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Abstract: Background: The emergence of multidrug-resistant bacteria remains poorly understood in
the wild ecosystem and at the interface of habitats. Here, we explored the spread of Escherichia coli
containing IncI1-ST3 plasmid encoding resistance gene cefotaximase-Munich-1 (blaCTX-M-1) in human-
influenced habitats and wild fauna using a genomic approach. Methods. Multilocus sequence typing
(MLST), single-nucleotide polymorphism comparison, synteny-based analysis and data mining
approaches were used to analyse a dataset of genomes and circularised plasmids. Results. CTX-M-1
E. coli sequence types (STs) were preferentially associated with ecosystems. Few STs were shared
by distinct habitats. IncI1-ST3-blaCTX-M-1 plasmids are disseminated among all E. coli phylogroups.
The main divergences in plasmids were located in a shuffling zone including blaCTX-M-1 inserted
in a conserved site. This insertion hot spot exhibited diverse positions and orientations in a zone-
modulating conjugation, and the resulting synteny was associated with geographic and biological
sources. Conclusions. The ecological success of IncI1-ST3-blaCTX-M-1 appears less linked to the
spread of their bacterial recipients than to their ability to transfer in a broad spectrum of bacterial
lineages. This feature is associated with the diversity of their shuffling conjugation region that contain
blaCTX-M-1. These might be involved in the resistance to antimicrobials, but also in their spread.

Keywords: Escherichia coli; β-lactamase; plasmid; CTX-M-1; IncI1-ST3

1. Introduction

In recent decades, the consumption of antimicrobials has been rising in both hu-
mans and animals, and as a result, so has the prevalence of plasmid-mediated extended-
spectrum β-lactamases (ESBLs) [1]. However, ESBLs confer resistance to penicillins and
cephalosporins, including last-generation cephalosporins, which are key molecules for
treating infections caused by Gram-negative bacteria in hospitals [1]. Consequently, the
last-generation cephalosporins are classified by the World Health Organization (WHO) as
critically important antimicrobial agents in human medicine [2]. The ESBLs are inhibited by
clavulanic acid, sulbactam and tazobactam, and they are not efficient against carbapenem
antimicrobials. Their main reservoir is Enterobacterales, especially the widespread and
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versatile species Escherichia coli, which is one of the intestinal microbiota and a major
pathogen in humans and animals.

Antimicrobial resistance (AMR) is a complex and multifaceted threat to humans, ani-
mals, and the environment. A major cause of the AMR burden is the capability of resistant
bacteria such as E. coli and AMR-encoding genes to spread between individuals, including
across sectors by horizontal gene transfer. Plasmids are extra-chromosomal mobile genetic
elements that play an essential role in bacterial ecology and evolution and they help their
hosts adapt to a multitude of environments [3]. Plasmids carry accessory genes, includ-
ing most clinically relevant resistance genes, such as those encoding carbapenemases [4],
cephalosporinases [5] and the widespread ESBLs [6–8] that can spread across high-risk
bacterial clones [9,10]. The most frequently detected ESBLs are class A β-lactamases.
They represented by three major types: cefotaximase-Munich (CTX-M), temoneira (TEM)
and sulfhydryl variable (SHV) and they include more than 400 variants reported today.
These corresponding genes are often associated with other genes that confer resistance
to beta-lactams and other antimicrobial agents such as quinolones, aminoglycosides and
sulfonamides [7,8].

Initially, ESBLs were variants of TEM- and SHV-type penicillinases that acquired hy-
drolytic activity against oxyimino cephalosporins, also called third- and fourth-generation
cephalosporins (C3G/C4G) through 1- to 4-point mutations. These enzymes were mainly
observed during the 1980s and the 1990s in nosocomial Enterobacterales, such as Klebsiella
pneumoniae and Enterobacter cloacae, which are mainly responsible for infections in immuno-
compromised patients in intensive care units [6–8]. Since the early 2000s, CTX-M-type
ESBLs have been the dominant ESBLs all over the world, owing to their strong association
with the species E. coli. This recipient, which is a major pathobiont of the mammal gut,
favours the spread not only in intensive care units, as observed for TEM- and SHV-type ES-
BLs, but also in all other care units of hospitals and the community [5–7]. Consequently, the
CTX-M-type ESBLs, especially variants CTX-M-15 and CTX-M-1, are community-acquired
ESBLs, which have almost substituted for the TEM- and SHV-type ESBLs, and they are
the most common plasmid-mediated ESBL among Enterobacterales isolates of human
and veterinary origin worldwide [11–15]. CTX-M-15 is encoded by genes located in IncF
plasmids harboured by E. coli ST131 clade C, a clade strongly associated with human hosts.
CTX-M-1 is observed in E. coli strains collected from humans and animals, and its gene
blaCTX-M-1 has been associated mainly with the broad host range IncN plasmids, and much
more frequently in the narrow host range IncI1 [16–25].

The IncI plasmids belong to the I-complex plasmid family including the incompatibil-
ity groups IncI1, IncIγ, IncB, IncZ and IncK [26]. The IncI1 plasmid backbone is organised
into four major conserved regions encoding replication, conjugative transfer, stability
and leading [27,28], in addition to variable regions encoding accessory functions such as
antimicrobial gene resistance.

There is a great concern that contacts with animals may enhance the risk of acquiring
ESBL-encoding plasmids by humans [29,30]. IncI1-ST3 plasmids are one of the most
prevalent plasmids in ESBL CTX-M-1 in Enterobacterales isolated from humans, animals
and environmental sources [18–25]. However, the relationships at the interface of humans
and animals remain elusive, especially for wild animals. This study compared CTX-M-1-
producing E. coli isolates and IncI1-ST3 plasmids collected from humans, food-producing
animals, and wild animals to best understand the CTX-M-1 spread among these ecosystems.

2. Materials and Methods

Genomic dataset. For this study, we collected 122 E. coli whole genome sequences
(WGSs) containing IncI1-ST3 plasmids and blaCTX-M-1 (Supplementary Tables S1 and S2).
The dataset includes WGSs sequenced during this study (n = 43) and recovered from
GenBank (n = 79) after filtering for quality (ATCG assembly size >4.5 Mb, contigs number
<200 and N50 > 60,000) and the availability of metadata. The sources of strains were humans
(n = 57), domestic animals (n = 11), food or food-producing animals (n = 37), wild animals
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(n = 13) [20,31–37] and municipal wastewater (n = 1). Three strains were from unknown
origins. Of this collection, 30 human strains and 13 strains isolated from wild animals were
sequenced for this study (Supplementary Table S1). The other data were collected from the
NCBI Short Read Archive (SRA) or the European Nucleotide Archive (ENA) by screening
of the E. coli genomes of the GenBank database (Supplementary Table S2). The screening
for encoding CTX-M-1- and IncI1-ST3-specific alleles was performed with DIAMOND and
blastn software, respectively, using 100% identity threshold and 100% coverage threshold.

Likewise, 20,668 non-redundant complete plasmids collected from GenBank were
screened for the IncI1-ST3 feature and the presence of blaCTX-M-1. It resulted in a collection
of 39 IncI1-ST3-blaCTX-M-1 circularised plasmids (Supplementary Table S3).

Whole genome sequencing (WGS). This was performed using the next-generation
sequencing platform of the teaching hospital of Clermont-Ferrand, France. DNA was
extracted with a DNeasy UltraClean Microbial kit (Qiagen, Hilden, Germany). The libraries
were prepared with a Nextera XT Kit (Illumina, San Diego, CA, USA), and they were
sequenced by the Illumina MiSeq system, generating 2 × 301-base pair (bp) paired-end
reads. Fastp software v0.19.10 [38] was used for quality filtering of Illumina reads, and
SPAdes was used for short reads assembly [39]. The mean sequencing depth was ≥163×;
the number of assembled contigs ranged between 51 and 175, the mean contig number was
99.77, the N50 ranged between 63,075 and 383,707, and the mean contig number was 186,502.
The genome sizes ranged between 4,667,864 and 5,338,201 nucleotides. The raw reads have
been deposited in the European Nucleotide Archive (ENA, https://www.ebi.ac.uk/ena)
under project accession number PRJEB36175.

Molecular typing. E. coli phylogroups and multilocus sequence typing (MLST) were
determined in silico according to the Clermont Typing method [40] and Achtman’s MLST
scheme [41]. The molecular typing of isolates was performed by core genome SNP-based
typing (cgSNP). BactSNP was used to perform cgSNP using the E. coli core genome down-
loaded from the Enterobase website (https://enterobase.warwick.ac.uk) as a reference,
as previously described [42,43]. After the filtration of recombination zones detected by
Gubbins [44], a phylogenetic tree was inferred from the resulting alignment by maximum
likelihood using RAxML [45].

Antimicrobial gene detection. The antimicrobial-resistant genes were identified by
alignment against a database including the online databases CARD [46], Resfinder [47],
and the NCBI National Database of Antibiotic Resistant Organisms (https://www.ncbi.
nlm.nih.gov/pathogens/antimicrobial-resistance/ (accessed on 1 April 2021)) using a 95%
minimum threshold for the breadth of coverage and identity percentage, as previously
described [48].

Synteny analysis. This was performed with the Sibelia package [49]. The pres-
ence/absence matrix inferring from the resulting synteny blocks was analysed by multiple
correspondence analysis (MCA) and hierarchical clustering (HC) in R with package Fac-
toMiner (https://www.r-project.org).

3. Results
3.1. Whole Genome Typing of E. coli Harbouring Plasmids IncI1-ST3 and blaCTX-M-1

To best understand the large diffusion of the CTX-M-1 ESBL, we collected a dataset
comprising 122 E. coli WGSs containing IncI1-ST3 replicon and blaCTX-M-1 isolated from
humans, human-influenced habitats and wild fauna. The corresponding genomes were
classified into eight major phylogenetic branches by SNP-based core genome typing. These
major branches corresponded to the E. coli phylogroups (Figure 1).

https://www.ebi.ac.uk/ena
https://enterobase.warwick.ac.uk
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
https://www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/
https://www.r-project.org
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the phylogroups significantly differed depending on the originating source (Fisher test, p-
value < 0.001). Since the genomes of phylogroups A and B1 frequently originated from 
food or food-producing animals (50% and 67%, respectively), the B2 genomes preferen-
tially originated from humans (93.3% versus 6.7% from food and food-producing ani-
mals). 

Human E. coli strains (n = 51/57) were distantly related, except for three clusters of 
two strains diverging by ≤10 SNPs and belonging to ST117 (n = 2) and ST12 (n = 2 × 2). The 
clonal isolates (divergence ≤ 10 SNPs) mainly clustered isolates from food and animals 
including wild animals. Few clonal clusters and STs contained isolates from different hab-
itats (Figure 2), with possible cross-transmissions between humans and human-influ-
enced habitats, and between wild and food-producing animals. 

Figure 1. Phylogenetic tree and corresponding distance matrix based on SNPs of E. coli WGSs containing plasmids IncI1-ST3
encoding blaCTX-M-1. SNP calling, SNP filtering and tree inferring were performed with bactSNP, Gubbins and RAxML,
respectively. The bootstrap values are indicated for the major phylogenetic branches as percentages for 500 replications.

Most genomes belonged to phylogroups B1 (35.8%, n = 43), A (20.8%, n = 25), B2
(12.5%, n = 15), C (12.5%, n = 15) and G (10%, n = 12). The distribution of genomes among
the phylogroups significantly differed depending on the originating source (Fisher test,
p-value < 0.001). Since the genomes of phylogroups A and B1 frequently originated from
food or food-producing animals (50% and 67%, respectively), the B2 genomes preferentially
originated from humans (93.3% versus 6.7% from food and food-producing animals).

Human E. coli strains (n = 51/57) were distantly related, except for three clusters of
two strains diverging by ≤10 SNPs and belonging to ST117 (n = 2) and ST12 (n = 2 × 2).
The clonal isolates (divergence ≤ 10 SNPs) mainly clustered isolates from food and animals
including wild animals. Few clonal clusters and STs contained isolates from different habi-
tats (Figure 2), with possible cross-transmissions between humans and human-influenced
habitats, and between wild and food-producing animals.
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Figure 2. Distribution of E. coli ST lineages in human, human-influenced habitats and wild fauna
showing deduced transmission pathways between these ecosystems. Dashed lines indicate STs
shared by different habitats, and solid lines indicate closely related isolates diverging by ≤10 SNPs.

3.2. Antimicrobial Resistance Genes

In addition to the chromosome-mediated ampC gene encoding cephalosporinase,
45 acquired antimicrobial resistance mechanisms were associated with blaCTX-M-1 (Figure 3).
None of the genes were strictly conserved.
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producing animals; H, human; P, pet; U: unknown and W, wild animal.
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Excluding the redundant isolates corresponding to clonal isolates (n = 30), the most
frequent genes were sulphonamide resistance gene sul2 (94.4%), tetracycline resistance gene
tet(A) (63.3%), streptomycin/spectinomycin resistance genes aadA5 (47.8%), strB (24.4%)
and strA (23.3%), trimethoprim resistance gene dfrA17 (47.8%), and penicillinase-encoding
gene blaTEM-1 (30.0%) (Supplementary Figure S1a). The investigation of resistance gene
co-occurrence revealed preferential associations. Among the most frequent genes, aadA5,
dfrA17, strA, strB and blaTEM-1 exhibited a strong association index. This suggests their fre-
quent coexistence with blaCTX-M-1 probably in the same plasmid IncI1-ST3 (Supplementary
Figure S1b).

3.3. SNP Analysis of blaCTX-M-1-Encoding Plasmids IncI1-ST3

A total of 117 assemblies (96%) contained a contig harbouring blaCTX-M-1, ISEcp1
and at least the B segment of a region previously called shufflon that is specific to IncI1
plasmids [50]. The well-known mobile block ISEcp1-blaCTX-M-1 [51,52] was located 333 pb
upstream of the B segment of the shufflon. In four cases, mobile element ISKpn26 was
inserted between blaCTX-M-1 and ISEcp1. The blaCTX-M-1 gene was encoded by plasmids
IncI1 in most E. coli harbouring this family of plasmids. SNP analysis of IncI1-ST3 plasmids
encoding blaCTX-M-1 showed that they differ by <10 SNPs and most often by 1–2 SNPs. The
resulting tree had a comb-like shape constituting a unique major clade (Figure 4).
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3.4. Synteny Variation in blaCTX-M-1-Encoding Plasmids IncI1-ST3

Although not explored for epidemiologic investigations, genetic rearrangements are a
major driving force of plasmid evolution. Therefore, we investigated synteny variations
in 39 circularised IncI1-ST3-blaCTX-M-1 plasmids. The synteny analysis by multiple corre-
spondence analysis (MCA) and hierarchical clustering (HC) classified the plasmids into
six major clusters (Figure 5). The clusters are supported by statistical tests (Adonis test’s
p-value: 0.001 and R2: 0.75; Dispersion permutation test’s p-value: 0.1).
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Figure 5. Multiple corresponding analysis (a) and hierarchical clustering (b) inferring synteny analysis of 39 circularised
plasmids IncI1-ST3 encoding blaCTX-M-1. The clusters are surrounded by 95% confidence ellipses, and the 10 most contrib-
utory synteny blocks of sequences are indicated in red (B#: shuffling segment B associated with ISEcp1 and blaCTX-M-1;
#: position of the genetic feature, rv: reverse and fd: forward).

Among the 14 synteny blocks that were significantly associated with the clusters
(FDR-adjusted X2-test’s p-values, 1.4 × 10−6 to 5.5 × 10−3), 13 were in the unique shufflon
region between the conserved genes rci and pilV. The genetic features in region rci-pilV are
specific to IncI1 plasmids, and they comprise up to four DNA segments A to D, previously
identified as randomly rearranged by recombinase Rci [50]. This region harboured the
most synteny variations.

The synteny of rci-pilV was also investigated from E. coli WGSs. A total of 77 WGS-
encoding plasmids IncI1-ST3 exhibited a complete shufflon assembly, including blaCTX-M-1.
MCA and HC analyses of synteny variants from WGSs confirmed the classification of
plasmids in six major clusters (Supplementary Figures S2–S4). Segment D was absent in
all plasmids, and mobile element ISEcp1-blaCTX-M-1 was always located downstream from
segment B to form a conserved block exhibiting different positions in the shufflon. This
block can affect the shuffling process, and it was paradoxically the feature that contributed
most to diversity (Supplementary Figure S2). The shufflon segments are involved in the
synthesis of PilV adhesins of the conjugative pilus [53]. Therefore, the shuffling of segments
associated with ISEcp1-blaCTX-M-1 insertion generates diversity in the PilV-encoding region.
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This can modulate the recognition of recipient cells during IncI1-ST3-blaCTX-M-1 conjugation
and therefore probably their dissemination.

At the highest level of classification resolution, synteny analysis revealed 16 clusters
of two to seven plasmids sharing identical synteny (Supplementary Figures S3 and S4).
Ten of these clusters included plasmids isolated from the same country and the same
source. Seven clusters were specific to the source. Nine clusters were only observed in
human-influenced habitats. The plasmids isolated from wild animals were included in
four clusters; two were specific to wild fauna, and the two others supported a possible
spread between human-influenced animals and wild fauna.

4. Discussion

The increase in antimicrobial resistance worldwide is a result of inappropriate use of
antimicrobials during the last decades, including those used for human medication and
animal husbandry. This broad use increases the selective pressure on both commensal
and pathogenic bacteria, which can spread between different ecosystems [1,54]. Livestock
animals may act as reservoirs of AMR and multidrug resistant bacteria. This can lead to
dissemination of AMR into humans directly by contact and the food chain or indirectly
from the environment [1,54].

In this study, we analysed genomic data belonging to E. coli isolates collected from hu-
mans, animals (food-producing animals, companion animals, wildlife), and food samples
to understand the interaction between these ecosystems in the diffusion of IncI1-ST3 plas-
mids encoding blaCTX-M-1. The genomic data analysis showed that the E. coli phylogroups
harbouring IncI1-ST3 plasmids encoding blaCTX-M-1 significantly differed depending on
the originating source. Of the isolates, 68% belonged to the phylogenetic A, B1 and C,
which are associated with multiple antimicrobial resistance genes especially those encoding
sulphonamide and tetracycline resistance. MLST revealed 50 sequence types. The most
abundant sequence type was ST602, followed by ST117 and ST10. The correlation be-
tween ST602, which was the most abundant sequence type detected in E. coli phylogenetic
group B1 isolates in this study, and food-producing animals was pointed out in recent
reports [55–57].

Human contamination by ESBL-producing Enterobacterales from animals is often
supposed, and food is considered a direct transmission vehicle. ESBL gene blaCTX-M-1
and IncI1-ST3 plasmids were widespread in humans, human-influenced habitats and
wild fauna, as previously observed [21–25]. Here, we observed that IncI1-ST3-blaCTX-M-1
plasmids also have disseminated into all E. coli lineages, which cover a broad diversity
of bacteria and different lifestyles, including commensal and pathogenic strains. Few
clonal clusters and STs were shared by different habitats, suggesting E. coli lineages have a
preferential habitat and few of them are involved in cross-sector spread. As shuttles, these
subgroups may be risk factors for spreading antimicrobial resistance and they might be
preferential targets for strategies to prevent the spread of antimicrobial resistance.

The SNP-based comparison of blaCTX-M-1 IncI1-ST3 plasmids originating from several
continents revealed a core genome highly conserved. This suggests that the dissemination
of these plasmids across all sources over distant areas took decades. However, the evo-
lutionary rate of bacterial genomes may not generate enough variations to resolve recent
epidemiological processes involving small genetic elements such as IncI1-ST3-blaCTX-M-1
plasmids. Recombination, gain and loss of DNA fragments are key processes of evolu-
tion [58]. They affect synteny and are not investigated by comparisons based on core
genome SNPs. The analysis of synteny in complete blaCTX-M-1 IncI1-ST3 plasmids revealed
more diversity than SNP analysis. Synteny-based clusters were associated with sampling
sources and geographic origins. This suggests that synteny analysis can be a useful ap-
proach for monitoring IncI1-ST3 plasmid spread over short periods, and it might help to
analyse transmission chains.

Most variations in synteny were observed in a single region, which was previously
designated shufflon and encoding a recombinase and targeted DNA segments [50]. Most
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diversity resulted from the positioning and orientation of a conserved block including the
shufflon segment B, ISEcp1 and blaCTX-M-1. Shufflon B appears, therefore, as a hot spot
for the insertion of mobile element ISEcp1 and associated gene blaCTX-M-1. Since ISEcp1
is involved in the mobilisation of ESBL- and cephalosporinase-encoding genes [51,59],
shufflon B of IncI1 explains the key role of these plasmids in the spread of resistance to
last-generation cephalosporins.

The assembly of blaCTX-M-1 from short reads suggest a certain stability and/or the
preponderance of a shufflon synteny within a bacterial clone. This contrasts with plasmids
IncI2 harbouring active shufflons [60]. This stability was confirmed by assembly from
long-read sequencing, which did not reveal alternative conformation of shufflons [61]
and may be explained by the insertion of ISEcp1-blaCTX-M-1 in the shuffling zone. The
shufflon is involved in the synthesis of PilV adhesins, which are responsible for recipient
recognition in the conjugation process [53]. The insertion of ISEcp1-blaCTX-M-1 associated
with the shuffling of segments can affect PilV and consequently modulate the recognition
of recipient cells during IncI1-ST3-blaCTX-M-1 conjugation. Resistance gene blaCTX-M-1 can,
therefore, be involved in both antimicrobial resistance and plasmid spread, two synergic
functions that may explain the ecological success of blaCTX-M-1 IncI1-ST3 plasmids.

5. Conclusions

Although additional animal and environmental sources of CTX-M-1-producing E. coli
should be investigated, the results showed there was broad dissemination of IncI1-ST3-
blaCTX-M-1 plasmids. Their bacterial recipients differ by habitats, with a few of them playing
the role of disseminating shuttles. The sequence of IncI1-ST3-blaCTX-M-1 plasmids is highly
conserved except in the shufflon zone. Their broad ecological success does not seem to be
linked to their ability to transfer a broad spectrum of bacterial lineages, a feature associated
with the diversity of their shuffling conjugation region.
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