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Abstract: Insulin (InsR) and insulin-like growth factor-1 (IGF1R) receptors mediate the metabolic and
growth-promoting actions of insulin and IGF1/IGF2, respectively. Evidence accumulated in recent
years indicates that, in addition to their typical cell-surface localization pattern and ligand-activated
mechanism of action, InsR and IGF1R are present in the cell nucleus of both normal and transformed
cells. Nuclear translocation seems to involve interaction with a small, ubiquitin-like modifier protein
(SUMO-1), although this modification is not always a prerequisite. Nuclear InsR and IGF1R exhibit
a number of biological activities that classically fit within the definition of transcription factors.
These nuclear activities include, among others, sequence-specific DNA binding and transcriptional
control. Of particular interest, nuclear IGF1R was capable of binding and stimulating its cognate
gene promoter. The physiological relevance of this autoregulatory mechanism needs to be further
investigated. In addition to its nuclear localization, studies have identified IGF1R in the Golgi
apparatus, and this particular distribution correlated with a migratory phenotype. In summary, the
newly described roles of InsR and IGF1R as gene regulators, in concert with their atypical pattern
of subcellular distribution, add a further layer of complexity to traditional models of cell signaling.
Furthermore, and in view of the emerging role of IGF1R as a potential therapeutic target, a better
understanding of the mechanisms responsible for nuclear IGF1R transport and identification of
IGF1R interactors might help optimize target directed therapies in oncology.

Keywords: insulin-like growth factor-1 (IGF1); IGF1 receptor; insulin receptor; transcription factors;
cancer; cell nucleus

1. Overview of the Insulin-Like Growth Factor System

The insulin-like growth factors (IGFs) are a family of mitogenic growth factors, cell-
surface receptors and binding proteins that are involved in normal growth, development
and differentiation of most organs and tissues as well as in a number of pathological
conditions [1,2]. IGFs developed early in evolution, probably as regulators of cellular
proliferation in relation to nutrient availability [3,4]. The role of IGF1 as the mediator of the
growth hormone (GH)-stimulated incorporation of sulfate into cartilage was demonstrated
more than 60 years ago [5]. The specific, GH-activated serum factor that was originally
termed ‘sulfation factor’ and then ‘somatomedin-C’ is now accepted as IGF1 [6]. The IGF
system comprises two ligands, IGF1 and IGF2. At the cellular level, IGF1 is regarded as a
key progression factor required to traverse the cell cycle [7]. Circulating IGF1 levels are
primarily dependent on liver production, which is controlled by pituitary-derived GH.
In addition to its classical endocrine role, many extrahepatic tissues (e.g., brain, kidney,
stomach, etc) display the biosynthetic machinery necessary to produce IGF1. Locally-
produced IGF1 exhibits paracrine and autocrine modes of action [8].
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IGF2 shares a ~62% amino acid homology with IGF1. Ontogenetic studies in rodents
have demonstrated that IGF2 is expressed at very high levels during the prenatal period [1,4].
On the other hand, postnatal stages are characterized by a drastic reduction in circulating
and tissue IGF2 levels. These early observations led to an erroneous generalization of
the roles of IGF2 and IGF1 as fetal and pubertal growth factors, respectively. In humans,
however, both ligands are produced from prenatal to postnatal stages and, in fact, endocrine
IGF2 dosages are higher than IGF1 in adults [4]. The physiological role of IGF2, as well as
its dependence on GH production, are still controversial topics.

Both IGF1 and IGF2 activate a common receptor, the IGF1 receptor (IGF1R), which
signals mitogenic, antiapoptotic and pro-survival activities [9]. The IGF1R is a heterote-
trameric, cell-surface tyrosine kinase receptor that is structurally and evolutionarily related
to the insulin receptor (InsR) [10,11]. The IGF1R is coupled to several intracellular second
messenger pathways, including the ras-raf-MAPK and PI3K-AKT signaling cascades [12].
The IGF1R is vital for cell survival, as illustrated by the lethal phenotype of mice in which
the IGF1R gene was disrupted by homologous recombination [13].

The IGF system includes, in addition, a series of six high-affinity IGF binding proteins
(IGFBP1-6) that carry IGF1 and IGF2, but not insulin, in the circulation and extracellular
spaces. For the most part, the IGFBPs inhibit IGF’s metabolic and proliferative actions,
although some IGFBPs display IGF-potentiating effects [14,15]. In serum, the vast majority
of circulating IGF1 and IGF2 is found in a ternary complex with IGFBP3 and an acid labile
subunit [16]. This complex modulates IGF action by protecting the growth factors from
proteolysis and prolonging their half lives in body fluids [17]. Finally, some IGFBPs exert a
number of biological effects in an IGF-independent manner [18].

2. Classical Concepts on Hormonal Signaling and Internalization

The classical view on hormonal signaling endorses the dogma that this intercellular
communication system constitutes an unidirectional cascade that initiates with the binding
of an extracellular ligand to a specific, or cognate, receptor or to closely related receptors,
followed by receptor activation, usually in the form of a phosphorylation event. This
energetic state is then transmitted downstream to a series of cytoplasmic proteins that, in
a sequential and highly orderly manner, convey this signal to the nucleus, where genes
are turned ‘on’ or ‘off’. In turn, this cascade leads to different, often opposite, biological
activities. There is a certain degree of crosstalk between ligands and receptors, but the
hormonal signaling is primarily unidirectional, i.e., from cell surface to nucleus.

Receptor internalization, or endocytosis, has been commonly regarded as a mecha-
nism required for receptor degradation, usually in endosomes and lysosomes. Most of the
trafficking pathways and players involved in this process have been extensively character-
ized over the years, including caveolins, clathrin-coated pits, etc. [19,20]. It is nowadays
clear that receptor endocytosis is, in fact, also critical for the formation of signaling com-
plexes, termed signalosomes, and for fine tuning of hormonal signals [21]. Specifically,
internalized receptors are capable of engaging different lysosomal and recycling paths,
with ensuing attenuation or, alternatively, enhancement of the hormonal signal [22]. Hence,
internalization is indispensably required for proper receptor homeostasis and regulation.

3. Historical Aspects of Nuclear InsR/IGF1R Translocation

Early experimental evidence of nuclear InsR presence was provided forty-five years
ago by Goldfine and Smith [23]. Using purified nuclei from rat livers, they demonstrated
a rapid and reversible binding of labeled insulin to this fraction. These initial analyses
were subsequently expanded by Goldfine and colleagues, who were able to identify the
nuclear envelope as the major site of insulin binding in nuclei [24,25]. Furthermore, authors
established that intracellular binding sites were immunologically distinct from those on
the plasma membrane. Of historical interest, Goldfine stated in his paper that “the exact
physiological significance of the cellular uptake and nuclear binding of insulin is not
known”. Following these pioneering studies, two independent reports by Horvath [26]
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and Bergeron et al. [27] corroborated the specific binding of insulin to liver-derived nuclei
and Golgi fractions.

In terms of attempts to elucidate the mechanistic aspects associated with nuclear
InsR presence, electron microscopy allowed Podlecki et al. [28] in 1987 to visualize InsR
internalization. Immunofluorescence analyses conducted by Chen et al. [29] revealed that
IGF1R was present in the nucleus of renal epithelial cells and that estrogen treatment led
to a doubling of nuclear IGF1 binding. In addition to insulin and IGF1 receptors, early
studies also explored the nuclear presence of cytoplasmic InsR/IGF1R target molecules.
The laboratory of Renato Baserga reported that IRS-1, -2 and -3 translocate to the nucleus
and nucleoli in several types of cells following induction by an activated IGF1R or certain
oncogenes [30]. Of importance, an intact IGF1R tyrosine kinase domain was a key prereq-
uisite for nuclear translocation of IRS-1 and IRS-2. Mutations in this intracellular IGF1R
domain abrogated IRS transport. Finally, additional cytoplasmatic mediators involved in
InsR/IGF1R signaling, including PI3K, AKT and MAPKs, were also identified in nuclei [31].
An important ‘take-home message’ from these pioneering studies would be that early dis-
tinctions between membranal, cytoplasmic and nuclear components must be re-evaluated
in light of available modern technologies. Current views support a more dynamic model
of regulated translocation between compartments. The studies described in this article
highlight novel signaling pathways and additional levels of biological regulation.

4. Proteomic Profiling Identified the IGF1R in Nuclear Fractions of Breast Cancer Cells

Proteomic profiling analyses aimed at characterizing the entire collection of IGF1R
promoter-binding proteins led us to the identification of the IGF1R in cell nucleus. Briefly,
human IGF1R promoter fragments were labeled with biotin, followed by incubation with
nuclear extracts of breast cancer cells, and purified over streptavidin beads. Bioinformatic
analyses of proteins in eluates allowed us to identify approximately 100 nuclear proteins
that were either directly linked to the IGF1R gene promoter or, alternatively, part of
multimeric protein complexes associated with this DNA region [32].

Most of the identified IGF1R promoter-binding proteins were typical nuclear proteins,
including DNA helicases, DNA repair proteins, elongation factors, RNA splicing proteins,
etc. The presence of IGF1R in association with its cognate promoter was unexpected as
it contradicted established dogmatic notions [33]. While IGF1R was detected in nuclei
and perinuclear areas of both estrogen receptor-α (ER α)-expressing and ER α-depleted
cells, differences were seen in the ability of nuclear IGF1R to bind its own promoter. Thus,
IGF1R was detected in association with the IGF1R promoter region in ER α-depleted, but
not ER α-containing, breast cancer cells. These results are consistent with competition
between IGF1R and ER α proteins for binding to consensus GC elements in the IGF1R
promoter [12,34]. In other words, IGF1R was able to bind its cognate gene promoter in cells
with reduced ERα levels and, as a consequence, reduced ERα binding to the IGF1R gene.
The autoregulation of IGF1R expression by nuclear IGF1R is described below.

5. Potential Mechanisms of InsR/IGF1R Nuclear Translocation

Nuclear translocation of InsR and IGF1R is attained via proteosomal, lysosomal
and endocytic pathways [35]. Of note, these paths are also operative in the process of
InsR/IGF1R degradation. Thus, dansylcadaverine, a clathrin-dependent endocytosis
inhibitor, prevented nuclear translocation of IGF1R [36]. Inhibition of nuclear import had a
marked impact on cell proliferation and migration, as revealed by XTT and scratch assays,
respectively. Furthermore, combined treatment of dansylcadaverine and a specific small
MW IGF1R inhibitor had a synergistic effect on proliferation. Given the emerging role of
IGF1R as a therapeutic target in oncology, these results may be of translational relevance.

Evidence in support of the hypothesis that IGF1R is transported to the nucleus
along microtubules was provided by studies showing that IGF1R co-localizes with α-
tubulin [37]. Importin-β, a key player in nuclear mobilization, was demonstrated to
co-immunoprecipitate with IGF1R. In this context, RanBP2, a SUMO E3 ligase located at
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the nuclear pore complex, was shown to bind IGF1R [38]. Moreover, RanBP2 expression en-
hanced IGF1R SUMOylation and nuclear IGF1R levels. Three functional SUMOylation sites
were identified in the human IGF1R sequence [39]. Lysines 1055 and 1130 are conserved
in the IGF1R and InsR, whereas lysine 1150 is also conserved in the epidermal growth
factor receptor (EGFR). A schematic representation of the SUMO-dependent nuclear IGF1R
translocation is presented in Figure 1.
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that SUMOylation is essential for IGF1R nuclear transport [39]. In contrast, Aleksic et al. 
generated data showing that SUMOylation is not a vital requisite [36]. Interestingly, evi-
dence has been provided showing that SUMOylation is necessary for IGF1R-stimulated 
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indeed required for nuclear translocation, our data suggested that IGF1R internalization 
may occur in a ligand-independent manner [33,43]. 

6. Transcriptional Activity of InsR and IGF1R 
The ability of IGF1R to directly bind DNA was demonstrated by means of electro-

phoretic mobility shift assays using biotin-labeled oligonucleotides [39]. At a genomic 
level, chromatin immunoprecipitation (ChIP) experiments revealed that more than ~80% 
of IGF1R-enriched regions were intergenic (i.e., distal from any annotated gene). In 

Figure 1. Schematic representation of IGF1R nuclear translocation. Nuclear IGF1R internalization
is usually, but not necessarily, regarded as a ligand-dependent, SUMO-1-mediated translocation
event. The intracellular domain of IGF1R includes three lysine residues that appear to be involved
in the interaction with SUMO-1. Nuclear IGF1R is capable of binding DNA enhancer regions in a
sequence-specific manner and as part of multimeric protein complexes. SUMOylated IGF1R binds
to a LEF/TCF binding site in the cyclin D1 promoter, leading to enhanced gene activation. Nuclear
IGF1R was shown to autoregulate expression of its own gene via interaction with LEF-TCF.

The question of whether InsR/IGF1R SUMOylation constitutes a mandatory prereq-
uisite for nuclear internalization is still a matter of controversy [40]. Sehat et al. reported
that SUMOylation is essential for IGF1R nuclear transport [39]. In contrast, Aleksic et al.
generated data showing that SUMOylation is not a vital requisite [36]. Interestingly, evi-
dence has been provided showing that SUMOylation is necessary for IGF1R-stimulated
proliferation but is not critical for receptor internalization [41]. The use of a cellular model
that prevents IGF1R SUMOylation allowed Deng et al. [42] to demonstrate that accumu-
lated nuclear IGF1R leads to high expression of SUMO-conjugating enzyme Ubc9. The
issue of whether receptor internalization is an IGF ligand-dependent process has not yet
been solved. While Aleksic et al. [36] showed that IGF1-stimulated IGF1R activation is
indeed required for nuclear translocation, our data suggested that IGF1R internalization
may occur in a ligand-independent manner [33,43].

6. Transcriptional Activity of InsR and IGF1R

The ability of IGF1R to directly bind DNA was demonstrated by means of elec-
trophoretic mobility shift assays using biotin-labeled oligonucleotides [39]. At a genomic
level, chromatin immunoprecipitation (ChIP) experiments revealed that more than ~80% of
IGF1R-enriched regions were intergenic (i.e., distal from any annotated gene). In addition,
approximately 6% of IGF1R-enriched regions were located in introns and 6% in exons.
Therefore, the data are in agreement with the concept that nuclear IGF1R is capable of
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specifically binding DNA enhancer regions. The ability of InsR and IGF1R to function as
transcriptional activators has been confirmed in recent years by a number of laboratories.
The role of InsR/IGF1R as gene regulators adds a further layer of complexity to classical
models of cell signaling by: (1) identifying tyrosine kinase cell-surface receptors in atypical
cellular compartments and (2) discovering new activities formerly associated solely with
transcription factors [40].

In order to examine IGF1R subcellular distribution and to gain further insight into
its transcriptional role, Jamwal et al. [44] recently generated a library of IGF1R deletion
and point mutants and provided evidence that nuclear IGF1R presence is essentially
defined by its cytoplasmic portion. Authors identified a cross-talk between IGF1R and the
Wnt/β-catenin pathways and showed that IGF1R upregulated TCF-mediated β-catenin
transcriptional activity. Likewise, nuclear IGF1R was associated with LEF-1, a transcription
factor involved in Wnt signaling [37]. Consistent with the interplay between IGF1R and
Wnt/β-catenin, we have also identified LEF-1 in association with the IGF1R promoter [32].
Of interest, nuclear IGF1R was shown to phosphorylate histone H3 at Tyr 41 in HeLa
cells, an event that stabilized the binding of Brg1 chromatin remodeling protein to histone
H3. Moreover, the SNAI2 oncogene was identified as a target gene for nuclear IGF1R
action, with potentially important consequences in cancer invasion and metastasis [45].
In summary, the reported nuclear actions of IGF1R fall within the spectrum of activities
usually associated with transcription factors.

7. Autoregulation of IGF1R Gene Expression by IGF1R

The identification of IGF1R in association with its cognate promoter raised the question
of whether IGF1R transcription might be regulated by nuclear receptor concentrations. Co-
transfection experiments in breast cancer cell lines using an IGF1R expression vector along
with an IGF1R promoter-luciferase reporter construct demonstrated that IGF1R stimulated
the activity of its cognate promoter. In correlation with the extent of IGF1R binding to
promoter DNA, the level of promoter activity stimulation was higher in ER α-depleted than
in ER α-containing cells [33]. Of interest, nuclear IGF1R and InsR display diametrically
opposite activities in the context of IGF1R promoter regulation. Thus, whereas IGF1R
stimulated its cognate promoter, InsR inhibited IGF1R promoter activity (Figure 2).
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Figure 2. Comparison between the roles of InsR and IGF1R in transcriptional regulation of the IGF1R
gene. InsR and IGF1R were shown to translocate to the cell nucleus and bind to the IGF1R gene
promoter. However, whereas IGF1R stimulated its cognate promoter, InsR inhibited IGF1R promoter
activity. The impact of the differential regulation of IGF1R gene expression by InsR and IGF1R is yet
to be elucidated.

Characterization of the human IGF1R promoter allowed for the identification of
cis-elements and trans-acting factors that govern IGF1R gene expression in normal and
disease conditions [12]. Our analyses provided evidence that IGF1R gene transcription
is achieved via physical and functional interactions between positively- and negatively-
acting transcription factors [9]. The finding that IGF1R was capable of stimulating the
IGF1R promoter, while InsR inhibited it, is consistent with the fact that insulin has an
inhibitory effect on the IGF1R gene. We postulated that negative regulation of IGF1R
biosynthesis, with ensuing reduced activation of the IGF1R signaling pathway, might favor
insulin-mediated differentiative activities. Finally, the physio-pathological implications of
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the interplay between InsR and IGF1R in regulation of IGF1R gene expression are yet to be
elucidated. It is unknown whether IGF1R autoregulation constitutes a general mechanism
of gene regulation. Recent studies, however, have identified a similar paradigm of gene
regulation in the context of the INSR gene.

8. Autoregulation of InsR Gene Expression by InsR

Co-transfection experiments in breast cancer cell lines harboring specific disruptions
of either the IGF1R or InsR allowed us to investigate the impact of nuclear InsR on InsR
gene expression [46]. Studies provided evidence that InsR-A strongly stimulated the
InsR promoter. In addition, data identified complex functional and physical interactions
between tumor suppressor p53 and the InsR pathway. The translational implications of
this interplay, particularly in regard to InsR/IGF1R targeted therapies, needs to be critically
assessed in a clinical setting.

9. Is Nuclear InsR/IGF1R Translocation Limited to Malignant Cells?

Most experimental evidence gathered in recent years on the role of nuclear InsR/IGF1R
was generated using cancer cell lines as well as freshly obtained tumors or archival speci-
mens. Despite the fact that most early evidence on InsR/IGF1R internalization emanated
from non-transformed cells, the question of whether nuclear InsR/IGF1R translocation
constitutes a common physiological process in normal cells has not yet been explored
in a systematic fashion. As alluded to above, initial proof of insulin binding to nuclear
fractions was demonstrated in rat livers [23–27], while nuclear IGF1R was visualized in
renal epithelial cells [29]. It is tempting to speculate that in spite of solid evidence of nuclear
InsR/IGF1R presence in normal cells, the existence of cell-surface tyrosine-kinase receptors
in the nucleus was regarded as an ‘anti-dogmatic’ view for many years.

We have recently addressed the hypothesis that nuclear transport is not restricted
to malignant cells and, in fact, may constitute a novel physiologically-relevant cellular
mechanism. Using cell fractionation and confocal microscopy we demonstrated that nuclear
IGF1R translocation also occurs in normal, non-transformed cells, including primary
diploid fibroblasts and immortalized non-malignant mammary gland-derived cells (e.g.,
MCF10A) [43]. Of interest, we noticed the accumulation of IGF1R in perinuclear areas of
benign MCF10A cells. In addition, small interfering RNA (siRNA) against IGF1R led to
a decrease in IGF1R levels in the cytoplasm but not in the nucleus. We assume that this
differential pattern was due to the mechanism of action of siRNA that only involves mRNA
degradation in the cytoplasm. Thus, the nuclear presence of cell-surface receptors seems to
provide an additional layer of biological regulation under normal conditions.

Recent mass spectrometry (MS)-based proteomic analyses, designed to identify nu-
clear IGF1R interactors, allowed us to detect a series of novel proteins that have not been
previously linked to the IGF1 signaling pathway [47] (Table 1). Briefly, experiments con-
sisted of immunoprecipitation of the nuclear fractions of benign MCF10A breast cells using
an IGF1R antibody, followed by MS analysis of candidate interactors. We were able to
detect 18 proteins that interacted, either directly or as part of multimeric complexes, with
nuclear IGF1R. Some of the identified proteins (e.g., TJP2, VAPB, TJP1, TUBB, etc) appear
to be involved in structural aspects of nuclear function, including tight junction formation.
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Table 1. Nuclear IGF1R interactors in breast cells. Nuclear extracts of benign MCF10A cells were immunoprecipitated with
an IGF1R antibody, after which mass spectroscopy analysis was conducted to identify candidate IGF1R interactors.

Gene Names Protein Names Student’s t-Test Difference Student’s t-Test p-Value

ALDH18A1 Delta-1-pyrroline-5-carboxylate synthase −6.61981074 0.000628706

TJP2 Tight junction protein ZO-2 −6.070006053 1.25 × 10−8

SIPA1L1 Signal-induced proliferation-associated 1-like
protein 1 −5.783857346 9.09 × 10−7

RPS29 40S ribosomal protein S29 −5.609598796 3.73 × 10−5

VAPB Vesicle-associated membrane
protein-associated protein B/C −4.180510203 6.64 ×10−6

TJP1 Tight junction protein ZO-1 −4.132112503 0.005198435

C17orf85 Uncharacterized protein C17orf85 −4.00877889 0.001092293

NUP88 Nuclear pore complex protein Nup88 −3.874612808 5.29 × 10−6

IGF1R Insulin-like growth factor 1 receptor −3.842482885 0.000196745

FAM162A Protein FAM162A −3.818694433 3.46 × 10−6

SPRR1B Cornifin-B −3.621960322 0.000569671

TJAP1 Tight junction-associated protein 1 −3.406965892 0.000618073

TUBB Tubulin beta chain −3.353492101 0.000981451

RAP1A Ras-related protein Rap-1A −3.285950343 7.10 × 10−5

NOM1 Nucleolar MIF4G domain-containing protein 1 −3.033599218 3.15 × 10−5

PABPC1 Polyadenylate-binding protein 1 −2.579547246 0.000578437

ZNF687 Zinc finger protein 687 −2.193822225 0.001073949

SART1 U4/U6.U5 tri-snRNP-associated protein 1 −0.605529785 0.001747125

NHP2L1 NHP2-like protein 1 −0.575263341 0.00718376

10. Nuclear Localization of Hybrid InsR/IGF1R

InsR and IGF1R can dimerize to form hybrid InsR/IGF1R, composed of one α−β

InsR hemireceptor linked to an α−β IGF1R hemireceptor [48–50]. The presence of hybrid
receptors seems to correlate with high expression of the individual partners and is also
associated with crosstalk of insulin and IGF1 signaling [51]. Reciprocal immunoprecipi-
tation of the nuclear fractions of corneal epithelial cell lysates identified hybrid receptors
in this subcellular portion [52]. Nuclear hybrid receptors were mainly localized in the
chromatin-bound fraction, suggesting a role in gene regulation. In addition, genome-wide
ChIP assays confirmed the interaction of IGF1R and InsR with DNA. Finally, Gene On-
tology analyses revealed that the vast majority of hybrid InsR/IGF1R target genes were
involved in cell-cell adhesion processes.

The role of insulin in mediating the nuclear accumulation of hybrid InsR/IGF1R was
recently investigated in corneal epithelial cells [53]. Stress-induced nuclear import of hybrid
receptors was correlated with partial cell cycle arrest and abrogation of mitochondrial
respiration. Insulin, but not IGF1, restored cell cycle dynamics and proper metabolic
function. Therefore, the data support an important role for insulin in controlling corneal
epithelial cells’ homeostasis, with potential relevance in diabetes and wound healing.

11. IGF1R Localization in the Golgi Apparatus

A recent study from the laboratory of Rosemary O’Connor employed a novel ap-
proach to address aspects related to IGF1R activity in malignant cells [54]. Using mass
spectroscopy and phospho-specific antibodies, the authors demonstrated that IGF1R was
autophosphorylated on residues Tyr1250/1251 under basal conditions. The impact of this
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phosphorylation event was investigated using a phospho-mimetic mutant form of IGF1R.
This mutant was shown to be more rapidly internalized than the wild-type IGF1R. Upon
IGF1 stimulation, both the wild-type and phospho-mimetic version of IGF1R rapidly ac-
cumulated within the Golgi apparatus. On the other hand, a phospho-impaired version
of the receptor was retained in the plasma membrane. The localization of IGF1R in the
Golgi correlated with a migratory phenotype. Taken together, the data are consistent with
the idea that Tyr1250/1251 phosphorylation drives the translocation of IGF1R to the Golgi
apparatus, where it might contribute to invasiveness. Of clinical relevance, these results
may partially explain the lack of efficacy of current approaches aimed at targeting the
cell-surface IGF1R for therapeutic purposes.

Using a combination of proteomic analyses along with silencing experiments, we dis-
covered a complex, bi-directional interplay between nuclear IGF1R and nucleolar protein
NOM1 [47]. The nucleolar NOM1 molecule belongs to a family of proteins that contain the
middle domain of eukaryotic initiation factor 4G (MIF4G) and/or protein-protein interac-
tion module (MA3), and function in translation, proliferation and transformation [55,56].
NOM1 localizes predominantly to the nucleolus and interacts with protein phosphatase-1,
an essential eukaryotic serine/threonine phosphatase required for a number of cellular
processes, including mitogenesis [57]. In summary, identification of nuclear IGF1R interac-
tors may help generate new information on the role of IGF1R in the nucleus and additional
subcellular compartments.

12. Nuclear Localization Is a Common Theme among Tyrosine Kinase Receptors

Endocytosis and endosomal sorting are involved in the nuclear import of additional
tyrosine kinase receptors [58]. EGFR was detected in the nucleus of several tissues and cell
lines, and its nuclear presence correlated with strong proliferative activity [59]. Nuclear
EGFR is associated with the cyclin D1 gene promoter, suggesting that it may serve as
a transcriptional regulator. Furthermore, a number of studies reported that full-length
EGFR is involved in a variety of gene regulatory activities, including transcription, DNA
replication and DNA repair [60,61].

Likewise, the platelet-derived growth factor receptor (PDGFRα) was shown to be
present in nuclear fractions of alveolar rhabdomyosarcoma along with IGF1R [62]. Authors
reported a dynamic pattern of expression between cell surface and intracellular compart-
ments. An additional example of tyrosine kinase nuclear import was provided by the
fibroblast growth factor receptor (FGFR1), which forms a complex with orphan nuclear
receptor Nurr1 and binds to the tyrosine hydroxylase (TH) promoter (the rate limiting
enzyme in dopamine synthesis) [63]. This nuclear partnership constitutes a new mecha-
nism for TH gene regulation, with relevance in dopaminergic neuron development. It is
reasonable to conclude that nuclear import constitutes a widespread mechanism among cell
surface tyrosine kinase receptors. This machinery impinges upon multiple physiological
and pathological processes and largely expands the spectrum of classical intracellular
communication paths.

13. The Role of Nuclear InsR/IGF1R in Cancer

The effect of nuclear InsR/IGF1R on the mitogenic capacity of cells and, more specif-
ically, the impact of this pattern of subcellular distribution on our ability to target the
IGF1R for therapeutic purposes, has been the topic of major interest in recent years [64].
The relevance of nuclear IGF1R in terms of tumor aggressiveness can be inferred from
the fact that the inhibition of nuclear IGF1R import correlated with reduced proliferative
potential [36]. Aleksic et al. reported that nuclear IGF1R was present in renal cancer cells,
preinvasive breast lesions and non-malignant tissues associated with a high proliferative
index. Furthermore, nuclear staining was correlated with an adverse prognosis in renal
cancer. Similarly, nuclear IGF1R localization in alveolar rhabdomyosarcoma was associated
with an aggressive phenotype [62]. Consistently, IGF1R silencing reduced the ability of
tumor cells to form colonies.
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The association between nuclear IGF1R and clinical outcome in pediatric gliomas was
recently studied by Clement et al. [65]. Immunohistochemical analyses identified IGF1R
staining in 47 out of 53 tumors, and nuclear IGF1R labelling was observed in 10/47 cases.
IGF1R staining was mostly non-nuclear in low-grade tumors, while nuclear expression
was predominant in high-grade gliomas. Survival was significantly longer in patients with
gliomas having non-nuclear IGF1R localization than in patients with nuclear IGF1R tumors.
Hence, intracellular IGF1R localization may help in stratifying pediatric glioma patients.

To gain new insights into the clinical significance of nuclear IGF1R, Aleksic et al. [66]
conducted ChIP-Seq analyses aimed at assessing global chromatin occupancy. The authors
identified IGF1R binding on the jun and fam21 promoters in fresh prostate cancer samples
containing abundant nuclear IGF1R. A correlation between IGF1R and jun expression
was observed in malignant prostate epithelium, suggesting the existence of a potentially
novel mechanism of carcinogenesis. The growth factor amphiregulin participates in the
nuclear accumulation of IGF1R in lung adenocarcinoma by allowing the binding of IGF1R
to importin-β1 [67]. This process was associated with cell cycle arrest via p21 upregulation.
In addition, nuclear IGF1R prevented the induction of apoptosis induced by gefitinib, an
EGFR tyrosine kinase inhibitor. Hence, the data indicate that nuclear IGF1R is involved in
resistance to EGFR-directed therapy in lung cancer.

Nuclear IGF1R was shown to phosphorylate proliferating cell nuclear antigen (PCNA),
a key player in the DNA damage tolerance pathway [68]. The co-localization of IGF1R
with PCNA was particularly evident in areas exhibiting dysplasia and invasion. However,
this interaction was often lost in tumors with low response to chemotherapy. It appears
that accumulation of DNA damage leads to abrogation of the physical interplay between
IGF1R and PCNA as the tumor progresses, with ensuing reduction in genomic stability.

Given the potential role of IGF1R as a therapeutic target in oncology, it was of transla-
tional relevance to assess the impact of nuclear IGF1R on the clinical outcome. Using an
immunohistochemical approach, Asmane et al. [69] demonstrated that exclusive nuclear
IGF1R immunoreactivity (compared with cytoplasmic, or nuclear+cytoplasmic staining)
was correlated with a better progression-free survival and overall survival in patients
with unresectable or metastatic soft tissue sarcomas, Ewing sarcoma, and osteosarcoma
treated with IGF1R monoclonal antibodies. In contrast, nuclear IGF1R correlated with
poor survival in patients with metastatic colorectal cancer [64]. Chemo-resistant colon
cancer cell lines had higher concentrations of nuclear IGF1R, and IGF1R translocation was
enhanced by IGF1R blocking antibody ganitumab. The data are therefore in agreement
with the view that nuclear IGF1R might have a role in the development of resistance to
targeted or other therapies.

The prognostic value of breast-cancer-specific nuclear InsR was investigated in tissue
microarrays from 900 patients with primary invasive breast cancer [70]. Nuclear InsR was
assessed by immunohistochemistry and correlated with ER status, body mass index and
clinical outcome. Patients were followed for up to 11 years. Data indicate that nuclear InsR
was detected in 24% of patients and increased as a function of the time elapsed between
surgery and staining. Nuclear InsR presence conferred higher risk of recurrence in ER+
tumors but lower risk in ER- cancers. Analysis of the data led to the conclusion that nuclear
InsR may have prognostic value among normal weight patients with ER+ tumors and in
obese or overweight patients with ER- tumors.

14. The Role of Nuclear InsR/IGF1R in Metabolism

Genome-wide analysis was recently employed to identify genes and signaling path-
ways affected by nuclear InsR and, more specifically, to evaluate the impact of this nuclear
presence on insulin function [71]. ChIP-seq analysis revealed that InsR was predominantly
localized to gene promoters, with robust enrichment for insulin-related activities. For
example, genes involved in metabolism of lipids and lipoproteins, fatty acid and ketone
body metabolism, and metabolism of amino acid derivatives, among other functions, were
among the genes with the strongest InsR binding to promoter elements. In terms of associ-
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ation between InsR-bound promoters and disease categories, there was a strong correlation
to diabetes and other disorders linked to insulin function, including Alzheimer’s disease
and neurodegeneration.

Evidence that the nuclear InsR pathway is functionally involved in conditions associ-
ated with insulin resistance was provided by animal experiments showing a reduction in
the levels of chromatin-bound InsR in an ob/ob mouse, a model of insulin resistance [71].
Of interest, functional analyses of InsR-bound promoters revealed a much larger representa-
tion of genes involved in lipid metabolism compared with genes involved in carbohydrate
metabolism. These results are in agreement with the linkage between insulin resistance
and dyslipidemia, a typical component of the metabolic syndrome.

In mechanistic terms, a strong physical interaction between InsR and transcriptional
co-regulator HCF-1 was detected. HCF-1 knockout prevented InsR binding to DNA,
suggesting that this transcription factor is directly responsible for InsR binding to chromatin.
Taken together, nuclear InsR has a key role in the regulation of gene expression, and this
molecular mechanism directly impinges upon the physiological and pathological actions
of insulin.

Grave’s disease (GD) is an autoimmune disorder in which the thyroid gland is en-
larged and becomes over-active. IGF1R was shown to be overexpressed by orbital fibrob-
lasts derived from patients [72]. In addition, IGF1, as well as GD-derived IgG, led to IGF1R
accumulation in the cell nucleus of GD fibroblasts, where it was found in association with
chromatin. This process required ADAM17, a membrane-associated metalloproteinase.
In contrast, nuclear IGF1R redistribution was not detected in control orbital fibroblasts.
The significance of this specific IGF1R re-localization process in the context of GD orbital
disease is at present unknown.

15. Conclusions

The identification of InsR and IGF1R in the nucleus of normal and cancer cells has
generated a significant level of interest in recent years [73,74]. Curiosity was fueled by
fundamental questions in the area of biological regulation as well as by more applied facets
in clinical oncology. While nuclear insulin binding was first described more than 45 years
ago, the recognition that classical cell-surface tyrosine kinase receptors can migrate to the
cell nucleus and function as bona fide transcription factors stood against firmly established
dogmas in signal transduction. Once this conceptual barrier fell, it became relevant to
question the implications of these inverse (i.e., from nucleus to cell-surface) signaling paths
of InsR/IGF1R.

The transcriptional role of InsR/IGF1R is not a trivial one. The ability of these im-
portant receptors to regulate gene expression at a genomic level provides a further layer
of biological control. Moreover, and given the capacity of these receptors to sense (and
respond to) ambient concentrations of insulin and IGF1, it is expected that the novel nuclear
roles of InsR/IGF1R might be of major metabolic relevance.

Finally, the role of nuclear InsR/IGF1R in cancer biology is of exceptional transla-
tional relevance [75]. A better understanding of the complex mechanisms responsible for
InsR/IGF1R transport to the nucleus and identification of InsR/IGF1R interactors might
help to optimize target-directed therapies in oncology.

Author Contributions: Conceptualization: H.W., R.S. and Z.L.; Investigation: H.W., R.S. and Z.L.;
Data curation: R.S.; Writing—original draft preparation: H.W.; Writing—review and editing: H.W.,
R.S. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: Work in the laboratory of H.W. has been supported by grants from the Israel
Science Foundation, US-Israel Binational Science Foundation, Israel Cancer Association, and the
Recanati Foundation. H.W. is the incumbent of the Lady Davis Chair in Biochemistry.



Biomolecules 2021, 11, 531 11 of 13

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Yakar, S.; Adamo, M.L. Insulin-like growth factor 1 physiology: Lessons from mouse models. Endocrinol. Metab. Clin. N. Am.

2012, 41, 231–247. [CrossRef] [PubMed]
2. Yakar, S.; Werner, H.; Rosen, C.J. 40 YEARS OF IGF1: Insulin-like growth factors: Actions on the skeleton. J. Mol. Endocrinol. 2018,

61, T115–T137. [CrossRef] [PubMed]
3. Longo, V.; Finch, C. Evolutionary medicine: From dwarf model systems to healthy centenarians? Science 2003, 299, 1342–1346.

[CrossRef] [PubMed]
4. Bentov, I.; Werner, H. Insulin-like growth factors and breast cancer. Current Med. Lit. Breast Cancer 2009, 21, 113–120.
5. Salmon, W.D.; Daughaday, W.H. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage

in vitro. J. Lab. Clin. Med. 1957, 49, 825–836.
6. Rosenfeld, R.G. Insulin-like Growth Factors and the Basis of Growth. N. Engl. J. Med. 2003, 349, 2184–2186. [CrossRef]
7. Moschos, S.J.; Mantzoros, C.S. The Role of the IGF System in Cancer: From Basic to Clinical Studies and Clinical Applications.

Oncology 2002, 63, 317–332. [CrossRef]
8. Leroith, D. Clinical relevance of systemic and local IGF-I: Lessons from animal models. Pediatr. Endocrinol. Rev. 2008, 5, 739–743.
9. Sarfstein, R.; Maor, S.; Reizner, N.; Abramovitch, S.; Werner, H. Transcriptional regulation of the insulin-like growth factor-I

receptor gene in breast cancer. Mol. Cell. Endocrinol. 2006, 252, 241–246. [CrossRef]
10. De Meyts, P.; Whittaker, J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat. Rev. Drug Discov.

2002, 1, 769–783. [CrossRef]
11. Werner, H.; Weinstein, D.; Bentov, I. Similarities and differences between insulin and IGF-I: Structures, receptors, and signalling

pathways. Arch. Physiol. Biochem. 2008, 114, 17–22. [CrossRef]
12. Werner, H.; Sarfstein, R. Transcriptional and epigenetic control of IGF1R gene expression: Implications in metabolism and cancer.

Growth Horm. IGF Res. 2014, 24, 112–118. [CrossRef]
13. Baker, J.; Liu, J.-P.; Robertson, E.J.; Efstratiadis, A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell

1993, 75, 73–82. [CrossRef]
14. Bach, L. Insulin-like growth factor binding proteins—An update. Pediatr. Endocrinol. Rev. 2015, 13, 521–530.
15. Holly, J.; Perks, C. The Role of Insulin-Like Growth Factor Binding Proteins. Neuroendocrinology 2006, 83, 154–160. [CrossRef]
16. Domene, H.; Bengolea, S.V.; Martinez, A.S.; Ropelato, M.G.; Pennisi, P.; Scaglia, P.; Heinrich, J.; Jasper, H. Deficiency of the

circulating IGF system associated with inactivation of the acid-labile subunit gene. N. Engl. J. Med. 2004, 350, 570–577. [CrossRef]
17. Baxter, R.C. IGF binding proteins in cancer: Mechanistic and clinical insights. Nat. Rev. Cancer 2014, 14, 329–341. [CrossRef]
18. Cai, Q.; Dozmorov, M.; Oh, Y. IGFBP-3/IGFBP-3 Receptor System as an Anti-Tumor and Anti-Metastatic Signaling in Cancer.

Cells 2020, 9, 1261. [CrossRef]
19. Ravid, D.; Maor, S.; Werner, H.; Liscovitch, M. Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv.

Enzym. Regul. 2006, 46, 163–175. [CrossRef]
20. Traub, L.M.; Bonifacino, J.S. Cargo Recognition in Clathrin-Mediated Endocytosis. Cold Spring Harb. Perspect. Biol. 2013, 5,

a016790. [CrossRef]
21. Janssen, J.A. New Insights from IGF-IR Stimulating Activity Analyses: Pathological Considerations. Cells 2020, 9, 862. [CrossRef]

[PubMed]
22. Irannejad, R.; Tsvetanova, N.G.; Lobingier, B.T.; von Zastrow, M. Effects of endocytosis on receptor-mediated signaling. Curr.

Opin. Cell Biol. 2015, 35, 137–143. [CrossRef] [PubMed]
23. Goldfine, I.D.; Smith, G.J. Binding of insulin to isolated nuclei. Proc. Natl. Acad. Sci. USA 1976, 73, 1427–1431. [CrossRef]

[PubMed]
24. Goldfine, I.D.; Vigneri, R.; Cohen, D.; Pliam, N.B.; Kahn, C.R. Intracellular binding sites for insulin are immunologically distinct

from those on the plasma membrane. Nat. Cell Biol. 1977, 269, 698–700. [CrossRef] [PubMed]
25. Vigneri, R.; Goldfine, I.; Wong, K.; Smith, G.; Pezzino, V. The nuclear envelope. The major site of insulin binding in rat liver nuclei.

J. Biol. Chem. 1978, 253, 2098–2103. [CrossRef]
26. Horvath, A. Insulin binding sites on rat liver nuclear membranes: Biochemical and immunofluorescent studies. J. Cell Physiol.

1978, 97, 37–47. [CrossRef]
27. Bergeron, J.; Posner, B.; Josefsberg, Z.; Sikstrom, R. Intracellular polypeptide hormone receptors. The demonstration of specific

binding sites for insulin and human growth hormone in Golgi fractions isolated from the liver of female rats. J. Biol. Chem. 1978,
253, 4058–4066. [CrossRef]

28. Podlecki, D.A.; Smith, R.M.; Kao, M.; Tsai, P.; Huecksteadt, T.; Brandenburg, D.; Lasher, R.S.; Jarett, L.; Olefsky, J.M. Nuclear
translocation of the insulin receptor. A possible mediator of insulin’s long term effects. J. Biol. Chem. 1987, 262, 3362–3368.
[CrossRef]

29. Chen, C.-W.; Oberley, T.D.; Roy, D. Inhibition of stilbene estrogen-induced cell proliferation of renal epithelial cells through the
modulation of insulin-like growth factor-I receptor expression. Cancer Lett. 1996, 105, 51–59. [CrossRef]

30. Sun, H.; Tu, X.; Prisco, M.; Wu, A.; Casiburi, I.; Baserga, R. Insulin-Like Growth Factor I Receptor Signaling and Nuclear
Translocation of Insulin Receptor Substrates 1 and 2. Mol. Endocrinol. 2003, 17, 472–486. [CrossRef]

http://doi.org/10.1016/j.ecl.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/22682628
http://doi.org/10.1530/JME-17-0298
http://www.ncbi.nlm.nih.gov/pubmed/29626053
http://doi.org/10.1126/science.1077991
http://www.ncbi.nlm.nih.gov/pubmed/12610293
http://doi.org/10.1056/NEJMp038156
http://doi.org/10.1159/000066230
http://doi.org/10.1016/j.mce.2006.03.018
http://doi.org/10.1038/nrd917
http://doi.org/10.1080/13813450801900694
http://doi.org/10.1016/j.ghir.2014.03.006
http://doi.org/10.1016/S0092-8674(05)80085-6
http://doi.org/10.1159/000095523
http://doi.org/10.1056/NEJMoa013100
http://doi.org/10.1038/nrc3720
http://doi.org/10.3390/cells9051261
http://doi.org/10.1016/j.advenzreg.2006.01.022
http://doi.org/10.1101/cshperspect.a016790
http://doi.org/10.3390/cells9040862
http://www.ncbi.nlm.nih.gov/pubmed/32252327
http://doi.org/10.1016/j.ceb.2015.05.005
http://www.ncbi.nlm.nih.gov/pubmed/26057614
http://doi.org/10.1073/pnas.73.5.1427
http://www.ncbi.nlm.nih.gov/pubmed/179086
http://doi.org/10.1038/269698a0
http://www.ncbi.nlm.nih.gov/pubmed/593329
http://doi.org/10.1016/S0021-9258(17)38045-6
http://doi.org/10.1002/jcp.1040970106
http://doi.org/10.1016/S0021-9258(17)34798-1
http://doi.org/10.1016/S0021-9258(18)61511-X
http://doi.org/10.1016/0304-3835(96)04263-2
http://doi.org/10.1210/me.2002-0276


Biomolecules 2021, 11, 531 12 of 13

31. Baserga, R. The decline and fall of the IGF-I receptor. J. Cell. Physiol. 2012, 228, 675–679. [CrossRef]
32. Sarfstein, R.; Belfiore, A.; Werner, H. Identification of Insulin-Like Growth Factor-I Receptor (IGF-IR) Gene Promoter-Binding

Proteins in Estrogen Receptor (ER)-Positive and ER-Depleted Breast Cancer Cells. Cancers 2010, 2, 233–261. [CrossRef]
33. Sarfstein, R.; Pasmanik-Chor, M.; Yeheskel, A.; Edry, L.; Shomron, N.; Warman, N.; Wertheimer, E.; Maor, S.; Shochat, L.; Werner,

H. Insulin-like Growth Factor-I Receptor (IGF-IR) Translocates to Nucleus and Autoregulates IGF-IR Gene Expression in Breast
Cancer Cells. J. Biol. Chem. 2012, 287, 2766–2776. [CrossRef]

34. Maor, S.; Mayer, D.; Yarden, I.R.; Lee, A.V.; Sarfstein, R.; Werner, H.; Papa, M.Z. Estrogen receptor regulates insulin-like growth
factor-I receptor gene expression in breast tumor cells: Involvement of transcription factor Sp1. J. Endocrinol. 2006, 191, 605–612.
[CrossRef]

35. Vecchione, A.; Marchese, A.; Henry, P.; Rotin, D.; Morrione, A. The Grb10/Nedd4 Complex Regulates Ligand-Induced Ubiquiti-
nation and Stability of the Insulin-Like Growth Factor I Receptor. Mol. Cell. Biol. 2003, 23, 3363–3372. [CrossRef]

36. Aleksic, T.; Chitnis, M.M.; Perestenko, O.V.; Gao, S.; Thomas, P.H.; Turner, G.D.; Protheroe, A.S.; Howarth, M.; Macaulay, V.M.
Type 1 Insulin-like Growth Factor Receptor Translocates to the Nucleus of Human Tumor Cells. Cancer Res. 2010, 70, 6412–6419.
[CrossRef]

37. Warsito, D.; Sjöström, S.; Andersson, S.; Larsson, O.; Sehat, B. Nuclear IGF1R is a transcriptional co-activator of LEF1/TCF. EMBO
Rep. 2012, 13, 244–250. [CrossRef]

38. Packham, S.; Warsito, D.; Lin, Y.; Sadi, S.; Karlsson, R.; Sehat, B.; Larsson, O. Nuclear translocation of IGF-1R via p150(Glued) and
an importin-β/RanBP2-dependent pathway in cancer cell. Oncogene 2015, 34, 2227–2238. [CrossRef]

39. Sehat, B.; Tofigh, A.; Lin, Y.; Trocmé, E.; Liljedahl, U.; Lagergren, J.; Larsson, O. SUMOylation Mediates the Nuclear Translocation
and Signaling of the IGF-1 Receptor. Sci. Signal. 2010, 3, ra10. [CrossRef]

40. Sarfstein, R.; Werner, H. Minireview: Nuclear Insulin and Insulin-like Growth Factor-1 Receptors: A Novel Paradigm in Signal
Transduction. Endocrinology 2013, 154, 1672–1679. [CrossRef]

41. Lin, Y.; Liu, H.; Waraky, A.; Haglund, F.; Agarwal, P.; Jernberg-Wiklund, H.; Warsito, D.; Larsson, O. SUMO-modified insulin-like
growth factor 1 receptor (IGF-1R) increases cell cycle progression and cell proliferation. J. Cell. Physiol. 2017, 232, 2722–2730.
[CrossRef] [PubMed]

42. Deng, H.; Lin, Y.; Badin, M.; Vasilcanu, D.; Strömberg, T.; Jernberg-Wiklund, H.; Sehat, B.; Larsson, O. Over-accumulation of
nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9.
Biochem. Biophys. Res. Commun. 2011, 404, 667–671. [CrossRef] [PubMed]

43. Solomon-Zemler, R.; Sarfstein, R.; Werner, H. Nuclear insulin-like growth factor-1 receptor (IGF1R) displays proliferative and
regulatory activities in non-malignant cells. PLoS ONE 2017, 12, e0185164. [CrossRef] [PubMed]

44. Jamwal, G.; Singh, G.; Dar, M.S.; Singh, P.; Bano, N.; Syed, S.H.; Sandhu, P.; Akhter, Y.; Monga, S.P. Identification of a unique
loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt/β-catenin signaling pathways. Biochim. Biophys.
ACTA (BBA) Bioenerg. 2018, 1865, 920–931. [CrossRef]

45. Warsito, D.; Lin, Y.; Gnirck, A.-C.; Sehat, B.; Larsson, O. Nuclearly translocated insulin-like growth factor 1 receptor phospho-
rylates histone H3 at tyrosine 41 and induces SNAI2 expression via Brg1 chromatin remodeling protein. Oncotarget 2016, 7,
42288–42302. [CrossRef]

46. Sarfstein, R.; Werner, H. Tumor suppressor p53 regulates insulin receptor (INSR) gene expression via direct binding to the INSR
promoter. Oncotarget 2020, 11, 2424–2437. [CrossRef]

47. Solomon-Zemler, R.; Pozniak, Y.; Geiger, T.; Werner, H. Identification of nucleolar protein NOM1 as a novel nuclear IGF1R-
interacting protein. Mol. Genet. Metab. 2019, 126, 259–265. [CrossRef]

48. Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth
Factor Receptor Hybrids in Physiology and Disease. Endocr. Rev. 2009, 30, 586–623. [CrossRef]

49. Soos, A.M.; Whittaker, J.; Lammers, R.; Ullrich, A.; Siddle, K. Receptors for insulin and insulin-like growth factor-I can form
hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochem. J. 1990, 270, 383–390. [CrossRef]

50. Bailyes, E.M.; Navé, B.T.; Soos, M.A.; Orr, S.R.; Hayward, A.C.; Siddle, K. Insulin receptor/IGF-I receptor hybrids are widely
distributed in mammalian tissues: Quantification of individual receptor species by selective immunoprecipitation and im-
munoblotting. Biochem. J. 1997, 327, 209–215. [CrossRef]

51. Pandini, G.; Frasca, F.; Mineo, R.; Sciacca, L.; Vigneri, R.; Belfiore, A. Insulin/Insulin-like Growth Factor I Hybrid Receptors Have
Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. J. Biol. Chem. 2002, 277, 39684–39695.
[CrossRef]

52. Wu, Y.-C.; Zhu, M.; Robertson, D.M. Novel nuclear localization and potential function of insulin-like growth factor-1 recep-
tor/insulin receptor bybrid in corneal epithelial cells. PLoS ONE 2012, 7, e42483.

53. Titone, R.; Zhu, M.; Robertson, D.M. Insulin mediates de novo nuclear accumulation of the IGF-1/insulin Hybrid Receptor in
corneal epithelial cells. Sci. Rep. 2018, 8, 4378. [CrossRef]

54. Rieger, L.; O’Shea, S.; Godsmark, G.; Stanicka, J.; Kelly, G.; O’Connor, R. IGF-1 receptor activity in the Golgi of migratory cancer
cells depends on adhesion-dependent phosphorylation of Tyr1250 and Tyr1251. Sci. Signal. 2020, 13, eaba3176. [CrossRef]

55. Yu, L.; Wang, H.; Guo, Z.; Li, F.; Cui, H. Role of nucleolar protein NOM1 in pancreatic islet β cell apoptosis in diabetes. Exp. Ther.
Med. 2016, 12, 2275–2280. [CrossRef]

http://doi.org/10.1002/jcp.24217
http://doi.org/10.3390/cancers2020233
http://doi.org/10.1074/jbc.M111.281782
http://doi.org/10.1677/joe.1.07016
http://doi.org/10.1128/MCB.23.9.3363-3372.2003
http://doi.org/10.1158/0008-5472.CAN-10-0052
http://doi.org/10.1038/embor.2011.251
http://doi.org/10.1038/onc.2014.165
http://doi.org/10.1126/scisignal.2000628
http://doi.org/10.1210/en.2012-2165
http://doi.org/10.1002/jcp.25818
http://www.ncbi.nlm.nih.gov/pubmed/28112398
http://doi.org/10.1016/j.bbrc.2010.12.038
http://www.ncbi.nlm.nih.gov/pubmed/21147068
http://doi.org/10.1371/journal.pone.0185164
http://www.ncbi.nlm.nih.gov/pubmed/28945762
http://doi.org/10.1016/j.bbamcr.2018.03.013
http://doi.org/10.18632/oncotarget.9785
http://doi.org/10.18632/oncotarget.27645
http://doi.org/10.1016/j.ymgme.2019.01.002
http://doi.org/10.1210/er.2008-0047
http://doi.org/10.1042/bj2700383
http://doi.org/10.1042/bj3270209
http://doi.org/10.1074/jbc.M202766200
http://doi.org/10.1038/s41598-018-21031-7
http://doi.org/10.1126/scisignal.aba3176
http://doi.org/10.3892/etm.2016.3576


Biomolecules 2021, 11, 531 13 of 13

56. Alexandrov, A.; Colognori, D.; Steitz, J.A. Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily
conserved function outside the exon junction complex. Genes Dev. 2011, 25, 1078–1090. [CrossRef]

57. Gunawardena, S.R.; Ruis, B.L.; Meyer, J.A.; Kapoor, M.; Conklin, K.F. NOM1 Targets Protein Phosphatase I to the Nucleolus. J.
Biol. Chem. 2008, 283, 398–404. [CrossRef]

58. Wang, Y.-N.; Yamaguchi, H.; Hsu, J.-M.; Hung, M.-C. Nuclear trafficking of the epidermal growth factor receptor family membrane
proteins. Oncogene 2010, 29, 3997–4006. [CrossRef]

59. Lin, S.-Y.; Makino, K.; Xia, W.; Matin, A.; Wen, Y.; Kwong, K.Y.; Bourguignon, L.; Hung, M.-C. Nuclear localization of EGF
receptor and its potential new role as a transcription factor. Nat. Cell Biol. 2001, 3, 802–808. [CrossRef]

60. Dittmann, K.; Mayer, C.; Czemmel, S.; Huber, S.M.; Rodemann, H.P. New roles for nuclear EGFR in regulating the stability and
translation of mRNAs associated with VEGF signaling. PLoS ONE 2017, 12, e0189087. [CrossRef]

61. Hsu, S.-C.; Miller, S.A.; Wang, Y.; Hung, M.-C. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am. J. Transl.
Res. 2009, 1, 249–258. [PubMed]

62. Aslam, M.I.; Hettmer, S.; Abraham, J.; Latocha, D.; Soundararajan, A.; Huang, E.T.; Goros, M.W.; Michalek, J.E.; Wang, S.;
Mansoor, A.; et al. Dynamic and Nuclear Expression of PDGFRα and IGF-1R in Alveolar Rhabdomyosarcoma. Mol. Cancer Res.
2013, 11, 1303–1313. [CrossRef] [PubMed]

63. Baron, O.; Förthmann, B.; Lee, Y.-W.; Terranova, C.; Ratzka, A.; Stachowiak, E.K.; Grothe, C.; Claus, P.; Stachowiak, M.K.
Cooperation of Nuclear Fibroblast Growth Factor Receptor 1 and Nurr1 Offers New Interactive Mechanism in Postmitotic
Development of Mesencephalic Dopaminergic Neurons. J. Biol. Chem. 2012, 287, 19827–19840. [CrossRef] [PubMed]

64. Codony-Servat, J.; Cuatrecasas, M.; Asensio, E.; Montironi, C.; Martínez-Cardús, A.; Marín-Aguilera, M.; Horndler, C.; Martínez-
Balibrea, E.; Rubini, M.; Jares, P.; et al. Nuclear IGF-1R predicts chemotherapy and targeted therapy resistance in metastatic
colorectal cancer. Br. J. Cancer 2017, 117, 1777–1786. [CrossRef]

65. Clément, F.; Martin, A.; Venara, M.; Calcagno, M.D.L.; Mathó, C.; Maglio, S.; Lombardi, M.G.; Bergadá, I.; A Pennisi, P. Type 1 IGF
Receptor Localization in Paediatric Gliomas: Significant Association with WHO Grading and Clinical Outcome. Horm. Cancer
2018, 9, 205–214. [CrossRef]

66. Aleksic, T.; Gray, N.; Wu, X.; Rieunier, G.; Osher, E.; Mills, J.; Verrill, C.; Bryant, R.J.; Han, C.; Hutchinson, K.; et al. Nuclear IGF1R
Interacts with Regulatory Regions of Chromatin to Promote RNA Polymerase II Recruitment and Gene Expression Associated
with Advanced Tumor Stage. Cancer Res. 2018, 78, 3497–3509. [CrossRef]

67. Guerard, M.; Robin, T.; Perron, P.; Hatat, A.-S.; David-Boudet, L.; Vanwonterghem, L.; Busser, B.; Coll, J.-L.; Lantuejoul, S.;
Eymin, B.; et al. Nuclear translocation of IGF1R by intracellular amphiregulin contributes to the resistance of lung tumour cells to
EGFR-TKI. Cancer Lett. 2018, 420, 146–155. [CrossRef]

68. Yang, C.; Zhang, Y.; Chen, Y.; Ragaller, F.; Liu, M.; Corvigno, S.; Dahlstrand, H.; Carlson, J.; Chen, Z.; Näsman, A.; et al. Nuclear
IGF1R interact with PCNA to preserve DNA replication after DNA-damage in a variety of human cancers. PLoS ONE 2020, 15,
e0236291. [CrossRef]

69. Asmane, I.; Watkin, E.; Alberti, L.; Duc, A.; Marec-Berard, P.; Ray-Coquard, I.; Cassier, P.; Decouvelaere, A.-V.; Ranchère, D.;
Kurtz, J.-E.; et al. Insulin-like growth factor type 1 receptor (IGF-1R) exclusive nuclear staining: A predictive biomarker for
IGF-1R monoclonal antibody (Ab) therapy in sarcomas. Eur. J. Cancer 2012, 48, 3027–3035. [CrossRef]

70. Björner, S.; Rosendahl, A.H.; Simonsson, M.; Markkula, A.; Jirström, K.; Borgquist, S.; Rose, C.; Ingvar, C.; Jernström, H. Body
mass index influences the prognostic impact of combined nuclear insulin receptor and estrogen receptor expression in primary
breast cancer. Front. Endocrinol. 2017, 8, 332. [CrossRef]

71. Hancock, M.L.; Meyer, R.C.; Mistry, M.; Khetani, R.S.; Wagschal, A.; Shin, T.; Sui, S.J.H.; Näär, A.M.; Flanagan, J.G. Insulin
Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell 2019, 177, 722–736.e22. [CrossRef]

72. Hoa, N.; Tsui, S.; Afifiyan, N.F.; Hikim, A.S.; Li, B.; Douglas, R.S.; Smith, T.J. Nuclear Targeting of IGF-1 Receptor in Orbital
Fibroblasts from Graves’ Disease: Apparent Role of ADAM17. PLoS ONE 2012, 7, e34173. [CrossRef]

73. Rieger, L.; O’Connor, R.O. Controlled signaling-Insulin-like growth factor receptor endocytosis and presence at intracellular
compartments. Front. Endocrinol. 2021, 11, 620013. [CrossRef]

74. Poreba, E.; Durzynska, J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components:
Transcriptional regulation and DNA damage response. Mutat. Res. 2020, 784, 108307. [CrossRef]

75. Werner, H.; Bruchim, I. IGF-1 and BRCA1 signalling pathways in familial cancer. Lancet Oncol. 2012, 13, e537–e544. [CrossRef]

http://doi.org/10.1101/gad.2045411
http://doi.org/10.1074/jbc.M706708200
http://doi.org/10.1038/onc.2010.157
http://doi.org/10.1038/ncb0901-802
http://doi.org/10.1371/journal.pone.0189087
http://www.ncbi.nlm.nih.gov/pubmed/19956435
http://doi.org/10.1158/1541-7786.MCR-12-0598
http://www.ncbi.nlm.nih.gov/pubmed/23928059
http://doi.org/10.1074/jbc.M112.347831
http://www.ncbi.nlm.nih.gov/pubmed/22514272
http://doi.org/10.1038/bjc.2017.279
http://doi.org/10.1007/s12672-018-0328-7
http://doi.org/10.1158/0008-5472.CAN-17-3498
http://doi.org/10.1016/j.canlet.2018.01.080
http://doi.org/10.1371/journal.pone.0236291
http://doi.org/10.1016/j.ejca.2012.05.009
http://doi.org/10.3389/fendo.2017.00332
http://doi.org/10.1016/j.cell.2019.02.030
http://doi.org/10.1371/journal.pone.0034173
http://doi.org/10.3389/fendo.2020.620013
http://doi.org/10.1016/j.mrrev.2020.108307
http://doi.org/10.1016/S1470-2045(12)70362-5

	Overview of the Insulin-Like Growth Factor System 
	Classical Concepts on Hormonal Signaling and Internalization 
	Historical Aspects of Nuclear InsR/IGF1R Translocation 
	Proteomic Profiling Identified the IGF1R in Nuclear Fractions of Breast Cancer Cells 
	Potential Mechanisms of InsR/IGF1R Nuclear Translocation 
	Transcriptional Activity of InsR and IGF1R 
	Autoregulation of IGF1R Gene Expression by IGF1R 
	Autoregulation of InsR Gene Expression by InsR 
	Is Nuclear InsR/IGF1R Translocation Limited to Malignant Cells? 
	Nuclear Localization of Hybrid InsR/IGF1R 
	IGF1R Localization in the Golgi Apparatus 
	Nuclear Localization Is a Common Theme among Tyrosine Kinase Receptors 
	The Role of Nuclear InsR/IGF1R in Cancer 
	The Role of Nuclear InsR/IGF1R in Metabolism 
	Conclusions 
	References

