditions for
maximum likelihood parameter estimates, see supplement. We
will separate the sum over branches into those with sa

c ¼ sa
p and

sa
c 6¼ sa

p. Suppressing the index a for the position in the sequence,
we find

d
dl
‘ð~sg jT;QÞ� �

X
b2T;sc¼sp

tb
P

k 6¼sc
pkWksc

1� tbl
P

k6¼sc
pkWksc

þ
X

b2T;sc 6¼sp

tbpsc Wscsp

tblpsc Wscsp

�

�
X

b2T;sc¼sp

tb
X
k 6¼sc

pkWksc þ
X

b2T;sc 6¼sp

1
l

¼ �
X
j;k6¼j

pkWkjs
a
j þ

X
i6¼j

na
ij=l; (12)

where sa
j is the sum of all branch length along which site a is in

state j and na
ij is the number of times the sequence at site a

changes from j to i along branches of the tree (we have re-
instantiated the position index a in the last line). Additional
terms necessary for regularization and normalization are dis-
cussed in the supplement. Setting this expression to zero (and
the corresponding ones in the supplement) suggests solving for
la at fixed sa

j and na
ij using the iterative update rules given in

Equation (2). The quantities na
ij and sa

i can be averaged over un-
known ancestral states.

4.3 Implementation

We extended our package TreeTime (Sagulenko, Puller, and
Neher 2018) to handle site-specific GTR models as defined in
Equation (1) by adding an additional class GTR_site_specific that
generalizes existing the GTR class. Since these classes have an
almost identical interface and can be used interchangeably in
other analysis run by TreeTime. Using the new class, TreeTime
can generate sequences with site-specific evolutionary models
and infer these models from sequence data using the algo-
rithms above. In the future, this could extended to also allow
site-specific Wij but this is not implemented as of now.

4.4 Generation of simulated data

To generate models and sequence ensembles for which the
ground truth is known, we sampled binary trees with n ¼
100; 300; 1; 000;3;000 leaves and Yule tree branch length statis-
tics using betatree (Neher, Kessinger, and Shraiman 2013) (last
accessed 10 December 2019) for values of the average substitu-
tion rate given by hli ¼ ½0:005; 0:01; 0:02; 0:05; 0:1; 0:15; 0:2; 0:25;
0:35; 0:5�.

Given these tree, we generated multiple sets of sequences of
length L¼ 1,000 for each tip of the tree. Specifically, we explored
the effect of model choice and realization of the evolutionary
process by generating data sets as follows: For each tree, we
sampled two site-specific models for sequences of length

L¼ 1,000 from following distribution: Site-specific rates la were
sampled iid from a Gamma distribution with parameter a ¼ 1:5
or 3.0. Site-specific preferences pa

i (or equilibrium probabilities)
were sampled from Dirichlet distributions with parameters a ¼
1 for alphabets with q¼ 4 states (nucleotides) or a ¼ 0:2 and a ¼
0:5 for alphabets with q¼ 20 (amino acids). These distributions
correspond to an average number of effective states of Neff ¼ 2.6
(nucleotides) and 4.7 or 7.8 (amino acids), where the number of
effective states is given as ð

P
iðpa

i Þ
2Þ�1. The entries of the transi-

tion matrix Wij were sampled from a Dirichlet distribution with
a ¼ 2. The average substitution rate of these models was fixed
to the required hli. In addition, we generated one set of models
(q¼ 4) with rate variation but uniform pa

i and Wij. For each com-
bination of tree and model, two sets of sequences were evolved
using the sequence generation function of TreeTime.

In total, this amounts to eighty alignments for each of the
data set sizes n ¼ 100; 300; 1; 000; 3; 000 and four different
ensembles. For each alignment, we reconstructed phylogenetic
trees using IQ-tree (Nguyen et al. 2015) with a GTRþR10 model
or FastTree (Price, Dehal, and Arkin 2009) using the default
twenty category model for nucleotide and amino-acid sequen-
ces, respectively. These trees were used to infer site-specific
models from data using TreeTime, see below. The exact work-
flow is documented in the script src/generate_toy_data.py in
the associated git repository at github.org/neherlab/
2019_Puller_SiteSpecificGTR (last accessed 27 July 2020).

4.5 Model inference from simulated data

Simulated data and trees (reconstructed or true) were read in by
TreeTime and models reconstructed using functions of
TreeTime to infer models with the different approximations
discussed in the text. The exact workflow is documented in the
script src/reconstruct_toy_data.py in the associated git reposi-
tory at github.org/neherlab/2019_Puller_SiteSpecificGTR (last
accessed 27 July 2020).

4.6 HIV sequence analysis

HIV-1 sequences were downloaded from LANL HIV database
(Los Alamos HIV Sequence Database 2017) setting filters to ‘one
sequence per patient’, ‘non-ACGT< 0.3’. Separate downloads
where made for sequences the following sets: pol, subtype B (5
May 2019); pol, subtype C (13 May 2019); gag, nef, subtype B (7
June 2019).

Sequences were aligned to the HXB2 reference sequences us-
ing mafft (Katoh and Standley 2013), phylogenies were inferred
using IQ-tree (Nguyen et al. 2015), and ancestral sequences were
inferred using TreeTime (Sagulenko, Puller, and Neher 2018) via
the nextstrain’s augur pipeline (Hadfield et al. 2018). The differ-
ent steps were assembled into a pipeline using the workflow
manager Snakemake (Koster and Rahmann 2012).

The sequences and trees were then used for site-specific
GTR inference as implemented in TreeTime (Sagulenko, Puller,
and Neher 2018). The scripts detailing this analysis and produc-
ing the figures are available on GitHub in repository github.org/
neherlab/2019_Puller_SiteSpecificGTR (last accessed 27 July
2020).

Acknowledgments

We are grateful to Sarah Hilton and Pierre Barrat-Charlaix
for stimulating discussions and insightful comments on the
manuscript.

V. Puller et al. | 9



Supplementary data

Supplementary data are available at Virus Evolution online.

Conflict of interest: None declared.

Funding

This work was supported by core funding by the University
of Basel, the Max Planck society, and ERC Stg 260686.

References
Bloom, J. D. (2014) ‘An Experimentally Determined Evolutionary

Model Dramatically Improves Phylogenetic Fit’, Molecular
Biology and Evolution, 31: 1956–78.

Bruno, W. J. (1996) ‘Modeling Residue Usage in Aligned Protein
Sequences via Maximum Likelihood’, Molecular Biology and
Evolution, 13: 1368–74.

Carlson, J. M et al. (2014) ‘Selection Bias at the Heterosexual
HIV-1 Transmission Bottleneck’, Science, 345: 1254031.

Doud, M. B., Ashenberg, O., and Bloom, J. D. (2015) ‘Site-Specific
Amino Acid Preferences Are Mostly Conserved in Two Closely
Related Protein Homologs’, Molecular Biology and Evolution,
32: 2944–60.

Felsenstein, J. (2004) Inferring Phylogenies. Sunderland, MA:
Sinauer Associates.

Fowler, D. M., and Fields, S. (2014) ‘Deep Mutational Scanning: A
New Style of Protein Science’, Nature Methods, 11: 801–7.

Gascuel, O., and Steel, M. (2020) ‘A Darwinian Uncertainty
Principle’, Systematic Biology, 69: 521–9.

Haddox, H. K. et al. (2018) ‘Mapping Mutational Effects along the
Evolutionary Landscape of HIV Envelope’, eLife, 7:
10.7554/eLife.34420.

Hadfield, J. et al. (2018) ‘Nextstrain: Real-time Tracking of
Pathogen Evolution’, Bioinformatics, 34: 4121–3.

Halpern, A. L., and Bruno, W. J. (1998) ‘Evolutionary Distances for
Protein-Coding Sequences: modeling Site- Specific Residue
Frequencies’, Molecular Biology and Evolution, 15: 910–7.

Hilton, S. K., and Bloom, J. D. (2018) ’Modeling Site-Specific
Amino-Acid Preferences Deepens Phylogenetic Estimates of Viral
Sequence Divergence’ Virus Evolution, 4:

Ho, S. Y. W et al. (2005) ‘Time Dependency of Molecular Rate
Estimates and Systematic Overestimation of Recent
Divergence Times’, Molecular Biology and Evolution, 22:
1561–8.

Kainer, D., and Lanfear, R. (2015) ‘The Effects of Partitioning on
Phylogenetic Inference’, Molecular Biology and Evolution, 32:
1611–27.

Katoh, K., and Standley, D. M. (2013) ‘MAFFT Multiple Sequence
Alignment Software Version 7: Improvements in Performance
and Usability’, Molecular Biology and Evolution, 30: 772–80.

Kimura, M. (1964) ‘Diffusion Models in Population Genetics’,
Journal of Applied Probability, 1: 177–232.

Koster, J., and Rahmann, S. (2012) ‘Snakemake–A Scalable
Bioinformatics Workflow Engine’, Bioinformatics, 28: 2520–2.

Lartillot, N., and Philippe, H. (2004) ‘A Bayesian Mixture Model
for across-Site Heterogeneities in the Amino-Acid
Replacement Process’, Molecular Biology and Evolution, 21:
1095–109.

Lee, D. D., and Seung, H. S. (2001) ’Algorithms for Non-negative
Matrix Factorization’, in Leen, T. K., Dietterich, T. G., and Tresp

V. (eds) Advances in Neural Information Processing Systems 13, pp
556, MIT Press

Leslie, A, J et al. (2004) ’HIV evolution: CTL escape mutation and
reversion after transmission’, Nature Medicine, 10: 282

Los Alamos HIV Sequence Database. http://www.hiv.lanl.gov
(last accessed 2019-06-07)

Mayrose, I., Friedman, N., and Pupko, T. (2005) ‘A Gamma
Mixture Model Better Accounts for among Site Rate
Heterogeneity’, Bioinformatics, 21: ii151–8.

Morcos, F et al. (2011) ‘Direct-Coupling Analysis of Residue
Coevolution Captures Native Contacts across Many Protein
Families’, Proceedings of the National Academy of Sciences,
108: E1293–301.

Neher, R. A. (2013) ‘Genetic Draft, Selective Interference, and
Population Genetics of Rapid Adaptation’, Annual Review of
Ecology, Evolution, and Systematics, 44: 195–215.

, Kessinger, T. A., and Shraiman, B. I. (2013) ‘Coalescence
and Genetic Diversity in Sexual Populations under Selection’,
Proceedings of the National Academy of Sciences, 110:
15836–41.

Nguyen, L.-T et al. (2015) ‘IQ-TREE: A Fast and Effective
Stochastic Algorithm for Estimating Maximum-Likelihood
Phylogenies’, Molecular Biology and Evolution, 32: 268–74.

Price, M. N., Dehal, P. S., and Arkin, A. P. (2009) ‘FastTree:
Computing Large Minimum Evolution Trees with Profiles
Instead of a Distance Matrix’, Molecular Biology and Evolution, 26:
1641–50.

, , and (2010) ‘FastTree 2—Approximately
Maximum-likelihood Trees for Large Alignments’, PLoS One, 5:
e9490.

Rodrigue, N. (2013) ‘On the Statistical Interpretation of
Site-specific Variables in Phylogeny-based Substitution
Models’, Genetics, 193: 557–64.

Sagulenko, P., Puller, V., and Neher, R. (2018) ‘TreeTime:
Maximum-likelihood Phylodynamic Analysis’, Virus Evolution,
4: vex042.

Scheffler, K., Murrell, B., and Pond, S. L. K. (2014) ‘On the Validity
of Evolutionary Models with Site-specific Parameters’, PLoS
One, 9: e94534.

Shapiro, B., Rambaut, A., and Drummond, A. J. (2006) ‘Choosing
Appropriate Substitution Models for the Phylogenetic Analysis
of Protein-coding Sequences’, Molecular Biology and Evolution,
23: 7–9.

Shekhar, K. et al. (2013) ‘Spin Models Inferred from
Patient-derived Viral Sequence Data Faithfully Describe HIV
Fitness Landscapes’, Physical Review E, 88:062705.

Spielman, S. J., and Wilke, C. O. (2016) ‘Extensively
Parameterized Mutation–Selection Models Reliably Capture
Site-specific Selective Constraint’, Molecular Biology and

Evolution, 33: 2990–3002.
Stamatakis, A. (2014) ‘RAxML Version 8: A Tool for Phylogenetic

Analysis and Post-analysis of Large Phylogenies’,
Bioinformatics, 30: 1312–13.

Tamuri, A. U., dos Reis, M., and Goldstein, R. A. (2012) ‘Estimating
the Distribution of Selection Coefficients from Phylogenetic
Data Using Sitewise Mutation–Selection Models’, Genetics, 190:
1101–15.

Wertheim, J. O., and Kosakovsky Pond, S. L. (2011) ‘Purifying
Selection Can Obscure the Ancient Age of Viral Lineages’,
Molecular Biology and Evolution, 28: 3355–65.

10 | Virus Evolution, 2020, Vol. 6, No. 2

https://academic.oup.com/ve/article-lookup/doi/10.1093/ve/veaa066#supplementary-data
http://www.hiv.lanl.gov


Worobey, M. et al. (2010) ‘Island Biogeography Reveals the Deep
History of SIV’, Science, 329: 1487.

Yang, Z. (1994) ‘Maximum Likelihood Phylogenetic Estimation
from DNA Sequences with Variable Rates over Sites:
Approximate Methods’, Journal of Molecular Evolution, 39:
306–14.

(1996) ‘Among-Site Rate Variation and Its Impact on
Phylogenetic Analyses’, Trends in Ecology & Evolution, 11:
367–72.

, and Nielsen, R. (2008) ‘Mutation-Selection Models of
Codon Substitution and Their Use to Estimate Selective
Strengths on Codon Usage’, Molecular Biology and Evolution,
25: 568–79.

Zanini, F. et al. (2015) ‘Population Genomics of Intrapatient
HIV-1 Evolution’, eLife, 4: e11282.

Zanini, F et al. (2017) ’In vivo mutation rates and the landscape
of fitness costs of HIV-1’ Virus Evolution, 3: vex003.

V. Puller et al. | 11


	l
	l



